
LINKÖPING UNIVERSITY
Department of Computer and Information Science
Software and Systems
Christoffer Holm 2022-06-02

Computer examination in
TDDD38 Advanced Programming in C++

Date 2022-06-02

Time 14-19

Department IDA

Course code TDDD38

Exam code DAT1

Examiner
Klas Arvidsson (klas.arvidsson@liu.se)

Administrator

Anna Grabska Eklund, 28 2362

Teacher on call

Christoffer Holm (christoffer.holm@liu.se)
Will primarily answer exam questions using the
student client.
Will only visit the exam rooms for system-
related problems.

Allowed Aids (tillåtna hjälpmedel)
An English-* dictionary may be brought to the exam.
No other printed or electronic material are allowed.
The cppreference.com reference is available in the exam system, except for the language section.

Grading
The exam has a total of 25 points.
0-10 for grade U/FX
11-14 for grade 3/C
15-18 for grade 4/B
19-25 for grade 5/A

Special instructions
• All communication with staff during the exam can be done in both English and Swedish.
• Don’t log out at any time during the exam, only when you have finished.
• Given files are found in subdirectory ~/Desktop/given_files (write protected). The

exam will be available as a PDF in this directory at the start of the exam.
• Files you want assessed must be submitted via the Student Client.
• When using standard library components, such as algorithms and containers, try to chose

”best fit“ regarding the problem to solve. Avoid unrelated/unnecessary computations and
unnecessary data structures.

• C style coding may cause point reduction where C++ alternatives are available.
• Your code should compile. Commented out regions of non-compiling code may still give

some points. Resource leaks and undefined behavior is important to fix.
• Questions marked as Discussion is meant to be answered textually (txt or PDF). The

answers to these questions must be passed in separately from the code.



TDDD38 Page 2 of 9 2022-06-02

Available commands
e++20 is used to compile with “all” warnings as errors.
w++20 is used to compile with “all” warnings. Recommended.
g++20 is used to compile without warnings.
valgrind --tool=memcheck is used to find memory leaks.

C++ reference
During the exam you will have partial access to http://www.cppreference.com/, but only
through the desktop icon “Web access”. Do note that not everything on cppreference will be
available (in particular the pages under the “Language” section will be blocked). If you are
unable to access a page that should be available (it might have been blocked by mistake) then
you can send a message through the exam client. Note: The search functionality should work,
but only if you do it through cppreference. You cannot search on DuckDuckGo.



TDDD38 Page 3 of 9 2022-06-02

1. [5p]In this assignment you will implement something similar to a std::tuple by recursively
nesting std::pairs together. Suppose that we want to create a list containing the values
1, 2.3, '4'. Then we can do this by using std::pair like this:

make_pair(1, make_pair(2.3, make_pair('4', ???)));

We will from now on call this type of object a pair structured list.
One thing to remember with recursive structures is that we need a base case. For pair
structured lists we need a way to mark the end of the list. To do this we simply create an
empty class called Sentinel. Then we can create a pair structured list like this:

make_pair(1, make_pair(2.3, make_pair('4', Sentinel{})));

To make this easier to use you will have to create two function templates:

• make_list which takes an arbitrary amount of parameters and constructs a pair struc-
tured list from the parameters.

• get_index which takes an index N as a template parameter. It takes a pair structured
list as a function parameter and then returns the N:th value of that list as a reference.

There are a few testcases given in given_files/program1.cc. These should work without
any modification.
Hint: To implement make_list use variadic recursion. Make two overloads: one that takes
no parameters and returns a Sentinel and another one that takes a variadic template and
returns a pair where the first element is the first function parameter and the second element
is the result of a recursive call to make_list with the rest of the function arguments.
Hint: There are many ways to implement get_index and you are not limited to one way.
As long as it works the intended way without modifying the given program.
One suggestion however is to create a struct/class template Get_Index that takes an index
N and an arbitrary type T as template parameters. Get_Index defines a static function
called value that takes a reference to a pair structured list (which has type T here). Then
you need to cover two cases:

• For the primary template the static function value() should recursively call value() of
the instantiation Get_Index<N - 1, ???> with the second value of the pair structured
list as a parameter, and then return the result. This is the recursive step.

• A specialization for when N = 0 where the first value in the pair structured list is
returned. This is the base case.

You can then use Get_Index::value() to implement the function template get_index().



TDDD38 Page 4 of 9 2022-06-02

2. [2p]Discussion: What is a dependent name? How is it related to the keyword typename?
What ambiguity problems are related to dependent names?



TDDD38 Page 5 of 9 2022-06-02

3. [6p]Dynamically typed languages such as Python or Javascript can be (somewhat) simulated in
C++ with for example std::any. But a big difference is that if we want to do something
with std::any we have to convert them back to that specific type. In dynamically typed
languages you don’t have to know what the type of a value in order to use it. In this
assignment we will make a variable type that approximates this behaviour in C++.
To do this you will have to create a class Variable and a class hierarchy consisting of these
classes:

• Variable_Base a pure virtual (abstract) class that defines the interface for all possible
values that can be stored in a variable. Has the following virtual functions:

– print() that takes an std::ostream reference.
– add() that takes an object from the Variable_Base hierarchy and returns a new

Variable_Base. The idea behind this function is to determine what happens
when we add two variables together. In this case it just throws an exception since
the base class cannot exist.

• Number is a subclass of Variable_Base. This class is the implementation of a variable
that contains a number. It has a double data member called value.

– print() simply prints value to the passed in std::ostream.
– add() have the following behaviour: If the passed in parameter rhs is a Number

then it creates a new Number which contains the sum of this->value and rhs->value.
Otherwise it throws an exception.

• String is a subclass of Variable_Base. This is the implementation of a variable
containing a string. It has a string data member value.

– print() simply prints value to the passed in std::ostream.
– add() varies it behaviour depending on what the dynamic type of the passed in

parameter rhs is: If rhs is a Number then it produces a new String which is
the original string concatenated with the string representation of the passed in
numbers value. If rhs is a String then a new String is returned which contains
the original string concatenated with the passed in string. Otherwise it throws an
exception.

Using this class hierarchy we can then define Variable as follows:

• It contains a data member data which can be any of the types in the Variable_Base
hierarchy.

• There are two constructors: one that initializes data as a Number and one that initial-
izes it to a String. These constructors should take appropriate parameters.

• An operator+ that takes another Variable and calls add with the passed in variables
data member as its parameter, and then returns a new Variable which contains the
result of the add call. Hint: you might need to add a third constructor that takes a
Variable_Base object.

• Two operator=, one that takes a double and one that takes a std::string. These
should replace the currently stored data with a new appropriate subclass initialized
from the parameter.

• Finally there is an overload for operator<< that calls the virtual print function of
the stored data member in Variable.

There is a given testprogram in given_files/program3.cc. This should NOT be modified.



TDDD38 Page 6 of 9 2022-06-02

4. [5p]In this assignment you will write a program that constructs a textual output based on a
document template. In the context of this assignment we define a document template as
a text file which contains the occasional string of the following format: #N where N is a
positive integer. An example of such a file is given in example.txt.
In this assignment you must use appropriate STL containers and algorithms. This means
that you are not allowed to use any manual iteration statements (loops), nor recursion. You
must also consider which container is best suited for each step in the program. It is possible
to solve this assignment without std::for_each so refrain from using it.
The program takes a document template file as its first command line argument. The
rest of the command line arguments will specify (in order) what #0, #1, #2 etc. will be
replaced with. Most of the command line argument handling as well as the opening of the
specified file is given in given_files/program4.cc. Your job is to implement the rest of
the program, which is done by following these steps:

1. Read each word of the file into a vector of strings called text.
2. Create an associative container called parameters. For each element in the inter-

val argv+2 to argv+argc associate strings of the form #N (where N is an integer) to
corresponding argument in the command line interval and store that association in
parameters with N increasing by 1 each time (starting at 0).
Example: If the command line arguments contains the strings "abc" "def" and "ghi"
then the association in parameters should be:

"#0" -> "abc"
"#1" -> "def"
"#2" -> "ghi"

And so on.
3. In this step we must check that all strings of the form #N in text has an associated

string in parameters. The program must report all unique strings of the form #N that
has no association and then terminate the program. If all #N has an association, move
on to the next step.
Hint: Copy each string of the form #N in text that has no association in parameters
to a separate container and then afterwards check whether the container is empty. If
not, print all the strings in the separate container to std::cerr and then terminate.
Remember that you may only print each unique #N once.

4. Replace all occurances of #N strings in text with their associated strings in parameters.
5. Print the content of text separated with a space to std::cout.

Various example outputs are given in given_files/program4.cc.



TDDD38 Page 7 of 9 2022-06-02

5. [2p]Discussion: What is pointer (or iterator) invalidation in the context of containers? Give
an example of when it can occur. Explain why this might cause issues. Are there any
containers that are preferred if we want to avoid pointer invalidation?



TDDD38 Page 8 of 9 2022-06-02

6. [3p]Often we want to add elements to the beginning of a container, but not all containers
support the function push_front. In those cases we might have to resort to using the more
general insert function or even (in a few cases) operator+.
In this assignment you will create a function template prepend that takes an arbitrary
container and adds a value to the beginning of the container. This means that prepend
takes two parameters: a container reference and a value.
The implementation of prepend differs depending on certain properties of the passed in
container. Specifically there are three cases which are prioritized in the order they are
presented. All three cases will insert the value at the beginning of the container, but they
will use different methods which are:

• push_front
• operator+ (i.e. container = value + container)
• insert

You may NOT use C++20 concepts to solve this assignment.
Requirement: This function should work for all containers that can be modified and where
it is meaningful to “add a value to the front” (so associvate containers, std::array and
C-arrays should not be considered).
Requirement: The value must be passed as a forwarding reference and must be properly
forwarded to the functions/operators that are called in prepend.
Hint: Create a general prepend function that calls a helper function which has one overload
for each case. Note that you may have to add parameters to the helpers.



TDDD38 Page 9 of 9 2022-06-02

7. [2p]Discussion: What is the rule of zero and rule of five? How are they related? What special
member functions are involved? In your opinion, what is the purpose of these rules?


