TDDD37
Database technology
SQL

Fang Wei-Kleiner
fang.wei-kleiner@liu.se
http://www.ida.liu.se/~TDDD37

Ao Linkdping University g S THDD3T

Announcement

Course registration: system problems from registration
office. Be patient.

Registration for the lab: possible without being
registered to the course 2 do that now.

Encourage building a lab group with two.

Temporary solution for the lab homework without an DB
account: install mySQL and download the scripts from
the lab website.

TDDD37

SQL

* SQL: Structured Query Language
o Pronounced “S-Q-L” or “sequel”

o The standard query language supported by most commercial
DBMS

* A brief history

IBM System R

ANSI SQL89

ANSI SQL92 (SQL2)

ANSI SQL99 (SQL3)

ANSI SQL 2003 (added OLAP, XML, etc.)
ANSI SQL 2006 (added more XML)
ANSI SQL 2008, ...

O 0O O o O O O

A& Linkdping University .~~~ =~ ToDDY

Create and drop table

CREATE TABLE table name
(..., column_name; column_type, ...);
DROP TABLE table name;
* Examples
CREATE TABLE WORKS_ON (
ESSN integer,
PNO integer,
HOURS decimal(3,1));
DROP table Student:
« --SQL is insensitive to white space.

« --SQL is insensitive to case (e.g., ...Hours... is equivalent to
HOURS...)

A& Linkdping University B S < =< THDDA7

Basic SFW query

SELECT <attribute-list>
FROM <table-list>
WHERE <condition>;

attribute-list: R1.A1, ..., Rk.Ar
* Attributes whose values to be required

table-list: R1, ..., Rk
* Relations to be queried

condition: conditional (boolean) expression

* identifies the tuples that should be retrieved
* comparison operators(=, <>, >, >=, ...)
* logical operators (and, or, not)

A& Linkdping University B S < =< THDDA7

Reading a table

 List all information about the employees of department 5

SELECT *
FROM EMPLOYEE
WHERE DNO = 5;

e *isshort hand for all columns.
 WHERE is optional.

% Linkdping University " Cagp 2= TDDD37

Selection and projection

 List last name, birth date and address for all employees
whose name is ‘Alicia J. Zelaya’

SELECT LNAME, BDATE, ADDRESS
FROM EMPLOYEE

WHERE FNAME = ‘Alicia’ AND MINIT = ‘)" AND LNAME = ‘Zeleya’;

 String literals (case sensitive) are enclosed in single quote

A& Linkdping University B S < =< THDDA7

Pattern matching

 List last name, birth date and address for all employees
whose last name contain ‘aya’

SELECT LNAME, BDATE, ADDRESS
FROM EMPLOYEE
WHERE LNAME LIKE ‘Yoaya%’;

* LIKE matches a string against a pattern
o % matches any sequence of 0 or more characters

A& Linkdping University B S & TDDD37

Join -- equijoin

 List all employees and names of their department
SELECT LNAME, DNAME

FROM EMPLOYEE, DEPARTMENT
WHERE DNO = DNUMBER;

EMPLOYEE | LNAME DNO DEPARTMENT | DNAME DNUM

Smith
Wong
Zelaya

Research 5
Administration || 4
headquarters |

Wallace
Narayan
English
Jabbar
Borg

e SNV, TR V) RN SN SR IR |

A& Linkdping University B S & TDDD37

Ambiguous names -- Aliasing

« Same attribute name used in different relations

SELECT NAME, NAME
FROM EMPLOYEE, DEPARTMENT
WHERE DNO=DNUMBER;

EMPLOYEE | NAME DNO DEPARTMENT | NAME DNUM

Smith 5
Wong 5
Zelaya 4
Wallace | 4
5
5
4
1

Research 5
Administration || 4
headquarters |

Narayan
English
Jabbar
Borg

TDDD37

Ambiguous names -- Aliasing

* No alias (wrong) SELECT NAME, NAME

FROM EMPLOYEE, DEPARTMENT
WHERE DNO=DNUMBER;

* Whole name SELECT EMPLOYEE.NAME, DEPARTMENT.NAME
FROM EMPLOYEE, DEPARTMENT
WHERE EMPLOYEE.DNO= DEPARTMENT.DNUMBER;

* Alias SELECT E.NAME, D.NAME
FROM EMPLOYEE E, DEPARTMENT D
WHERE E.DNO=D.DNUMBER;

A& Linkdping University .~~~ =~ ToDDY

Self join

* List last name for all employees together with last names
of their bosses

SELECT E.LNAME “Employee”, S. LNAME “Boss”
FROM EMPLOYEE E, EMPLOYEE S
WHERE E.SUPERSSN = S.5SN;

Employee Boss

Smith Wong
Wong Borg
Zelaya Wallace
Wallace Borg
Narayan Wong
English Wong
Jabbar Wallace

A& Linkdping University B S < =< THDDA7

SALARY

Bag vs. set

30000
40000
25000

e [ist all salaries 43000

SELECT SALARY 22888

FROM EMPLOYEE: 25000
55000

* SQL considers a table as a multi-set (bag), i.e. tuples can
occur more than once in a table
* Why?
o Removing duplicates is expensive

o User may want information about duplicates (real distribution)
o Aggregation operators

A& Linkdping University .~~~ =~ ToDDY

SALARY

Distinct

30000
40000
25000

e [ist all salaries 43000

SELECT SALARY 22888

FROM EMPLOYEE; 25000
55000

 List all salaries without duplicates
SELECT DISTINCT SALARY

| 30000
FROM EMPLOYEE; 40000

25000
43000
38000
55000

SALARY

% Linkping University .~ Cagp S~ TDDD37

Set and bag operations

* Queries can be combined by set OEerations: UNION, INTERSECT,
EXCEPT (MySQL only supports UNION)

* Retrieve all first names of all people in our mini world

(Set semantic)

SELECT FNAME FROM EMPLOYEE

UNION

SELECT DEPENDENT_NAME FROM DEPENDENT;

(Bag semantic)

SELECT FNAME FROM EMPLOYEE

UNION ALL

SELECT DEPENDENT_NAME FROM DEPENDENT,;

A& Linkdping University .~~~ =~ ToDDY

Subqueries

* List employees do not have project assignment more
than 10 hours.

SELECT LNAME

FROM EMPLOYEE, WORKS_ON
WHERE SSN = ESSN AND HOURS <= 10.0;

Why is the query wrong?
* Employees who do not work in any project:

o They should be in the answer set, but is not from the above
query —> their SSN does not occur in WORKS_ON

A& Linkdping University .~~~ =~ ToDDY

Subqueries

* List employees do not have project assignment more
than 10 hours.

SELECT LNAME
FROM EMPLOYEE

WHERE SSN NOT IN (SELECT ESSN FROM WORKS_ON
WHERE HOURS > 10.0);

* xIN (subquery) checks if x isin the result of subquery

% Linkoping University .~ o TDDD37

Subqueries

* List employees do not have project assignment more than 10
hours. (solution 2 using NOT EXISTS)

SELECT LNAME
FROM EMPLOYEE

WHERE NQT EXISTS (SELECT * FROM WORKS_ON
WHERE SSN = ESSN AND HOURS > 10.0);

 EXISTS (subquery) checks if the result of subquery is non-
empty

* This is a correlated subquery -- a subquery that references
tuple variables in surrounding queries

A& Linkdping University .~~~ =~ ToDDY

Operational semantics of subquery

* List employees do not have project assignment more than 10
hours.

SELECT LNAME
FROM EMPLOYEE

WHERE NOT EXISTS (SELECT * FROM WORKS_ON
WHERE SSN = ESSN AND HOURS > 10.0);

* For each row E in EMPLOYEE
o Evaluate the subquery with the appropriate value of E.SSN
o If the result of the subquery is not empty, output E.LNAME

* The DBMS query optimizer may choose to process the query
in an equivalent, but more efficient way

A& Linkdping University .~~~ =~ ToDDY

Aggregates

« Standard SQL aggregate functions: COUNT, SUM, AVG , MIN,
MAX

* List the number of employees and their average salary

SELECT COUNT(*), AVG(SALARY)
FROM EMPLOYEE:

* COUNT(*) counts the number of rows

% Linkoping University .~ o TDDD37

Grouping

« Used to apply an aggregate function to subgroups of
tuples in a relation

GROUP BY — grouping attributes

* List for each department the department number, the
number of employees and the average salary.

SELECT DNO, COUNT(*), AVG(SALARY)
FROM EMPLOYEE
GROUP BY DNO:

A& Linkdping University .~~~ =~ ToDDY

 List for each department the department number, the
number of employees and the average salary.

SELECT DNO, COUNT(*), AVG(SALARY)
FROM EMPLOYEE

GROUP BY DNO;
DNO NAME SALARY
5 Smith 65210
4 Lee 21000
5 Brin 43250
4 Page 12220 DNO COUNT(*) AVG(SALARY)
5 Jobs 56750
5 Gates 24670 5 4 47470
4 Wills 33250 4 3 22156
1 Yang 55000 1 1 55000

% Linkoping University .~ o TDDD37

Operational semantics of GROUP BY

SELECT ... FROM ... WHERE ... GROUPBY ...;
* Compute FROM (join)
* Compute WHERE (selection)

* Compute GROUP BY: group rows according to the values
of GROUP BY columns

« Compute SELECT for each group

* For aggregation functions with DISTINCT inputs, first
eliminate duplicates within the group

=» Number of groups = number of rows in the final output

TDDD37

Example of computing GROUP BY

SELECT DNO, COUNT(*), AVG(SALARY) FROM EMPLOYEE GROUP BY DNO;

DNO NAME SALARY Group rows according to the values
of GROUP BY columns
5 Smith 65210
4 Lee 21000
5 Brin 43250 DNO NAME SALARY
4 Page 12220 #
5 Jobs 56750 5 Smith 65210
5 Gates 24670 5 Brin 43250
4 Wills 33250 5 Jobs 56750
1 Yang 55000 5 Gates 24670
4 Page 12220
DNO COUNT(*) AVG(SALARY) 4 Lee 21000
4 Wills 33250
5 4 47470 1 Yang 55000
4 3 22156 -
1 1 55000 € Compute SELECT for each group

% Linkdping University -~ T TDDD37

Restriction on SELECT

« If a query uses aggregation/group by, then every column
referenced in SELECT must be either

o Aggregated, or
o A GROUP BY column

 This restriction ensures that any SELECT expression
produces only one value for each group

SELECT NAME, COUNT(*), AVG(SALARY) FROM EMPLOYEE GROUP BY DNO;

* Recall there is one output row per group
o There can be multiple NAME values per group

A& Linkoping University .~ ¢ 7DD

HAVING

* Used to filter groups based on the group properties
(e.g., aggregate values, GROUP BY column values)

SELECT DNO, COUNT(*), AVG(SALARY)
FROM EMPLOYEE
GROUP BY DNO
HAVING COUNT(*) >2;

DNO COUNT(*) AVG(SALARY)

5 4 47470
4 3 22156

% Linkping University .~ Cas S~ TDDD37

Order of query results

* Select department names and their locations in
alphabetical order.

SELECT DNAME, DLOCATION

FROM DEPARTMENT D, DEPT_LOCATIONS DL
WHERE D.DNUMBER = DL.DNUMBER

ORDER BY DNAME ASC, DLOCATION DESC;

DNAME DLOCATION

Administration Stafford
Headquarters Houston

Research Sugarland
Research Houston
Research Bellaire

A& Linkdping University .~~~ =~ ToDDY

NULL value

* SQL solution for unknown or non-applicable values
o A special value NULL
o For every domain
o Special rules for dealing with NULL'’s

« Example: EMPLOYEE(LNAME, SSN, SALARY, SUPERSSN)
o <Borg, 8888888, 55000, NULL>

* When we operate on a NULL and another value (including
another NULL) using +, —, etc., the result is NULL

« Aggregate functions ignore NULL , except COUNT(*)

=> (since it counts rows)

TDDD37

Three-valued logic

* TRUE =1, FALSE = 0, UNKNOWN = 0.5

* x AND y =min(x,y)

* x ORy=max(x, y)

* NOTx=1-x

* When we compare a NULL with another value (including
another NULL) using =, >, etc., the result is UNKNOWN

« WHERE and HAVING clauses only select rows for output if
the condition evaluates to TRUE
o UNKNOWN is not enough

TDDD37

SALARY

NULL values 30000

40000

43000
NULL

SELECT AVG(SALARY) FROM EMPLOYEE;
SELECT SUM(SALARY)/COUNT(*) FROM EMPLOYEE;

o Not equivalent
o Although AVG(SALARY) = SUM(SALARY)/COUNT(SALARY) still

SELECT * FROM EMPLOYEE;
SELECT * FROM EMPLOYEE WHERE SALARY=SALARY,;

o Not equivalent

 List all employees that do not have a boss:
SELECT LNAME FROM EMPLOYEE WHERE SUPERSSN IS NULL;

A& Linkoping University .~ ¢ 7DD

F LNAME SSN SUPERSSN S LNAME SSN SUPERSSN

Smith 333445555 123456789 Smith 333445555 123456789
O Borg 123456789 NULL Borg 123456789 NULL
) Uter wong sssessss5 123456789 Wong 888665555 123456789

join
* List the last name of all employees together with the
names of their bosses.

o Some employees do not have any boss
o We want to list the bossless employees too — where boss field is

noted as NULL
SELECT E.LNAME “Employee”, S.LNAME “Boss” Employee Boss
FROM EMPLOYEE E, EMPLOYEE S Smith Borg
Wong Borg

WHERE E.SUPERSSN = S.5SN

o Returns only ‘Smith” and “Wong’
o Tuple of ‘Borg” does not have a join partner

A& Linkdping University .~~~ =~ ToDDY

F LNAME SSN SUPERSSN S LNAME SSN SUPERSSN
Smith 333445555 123456789 Smith 333445555 123456789
Borg 123456789 NULL Borg 123456789 NULL
D/ Wong 888665555 123456789 Wong 888665555 123456789
angling row
SELECT E.LNAME “Employee”, S.LNAME “Boss”
Employee Boss
FROM EMPLOYEE E LEFT JOIN EMPLOYEE S
Smith Borg
ON E.SUPERSSN = S.SSN Wong Borg
Borg NULL

* A left outer join (LEFT JOIN) of R with S includes rows in R
join S plus dangling R rows padded with NULL

o Dangling R rows are those that do not join with any S rows

* Aright outer join (RIGHT JOIN) of R with S includes rows in
Rjoin S plus dangling S rows padded with NULL

o Dangling S rows are those that do not join with any R rows

& Linkdping University

TDDD37

Add tuples into table

INSERT INTO <table> (<attr>,...) VALUES (<val>, ...);
INSERT INTO <table> (<attr>, ...) <subquery>;

 Store information about how many hours an employee
works for the project "1' into WORKS_ON

INSERT INTO WORKS_ON VALUES (123456789, 1, 32.5);

A& Linkdping University B S < =< THDDA7

Update data

UPDATE <table> SET <attr> = <val>,...
WHERE <condition> ;

UPDATE <table> SET (<attr>,) = (<subquery>)
WHERE <condition> ;

. Gilve all employees in the ‘Research’ department a 10% raise in
salary.

UPDATE EMPLOYEE
SET SALARY = SALARY*1.1
WHERE DNO IN (SELECT DNUMBER
FROM DEPARTMENT
WHERE DNAME = ‘Research’);

A& Linkdping University .~~~ =~ ToDDY

Delete data

e DELETE FROM <table> WHERE <condition> ;

* Delete employees having the last name ‘Borg’ from the
EMPLOYEE table

DELETE FROM EMPLOYEE
WHERE LNAME = *Borg’;

% Linkping University .~ Cagp S~ TDDD37

Constraints

 Restrictions on allowable data in a database

o In addition to the simple structure and type restrictions imposed
by the table definitions

o Declared as part of the schema
o Enforced by the DBMS

* Why use constraints?
o Protect data integrity (catch errors)
o Tell the DBMS about the data (so it can optimize better)

A& Linkdping University B S < =< THDDA7

Type of SQL constraints

 NOT NULL

* Key

« Referential integrity (foreign key)
* General assertion

* Tuple- and attribute-based CHECK's

TDDD37

NOT NULL example

CREATE TABLE EMPLOYEE

(SSN INTEGER NOT NULL,
LNAME VARCHAR(30) NOT NULL,
ADDRESS VARCHAR(30),

SALARY INTEGER,

SUPERSSN INTEGER):;

% Linkdping University . B TDDD37

Key declaration

* At most one PRIMARY KEY per table
o Typically implies a primary index
o Rows are stored inside the index, typically sorted by the primary
key value = best speedup for queries

* Any number of UNIQUE keys per table
o Typically implies a secondary index

o Pointers to rows are stored inside the index =» less speedup for
queries

A& Linkdping University B S & TDDD37

Key example

CREATE TABLE EMPLOYEE

(SSN INTEGER NOT NULL PRIMARY KEY,
LNAME VARCHAR(30) NOT NULL,
EMAIL VARCHAR(30) UNIQUE,

SALARY INTEGER,

SUPERSSN INTEGER);

% Linkdping University . B TDDD37

Referential integrity example

« WORKS_ON.ESSN references EMPLOYEE.SSN

o If an ESSN appears in WORKS_ON, it must appear in
EMPLOYEE

« WORKS_ON.PNO references PROJECT.PNUMBER
o If a PNO appears in WORKS_ON, it must appear in PROJECT

=»That is, no “dangling pointers”

* Referenced column(s) must be PRIMARY KEY
* Referencing column(s) form a FOREIGN KEY

A& Linkoping University .~ ¢ 7DD

COMPANY schema

Wy
« EMPLOYEE (FNAME, MINI A LNAME, SSN, BDATE,

ADDRESS, SEX, SALARY, SUPERSSN, DNO)

« DEPT_LOCATIONS (DNUMBER, DLOCATION)
v v

MGRSTARTDATE)

- WORKS_ON (ESSN, PNO, HOURS)
(ESSN, P 1O
. PROJECT (PNAME, PNUMBER, PLOCATION, DNUM)

TDDD37

Create tables

CREATE TABLE WORKS_ON (

ESSN integer
constraint fk_works_emp
references EMPLOYEE(SSN),

PNO integer

constraint fk_works_proj
references PROJECT(PNUMBER),

HOURS decimal(3,1),
constraint pk_workson

primary key (ESSN, PNO)
)i

% Linkoping University ' Cagp 2= TDDD37

Enforcing referential integrity

Delete employees having the last name ‘Borg’ from
the EMPLOYEE table

DELETE FROM EMPLOYEE

WHERE LNAME = ‘Borg’;

referential integrity constraints

—

————_~‘lig£§?1key

& Linkdping University

EMPLOYEE | FNAME M | LNAME SSN DEPARTMENT | DNAME DNUMBER | MGRSSN
Ramesh K Narayan 666884444 Research 5 333445555
Joyce A | English 453453453 Administration | 4 987654321
> T
Ahmad V | Jabbar 987987987 Headquarters 1 (388665555
, -
James E—Borg — 858665555 /

SET NULL ? SET DEFAULT ? CASCADE ?

TDDD37

D

Views

* Avirtual table derived from other — possible virtual --
tables.

CREATE VIEW dept_view
AS SELECT DNO, COUNT(*), AVG(SALARY)

FROM EMPLOYEE
GROUP BY DNO
* Why?
o Simplify query commands

o Provide data security
o Enhance programming productivity

« Update problems

A& Linkdping University B S & TDDD37

