
DATABASES

ADIT

Lab Compendium – BrianAir Project

Table of Contents
TABLE OF CONTENTS...1

PROJECT; BRIANAIR DATABASE..2

OBJECTIVES...2
BACKGROUND READING...2
ESTIMATED PROJECT TIME...2
EXERCISE BACKGROUND..2
PART 1, DESIGNING THE DATABASE..3
SOME HINTS AND FURTHER REQUIREMENTS:...4
HANDING IN..4
PART 2, IMPLEMENTATION OF THE DATABASE..5
HINT..5
TESTING AND EXPECTED OUTPUT..5
QUESTIONS:..5
HANDING IN..8

Institutionen för datavetenskap (IDA), Linköpings universitet

Project; BrianAir Database
Objectives
The objectives of this lab are to learn how to implement a database, get some hands-
on experience of SQL stored procedures and more experience of SQL queries learnt
in previous labs.

Background Reading
For this lab, you need to be familiar with EER-modelling, translation of EER into
relational tables, SQL queries, stored procedures, and transactions; that is, many
aspect of the whole course.

Estimated Project Time
This is a large project, reaching over six lab sessions and one mandatory seminar.
Note, however, that these lab sessions are expected to cover only the SQL-based
implementation part of your project. The EER modelling and translation into
relational tables (i.e. the first part of the project) needs to be done before the
scheduled lab sessions. Check the course Website or ask your lab assistant if you have
further questions about the schedule, deadlines, etc.

Exercise Background
A friend of yours, called Brian, has decided to get into the travel business and has just
started up a low-price airline company called BrianAir. He is now designing the
JavaScript-based booking Website and has realized that he needs a database in the
backend. Knowing that you are taking a database course, he has asked you to design
and implement the flight and booking database. In other words, you are supposed to
plan and set up the database he will use for his company. You think the company is a
terrible idea but, as a good friend, you have agreed to help him.

The main idea of the Website is that a customer should be able to search for flights
and create bookings on these flights. The booking procedure should be fairly simple
where the customer creates a reservation for a number of people on a flight and get a
reservation number. The customer should then be able to add passengers to the
reservation as well as some contact details. Finally, the customer should be able to
add payment details and pay for the reservation and, thereby, ensure that the
passengers have seats on the chosen plane. When this happens, the reservation is said
to become a booking. All of this can be done within one session at the Website, but
the customer should also be able to create a reservation, check the price, and finish the
booking procedure at a later date using the given reservation number.

Part 1, Designing the Database
1. (at home) Draw an EER diagram for the BrianAir database. Your friend has not
really thought this through and will let you decide how to design the database as long
as the following requirements and specifications are met. Note that you must read
through the entire project description (including questions 2-10) to get a proper
understanding of what the database should be able to handle and what attributes are
required for the entities.

a. BrianAir uses only one type of airplane that takes 40 passengers. You need not to
model different airplane types.

b. BrianAir only flies between the airports Lillby and Smallville (and returns) but
they will soon expand. Hence, the database should be constructed such that it is
easy to add new destinations and routes later.

c. BrianAir operates on a strict weekly schedule. There are no exceptions for
holidays. The weekly schedule is valid for one year and may be changed on every
January 1st. Of course, there can be several flights per day.

d. Reservations should be possible to make on any route added to the system. A
single reservation should only be for one route, i.e. one direct flight, but may
contain several passengers. The reservation is confirmed by issuing a unique,
unguessable reservation number that is needed to finish the booking (i.e. paying)
at a later date.

e. The flight pricing depends on

 the start and stop destination which (together) has a route price,

 the day of the week. BrianAir has the same weekday pricing factor for all
flights regardless of destination, e.g. factor 4.7 on Fridays and Sundays,
factor 1 on Tuesdays, etc.

 the number of already confirmed/booked passengers on the flight. The
more passengers are booked the more expensive the flight becomes.

 what profit BrianAir wants to make on the flights. This factor is the same
for all flights.

The total price is thus calculated as follows:
TotalPrice = RoutePriceto,from · WeekdayFactorday ·
 (#BookedPassengersflight + 1)/40 ·
 ProfitFactor

Pricing factors (including profitfactor) and route prices can change when the
schedule changes, once per year!

f. The actual price for a booking is calculated at payment time and should be saved
for future reference. Moreover, each person in one booking has the same seat
price (calculated as the first person in the booking).

g. Information about each passenger participating in any BryanAir flight must be
stored in the database as detailed by the flight safety standard. This information
includes passport number as well as the passengers’ full name.

h. Each booking should contain one passenger that is the contact of that booking and
must supply phone number and e-mail address. Note that this contact has to be
added before the booking is payed.

i. Only credit cards can be used to pay for the flights and the necessary credit card
information, such as card number and credit card holder, should be stored. It may
be that the one who pays for the flight (the credit card holder) does not participate
in the flight.

j. The payment of the booking is confirmed by issuing a unique, unguessable, ticket
number per passenger that the passenger needs to bring to the airport instead of a
paper ticket.

k. Overbookings are not allowed but overreservations are. This means that there can
exist more reserved seats on a plane than the actual number of seats, but that one
only can reserve seats, and pay previously made reservations, if there exist enough
unpaid seats on the flight. If there are not enough unpaid seats, the whole booking-
process is aborted and the reservation should be removed from the system.

Other requirements are up to your assumptions. State them in the EER diagram.

Some Hints and Further requirements:
A simple solution would be to model flights as an entity with attributes such as cities
of departure and arrival, day of the year and time of departure, etc. However, this is
not acceptable because the resulting table may contain a lot of duplicated information.
Hence, we require you to include the following entities instead (note that you will
need additional entities outside these):

 Route, which contains all the routes the company flies. A route is
characterized by the cities of departure and arrival.

 Weekly schedule, which contains the one week schedule of flights, that is the
same for all weeks, for a given year. A weekly flight is characterized by its ID,
a route, a year, a day of the week and the time of departure.

 Flight, which contains the instantiations of the weekly flight schedule for each
week. A flight is characterized by its unique flight number, a weekly flight and
a week.

Handing In
For the first hand-in of the project, before the tutor session, the following should be handed in:
 EER diagram.
 Relational database schema (tables and constraints) that is the result of translating

the EER diagram.

Your EER diagram and relational model need to be approved before you start the
implementation in part 2 of the project!

Part 2, Implementation of the Database
Once your EER diagram and relational model are approved, it is time for the
implementation. Your friend has no opinion on how this should be done, as long as
the database contains a set of stored procedures that works as an interface to the
frontend.
Please read through all the questions, hints, etc., before starting with the
implementation to avoid unnecessary work.

Hint
For this lab it is strongly recommended that you write your queries in a script to allow
you to easily recreate the database from scratch. This is simply done by writing all
queries sequentially in a text file and save it in your home directory. All queries in the
text file can then be run using the query “SOURCE name_of_text_file.txt”. In the
beginning of the text file you should drop all tables and procedures in the database
before you “recreate” them (using the commands “DROP TABLE IF EXISTS
table_name” resp. “DROP PROCEDURE IF EXISTS proc_name”).

Testing and Expected Output
In the lab-section on the course-page there are a number of scripts that allow you to
test your implementation to see that it gives the correct output given different input.
These scripts also contain additional information about the input-output relation, such
as error messages etc., that are not given in the questions. Note that your
implementation should give the correct output for all scripts before hand-in.
Also note that these scripts are by no means complete and it is not enough to only
give the correct output without using the correct way of “finding” it.

Questions:
2. Create your tables and foreign keys in the database using the CREATE TABLE and
if necessary the ALTER TABLE queries. Once you are done the database should have
the same structure as shown in your relational model. Also, read up on how attributes
can be automatically incremented and implement where appropriate.
For the database to properly work with the front-end the attributes should be of the
following types:

Variable Type
Year INTEGER
Day VARCHAR(10)
Airport code VARCHAR(3)
Airport name VARCHAR(30)
Country VARCHAR(30)
Departure time TIME
Profitfactor DOUBLE
Routeprice DOUBLE
Weekdayfactor DOUBLE
Flightnumber INTEGER
Reservation number INTEGER
Name VARCHAR(30)
Passport number INTEGER
Email VARCHAR(30)
Phone number BIGINT
Creditcard number BIGINT

3. Write procedures for populating the database with flights, etc. These procedures
will work as an interface towards the frontend.

a) Insert a year: Procedure call: addYear(year, factor);
b) Insert a day: Procedure call: addDay(year, day, factor);
c) Insert a destination: Procedure call: addDestination(airport_code, name,

country);
d) Insert a route: Procedure call: addRoute(departure_airport_code,

arrival_airport_code, year, routeprice);
e) Insert a weekly schedule, including the corresponding flights: Procedure call:

addFlight(departure_airport_code, arrival_airport_code, year, day,
departure_time); Note that this procedure should not only add the information
for the weekly schedule but also for the 52 flights that correspond to this
schedule (i.e., you can assume there are 52 weeks each year).

4. Write two helper functions that do some of the calculations necessary for the
booking procedure:

a) Calculate the number of available seats for a certain flight: Function call:
calculateFreeSeats(flightnumber);
The output of this function should be the number (i.e., an integer) of free seats
on that given flight, where seats are considered as free if they have not yet
been payed for; i.e., reservations for which there is no payment yet can be
ignored when counting the free seats.

b) Calculate the price of the next seat on a flight: Function call:
calculatePrice(flightnumber);
The output of this function is the price (i.e., a double) of the next seat,
calculated as specified in point 1e above.

5. Create a trigger that issues unique, unguessable ticket-numbers (of type integer)
for each passenger on a reservation once it is paid. An appropriate SQL function to
find unguessable numbers is rand().

6. Now, it time to write the stored procedures necessary for creating and handling a
reservation from the frontend. In addition to the input and output detailed below, see
the test files for appropriate error messages to return in case of unsuccessful payments
etc.

a) Create a reservation on a specific flight. Procedure call:
addReservation(departure_airport_code, arrival_airport_code, year, week,
day, time, number_of_passengers, output_reservation_nr); where the
number_of_passengers is the number of passengers the reservation is for (and
only used to check that enough unpaid seats are available) and
output_reservation_nr is an output-variable and should contain the assigned
reservation number.

b) Add a passenger to a reservation: Procedure call to handle:
addPassenger(reservation_nr, passport_number, name);

c) Add a contact: Procedure call to handle: addContact(reservation_nr,
passport_number, email, phone); where the contact already must be added as
a passenger to the reservation.

d) Add a payment: Procedure call to handle: addPayment (reservation_nr,
cardholder_name, credit_card_number); This procedure should, if the
reservation has a contact and there are enough unpaid seats on the plane, add

payment information to the reservation and save the amount to be drawn from
the credit card in the database. If the conditions above are not fulfilled the
appropriate error message should be shown.

7. Create a view called allFlights that ontains all flights in your database with the
following information: departure_city_name, destination_city_name, departure_time,
departure_day, departure_week, departure_year, nr_of_free_seats,
current_price_per_seat. See the testcode for an example of how it can look like.

8. Answer the following theoretical questions:

a) How can you protect the credit card information in the database from hackers?

b) Give three advantages of using stored procedures in the database (and thereby
execute them on the server) instead of writing the same functions in the
frontend of the system (in for example JavaScript on a Web page)?

In the next two questions you will see how MySQL handles concurrency. As default
MySQL commits every single query as a transaction meaning that as soon as a query
is executed it is also committed to the database. However, MySQL also supports
multiple queries to be bundled up in a single transaction as described during the
lecture.

To test this, open two terminals in the same computer, both connecting to the same
database, then use the query START TRANSACTION to start a transaction that is
finished by either COMMIT or ROLLBACK. Note that once the transaction is
finished the database goes back to the default setting of committing every query
unless a new transaction is started. The main queries to handle transactions are
START TRANSACTION, COMMIT, ROLLBACK, LOCK TABLES, UNLOCK
TABLES, SAVEPOINT and SELECT…FOR UPDATE. Please check the MySQL
manual for further description and examples of the queries.

Play around with the transaction queries above in the two terminals and try to
anticipate what will happen. One important difference between MySQL and what is
described during the lecture is that MySQL has the transaction isolation level
Repeatable-Read as default to maintain consistency of the database for the
transactions. This means that MySQL implicitly adds a write lock on each tuple that is
inserted, or updated, in any table. It also adds read locks on the tuples when they are
used, for example in IF-statements. For further motivation of this, how it works, and
how it can be changed, check the MySQL manual regarding transaction isolation
level.

9. Open two SQL sessions in two terminals. We call one of them A and the other one
B. Write START TRANSACTION; in both terminals.

a) In session A, add a new reservation.
b) Is this reservation visible in session B? Why? Why not?
c) What happens if you try to modify the reservation from A in B? Explain what

happens and why this happens and how this relates to the concept of isolation
of transactions.

10. Is your BryanAir implementation safe when handling multiple concurrent
transactions? Let two customers try to simultaneously book more seats than what are
available on a flight and see what happens. This is tested by executing the testscripts
available on the course-page using two different MySQL sessions. Note that you
should not use explicit transaction control unless this is your solution on 10c.

a) Did overbooking occur when the scripts were executed? If so, why? If not,
why not?

b) Can an overbooking theoretically occur? If an overbooking is possible, in what
order must the lines of code in your procedures/functions be executed.

c) Try to make the theoretical case occur in reality by simulating that multiple
sessions call the procedure at the same time. To specify the order in which the
lines of code are executed use the MySQL query SELECT sleep(5); which
makes the session sleep for 5 seconds. Note that it is not always possible to
make the theoretical case occur, if not, motivate why.

d) Modify the testscripts so that overbookings are no longer possible using
(some of) the commands START TRANSACTION, COMMIT, LOCK TABLES, UNLOCK
TABLES, ROLLBACK, SAVEPOINT, and SELECT…FOR UPDATE. Motivate why your
solution solves the issue, and test that this also is the case using the sleep
implemented in 10c. Note that it is not ok that one of the sessions ends up in a
deadlock scenario. Also, try to hold locks on the common resources for as
short time as possible to allow multiple sessions to be active at the same time.

Note that depending on how you have implemented the project it might be
very hard to block the overbooking due to how transactions and locks are
implemented in MySQL. If you have a good idea of how it should be solved
but are stuck on getting the queries right, talk to your lab-assistant and he or
she might help you get it right or allow you to hand in the exercise with
pseudocode and a theoretical explanation.

Handing in
For the final hand-in of the project the following should be handed in:
 Approved EER diagram and relational model. If minor changes have been made

during the implementation these should be reflected here.
 Answers (including SQL code) for questions 2 to 10. Note that the code should

have been tested on the available test scripts and give the correct output before
you hand in.

 Identify one case where a secondary index would be useful. Design the index,
describe and motivate your design. (Do not implement this.)

Note that, after your lab assistant has approved your final report, you also need to
email this approved version of your report to the Urkund address as detailed on the
course Website. To this end, put everything together into one big .pdf or .txt file that
you attach to the email.

If the lab assistant does not understand your report, you will be contacted for a
question and answer session and a possible demonstration of your project.

	Table of Contents
	Project; BrianAir Database
	Objectives
	Background Reading
	Estimated Project Time
	Exercise Background
	Part 1, Designing the Database
	Some Hints and Further requirements:
	Handing In
	Part 2, Implementation of the Database
	Hint
	Testing and Expected Output
	Questions:
	Handing in

