LINKOPING UNIVERSITY

Department of Computer and Information Science

Software and Systems

Christoffer Holm 2022-01-13

Computer examination in

TDDD38 Advanced Programming in C++

Date 2022-01-13 Administrator
Time 813 Anna Grabska Eklund, 28 2362
Department IDA
Course code TDDD38 Teacher on call
Exam code DAT1 Christoffer Holm (christoffer.holm@liu.se)
Will primarily answer exam questions using the
Examiner student client.
Will only visit the exam rooms for system-
Klas Arvidsson (klas.arvidsson@liu.se) related problems.

Allowed Aids (tillatna hjdlpmedel)

An English-* dictionary may be brought to the exam.
No other printed or electronic material are allowed.
The cppreference.com reference is available in the exam system, except for the language section.

Grading

The exam has a total of 25 points.
0-10 for grade U/FX

11-14 for grade 3/C

15-18 for grade 4/B

19-25 for grade 5/A

Special instructions

o All communication with staff during the exam can be done in both English and Swedish.

e Don’t log out at any time during the exam, only when you have finished.

o Given files are found in subdirectory given_files (write protected). The exam will be
available as a PDF in this directory at the start of the exam.

e Files for examination must be submitted via the Student Client.

o When using standard library components, such as algorithms and containers, try to chose
"best fit“ regarding the problem to solve. Avoid unrelated /unnecessary computations and
unnecessary data structures.

e C style coding may cause point reduction where C++ alternatives are available.

e Your code should compile. Commented out regions of non-compiling code may still give
some points. Resource leaks and undefined behavior is important to fix.

o Questions marked as Discussion is meant to be answered textually (txt or PDF). The
answers to these questions must be passed in separately from the code.



TDDD38 Page 2 of 8 2022-01-13

Available commands

e++20 is used to compile with “all” warnings as errors.

w++20 is used to compile with “all” warnings. Recommended.
g++20 is used to compile without warnings.

valgrind --tool=memcheck is used to find memory leaks.

C++ reference

During the exam you will have partial access to http://www.cppreference.com/ with the
chromium browser. You can start the broweser by either running chromium-browser in the
terminal or choose an appropriate option in the start menu. Do note that everything except
cppreference will be unavailable. If you are unable to access a page that should be available (it
might have been blocked by mistake) then you can send a message through the exam client.
Since it is an experimental feature there might be some quirks.



TDDD38 Page 3 of 8 2022-01-13

1. Keeping a schedule of what to do at what times is a common organizational tool. Often we
find that we keep multiple schedules: one for work or studies and one for our private life.
But in order for schedules to be as efficient as possible we want to view them all at once.

In this assignment you will use STL (the standard library) to create a program that takes
two schedules and merge them into one. There are example schedules in the files first.txt
and second.txt.

Each schedule consists of events of the format: <start hour> <end hour> <description>
where <start hour> and <end hour> are integers between 0 and 24. They represent at
which hour this event starts and ends, respectively.

<description> is a string that is terminated by a newline character.

An event is represented by the type Event (which is defined in given_files/programl.cc),
and can be read from a stream with operator>> and printed to a stream with operator<<.
The body for operator>> and operator<< are given in given_files/programl.cc, but
you will have to declare the function headers yourself.

Note: due to overloading rules, both operator<< and operator>> must reside in the
namespace std.

There are step-by-step instructions for how this program should be implemented given in
given_files/programl.cc. Make sure to follow these steps as closely as possible.

In this assignment you are to use standard algorithms to implement the program described
above. Hand-written loops and std: :for_each will deduce points.



TDDD38 Page 4 of 8 2022-01-13

2. Discussion: Answer the following questions:

a) When overloading operator<< what are some things you must consider? Is it an
ordinary function? A member function? Is there anything in particular we have to
think about when it comes to parameters and return type? Explain clearly what each
parameter represents and why they are necessary.

b) Explain what overload resolution is. Your explanation must describe how overload
resolution deals with multiple functions of the same name. In what order does the
compiler prioritize candidate functions? Does the data type of parameters matter?
Does the data type of return types matter? Does templates parameters matter?

Note: Both (a) and (b) are worth 2 points each. Your answers should be around 150-500
words long per question (this is not a hard limit). Make sure to make your explanations
clear. It is important that you communicate your assumptions.

[4p]



TDDD38 Page 5 of 8 2022-01-13

3. Databases are a central part of software development. A database stores the rows of a table
where each column is of a specified data type.

In this assignment you will implement a very simple database class template, called database
that takes an arbitrary number of template parameters, each representing the data type of
individual columns in the database.

Each row in the database is associated with a unique integer identifier. This identifier will
be used as a shorthand when dealing with individual rows in the database.

Each row is stored as std: :tuple objects.

database must have the following functions:

e insert, takes an argument for each column and insert these values into the database.
This function assigns a new identifier to this newly inserted row and return that iden-
tifier.

Generation of identifiers is done with a counter. Each insertion will assign the identifier
to the row and then increase the counter by 1. The counter starts at 0.

Note: The counter must NEVER decrease.

e get, takes a row identifier and return the columns for that row. It must return all the
columns as an std: :tuple reference. If the specified row does not exist it must throw
an std::out_of_range exception.

e remove, takes a row identifier and removes that row from the database. If the row
identifier doesn’t exist the function doesn’t do anything.

o filter, takes a callable object as a forwarding reference. This callable object must
take two parameters: an int (a row identifier) and a std::tuple (the columns of a
row). The callable object return a bool.
filter will return a std::vector containing the row identifiers for all rows where
calling the callable object return true.

Requirement: The returned std: : vector should store the identifiers in sorted order.
database must also contain a type alias called row_type which is an alias for std: :tuple
instantiated with the column types.

Hint: Think carefully about which containers you should use to implement the database.
It should be possible to find rows based on the identifiers. The implementation of filter
becomes a bit simpler if you can iterate through the rows in sorted order.

There are testcases given in given_files/program3.cc.



TDDD38 Page 6 of 8 2022-01-13

4. Formatting documents can be a hard task. They usually contain different types of elements
such as text, lists, tables, images etc. These elements should be printed in a nice format
and in the correct order. Some well-known formatting tools for documents are: HTML and
CSS, LaTeX, Microsoft Word etc.

In this assignment you will use dynamic polymorphism to create a very simple framework
for formatting documents in the terminal. This framework will only have 3 different types
of elements:

Label A title followed by some text.

Grid A list of integers printed in a grid pattern (all grid cells in this grid have the same
width).

List A list of integers printed such that each line looks like this: - [integer]

There must be a base class called Element that has a string data member called name and
a pure-virtual function print that takes an std::ostream object (this function returns
nothing). The print function will be called whenever we want to print this element to the
specified stream.

The constructor of Element takes a string and assign it to name.

Label is a subclass of Element that has a string data member called text (both text and
the inherited name should be set through the constructor).

Label overrides print such that it prints: <name>: "<text>", where <text> is the content
of the text member, and <name> is the content of the inherited member name.

Element have a subclass called Collection. It contains:

e a vector of ints called items,
o a variable called column_width (always initialized to 0),

e a protected virtual function print_item that takes an std::ostream object and an
int. This function will print the passed in int to the ostream. This function must
prepend spaces before the int until the total number of characters printed is equal to
column_width (here std: :setw from <iomanip> might come in handy).

e A function called insert that takes an int. This function will insert the int to the end
of the items vector. If the number of digits in the int is greater than column_width,
then column_width is set to that number of digits. Do this by converting the passed
in int to a string with std: :to_string and compare its size to column_width, if the
string size is greater, than set column_width to that value.

Collection have the same constructor as Element.

Grid is a class template that takes an int value called width as a template parameter.
width represents how many grid cells there are per row in the grid.

Grid overrides the print function. An implementation is given in given_files/programé.cc.

Finally there is the List class. It behaves the same way as a Grid with width = 1, with
the exception that List overrides print_item. List::print_item should print the same
thing as Collection: :print_item, but it should start with - [” and end with ”]”.

There is a partial main program given in given_files/programé.cc. Make sure to fix the
parts inside the comments.

Note: Grid must be a class template and width must be a template parameter to Grid.



TDDD38 Page 7 of 8 2022-01-13

5. Discussion: Discuss the advantages and disadvantages of the class hierarchy in the previous
assignment. Focus on readability, scalability and/or usability: i.e. how easy is the code to
understand for the reader, how easy is the code to change and how easy are the classes
to use. Your answer should be around 200-1000 words. Give code examples. You don’t
have to cover all three aspects, but make sure to bring up at least one advantage and one
disadvantage.

Hint: You could compare this to other ways to achieve the same thing.

[3p]



TDDD38 Page 8 of 8 2022-01-13

6. Passing callable objects (functions, lambdas and function objects) to functions is a very
common pattern in many programming languages (including C++). Usually this pattern
occurs in the interface of algorithms.

In this assignment you will create a simple algorithm called enumerate. It behaves similarly
to std: :for_each but with some key differences.

Instead of taking iterators to the container, enumerate will take the container as a constant
reference. It will (just like std::for_each) take a callable object and apply it on each
element in the container.

enumerate will therefore take exactly two parameters; a container and a callable object. It
does not return anything.

enumerate will have different implementations based on the number of parameters which
can be passed to the callable object. There are 3 different implementations:

o If the callable object takes one parameter then enumerate will iterate through the
container (in a general way) and pass each element to the callable object.

o If the callable object takes two parameters then enumerate will iterate through the
container and pass each element AND that elements index to the callable object. This
means that you will have to keep track of the index of each element, which can be
done with a simple counter.

o Lastly, if the callable object takes three parameters then enumerate will also pass the
containers size to the callable object. So for each element it will pass the element, its
index and the containers total size.

Some callable objects can be called with a variable amount of parameters. This occurs
when there are default parameters to the callable object. Say for example that we pass a
callable object that can take 1, 2 or 3 parameters. In that case all the implementations of
enumerate will be valid, which would lead to ambiguous calls. You need to fix this issue
by inducing a priority order on the implementations:

1. If the callable object can be called with three parameters, then enumerate should
always do so.

2. If the callable object can be called with two parameters (but not three), then corre-
sponding implementation of enumerate should be called.

3. In all other cases enumerate should call the implementation where the callable object
takes one parameter.

There are testcases given in given_files/programé.cc.

Note: It should be possible to pass any container to enumerate, including C-arrays and
std: :map. However, the implementation taking three parameters should only be possible
to call if the container have a size function. This means that for example C-arrays can not
be used with all three implementations.

Hint: Create a helper function template with one overload for each implementation. Use
SFINAE to test whether the callable object is callable with 1, 2 or 3 parameters. It might
be helpful to add extra parameters to the helper functions in order to induce the priority
order.

Hint: enumerate should take (at least) two template parameters.



