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Fault Tolerant Systems

 A system fails if it behaves in a way which is not consistent with its 
specification. Such a failure is a result of a fault in a system component.

 Systems are fault-tolerant if they behave in a predictable manner, according 
to their specification, in the presence of faults 
 there are no failures in a fault-tolerant system.

 Several application areas need systems to maintain a correct (predictable) 
functionality in the presence of faults:
 banking systems
 avionics, medical, automotive
 manufacturing systems

What means correct functionality in the presence of faults?
 The answer depends on the application (on the specification of the system):

 The system stops and does not produce any erroneous (dangerous) result 
/ behaviour.

 The system stops and restarts after a while without loss of information.
 The system keeps functioning without any interruption and (possibly) with 

unchanged performance.
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Faults

A fault can be:

 Hardware fault: malfunction of a hardware component (processor, 
communication line, switch, etc.).

 Software fault: malfunction due to a software bug.

A fault can be the result of:

1. Mistakes in specification or design:  such mistakes are at the 
origin of all software faults and of some of the hardware faults.

2. Defects in components:  hardware faults can be produced by 
manufacturing defects or by defects caused as result of 
deterioration in the course of time.

3. Operating environment:  hardware faults can be the result of 
stress produced by adverse environment: temperature, radiation, 
vibration, etc.
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Faults

Fault types according to their temporal behaviour:

1. Permanent fault: 
the fault remains until it is repaired 
or the affected unit is replaced.

2. Intermittent fault: 
the fault vanishes and reappears 
(e.g. caused by a loose wire).

3. Transient fault: 
the fault dies away after some time 
(caused by environmental effects).
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Faults
Fault types according to their output behaviour:
1. Fail-stop fault (omission faults): 

 Either the processor is executing and produces correct values, 
or it failed and will never respond to any request.
Working processors can detect the failed processor 

by a time-out mechanism.
2. Byzantine fault  (arbitrary faults): 

 A process can fail and stop, execute slowly, or execute at a 
normal speed but produce erroneous values and actively try to 
make the computation fail 
Any message can be corrupted, and correctness has to be 

decided upon by a group of processors.

 The fail-stop model is the easiest to handle; 
unfortunately, sometimes it is too simple to cover real situations.

 The Byzantine model is the most general; 
it is very expensive, in terms of complexity, to implement fault-
tolerant algorithms based on this model.
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Redundancy

If a system has to be fault-tolerant, 
it has to be provided with spare capacity  redundancy:

1. Time redundancy:  the timing of the system is such that if certain 
tasks have to be rerun and recovery operations have to be 
performed, system requirements are still fulfilled.

2. Hardware redundancy:  the system is provided with far more 
hardware than needed for basic functionality.

3. Software redundancy:  the system is provided with different 
software versions:

results produced by different versions are compared;

when one version fails, another one can take over.

4. Information redundancy:  data is coded in such a way that a 
certain number of bit errors can be detected and, possibly, 
corrected (using parity coding, checksum codes, cyclic codes).
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Backward Recovery

Basic idea:  roll back the computation to a previous checkpoint
and retake from there.

Essential aspects:
 Backward recovery assumes time redundancy!
 The system periodically saves globally consistent states of the 

distributed system, which can serve as recovery points.
 When a fault is detected, the system is recovered from the most 

recent recovery point.

Corrective action:
 Carry on with the same processor and software 

(a transient fault is assumed).
 Carry on with a new processor 

(a permanent hardware fault is assumed).
 Carry on with the same processor and another software version 

(a permanent software fault is assumed).
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Forward Recovery

 Backward recovery is based on time redundancy and on the 
availability of back-up files and saved checkpoints; 

 This is expensive in terms of time.

 Control applications and, in general, real-time systems have 
very strict timing requirements. 

 Recovery has to be very fast 
and preferably to be continued from the current state.

Forward recovery: 
the error is masked without redoing any computations.

 Forward recovery is based on hardware and, possibly, 
software redundancy.
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Hardware Redundancy

Hardware redundancy: use of additional hardware to compensate for failures:

 Fault detection, correction, and masking: 

Multiple hardware units are assigned to the same task in parallel 
and their results are compared.

 Detection:  if one or more (but not all) units are faulty, this shows up 
as a disagreement in the results.

 Correction and masking:  if only a minority of the units are faulty, and 
sufficient units produce the same output, this output can be used to 
correct and mask the failure.

 Replacement of malfunctioning units: 

Correction and masking are short-term measures. 
In order to restore the initial performance and degree of fault-tolerance, 
the faulty unit has to be replaced.

Hardware redundancy is a fundamental technique to provide fault-tolerance in 
safety-critical distributed systems: aerospace applications, automotive 
applications, medical equipment, some parts of telecommunications 
equipment, nuclear centres, military equipment, etc.
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Base-Line: No Redundancy

Example:

Remark: Here, ”Processor” could mean any relevant unit of hardware, e.g. computer, CPU, ALU, …

*Processor1 Processor2
communication
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N-Modular Redundancy

N-modular redundancy (N-MR) is a scheme for forward error 
recovery.  N units are used, instead of one, and a voting scheme is 
used on their output.

 The same input is provided to all participating units (e.g. processors, 
computers, …), which are supposed to work in parallel

 a new set of inputs is provided to all processors simultaneously, 
and the corresponding set of outputs is compared.

 3-modular redundancy is the most commonly used.

Remark: Here, ”Processor” could mean any relevant unit of hardware, e.g. computer, CPU, ALU, …

*
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N-Modular Redundancy

 The voter itself can fail
 structure with redundant voters:

 Voting on inputs from sensors:
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Voters

Several approaches for voting are possible. 
The goal is to "filter out" the correct value from the set of candidates.

 The most common one: majority voter
 The voter constructs a set of equivalence classes of values: 

P1, P2, ..., Pn:
x, y  Pi if and only if  x = y

 If Pi is the largest set and N is the number of outputs (N is odd):
if  card(Pi) ≥  N/2  x  Pi is correct output; 

the error can be masked.
if  card(Pi) <  N/2  the error cannot be masked

(only be detected).
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Voters

 Sometimes we can not use strict equality:

 sensors can provide slightly different values;

 the same application can be run on different processors, 
and outputs can be different only because of internal 
representations used (e.g., floating-point).

 if  |x - y| < ε then we consider  x = y.
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Voters

Other voting schemes:

 k-plurality voter

 Similar to majority voting: 

the largest set needs not contain more than N/2 elements,

it is sufficient that  card(Pi) > k,  k selected by the designer

k=2
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Voters

Other voting schemes:

 Median voter

 The median value is selected.
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k-Fault-Tolerant Systems

A system is k-fault-tolerant if it can survive faults in k components 
and still meet its specifications.

 How many components do we need in order to achieve k-fault-
tolerance with voting?

 With fail-stop faults: 

having k+1 components is enough to provide k-fault-tolerance:

 if k stop, the answer from the one left can be used.

 With Byzantine faults, components continue to work and send 
out erroneous or random replies: 

2k+1 components are needed to achieve k-fault-tolerance

 a majority of k+1 correct components can 
outvote k components producing faulty results.
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Processor and Memory Level Redundancy

 N-modular redundancy can be applied at any level: 
gates, sensors, registers, ALUs, processors, memories, 
boards.

 If applied at a lower level, 
time and cost overhead can be high:

 voting takes time

 number of additional components (voters, connections) 
becomes high.
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Processor and Memory Level Redundancy

 Processor and memory are handled as a unit; 
voting is on processor outputs:
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Processor and Memory Level Redundancy

Processors and memories can be handled as separate modules.

(a) voting at read from memory



22

Processor and Memory Level Redundancy

Processors and memories can be handled as separate modules.

(b) voting at write to memory



23

Processor and Memory Level Redundancy

Processors and memories can be handled as separate modules.

(c) voting at read and write  
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Software Redundancy

Software is very different from hardware 
in the context of redundancy:

 A software fault is always caused by a mistake in specification 
or by a bug (a design error).

 Software faults are not produced by manufacturing, aging, 
stress, or environment.

 Different copies of identical software always produce the 
same behaviour for identical inputs

 Replicating the same software N times, and letting it run on N
computers, does not provide any software redundancy: 
if there is a software bug, it will be produced by all N copies.
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Software Redundancy

 N different versions of software are needed must provide redundancy.

 Two possible approaches:

1. All N versions are running in parallel; voting is done on the output.

2. One version is running; 
if it fails, another one takes over after recovery.

 The N versions of the software must be diverse

 the probability that they all fail on the same input must be sufficiently 
small.

 It is difficult to produce sufficiently diverse versions for the same software:

 Let independent teams, with no contact between them, 
generate software for the same application.

 Use different programming languages.

 Use different tools like, for example, compilers.

 Use different (numerical) algorithms.

 Start from differently formulated specifications  

 Expensive and not always possible
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Distributed Agreement with Byzantine Faults

Very often, distributed processes have to come to an agreement.

For example, they have to agree on a certain value, 
with which each of them has to continue operation.

 What if some of the processors are faulty
and exhibit Byzantine faults?

 How many correct processors are needed 
in order to achieve k-fault-tolerance?

Remember:

 With a simple voting scheme, 2k+1 components are needed to 
achieve k-fault-tolerance in the case of Byzantine faults 

 3 processors are sufficient to mask the fault of one of them.

However, this is not the case for agreement!
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Distributed Agreement with Byzantine Faults

Example
 P1 receives a value from the sensor, 

and the processes have to continue operation with that value; 
in order to achieve fault tolerance, 
they have to agree on the value to continue with: 
 this should be the value received by P1 from the sensor, 

if P1 is not faulty; 
 if P1 is faulty, all non-faulty processors should use the 

same value to continue with.
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Distributed Agreement with Byzantine Faults

Example
 P1 receives a value from the sensor, 

and the processes have to continue operation with that value; 
in order to achieve fault tolerance, 
they have to agree on the value to continue with: 
 this should be the value received by P1 from the sensor, 

if P1 is not faulty; 
 if P1 is faulty, all non-faulty processors should use the 

same value to continue with.
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Distributed Agreement with Byzantine Faults

Example
 Maybe, by letting P2 and P3 communicate, they could get out of the trouble?

 P2 does not know if P1 or P3 is the faulty one, 
thus it cannot handle the contradicting inputs.

 The same for P3.
 No agreement

 The same if P3 is faulty:
 P2 does not know if P1 or P3 is the 

faulty one, thus it cannot handle the 
contradicting inputs

 No agreement
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Distributed Agreement with Byzantine Faults

 With three processes we cannot achieve agreement
if one of them is faulty (with Byzantine behaviour)!

 The Byzantine Generals Problem is used as a model to 
study agreement with Byzantine faults
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The Byzantine Generals Problem

The Byzantine army is preparing for a battle.

A number of generals must 
coordinate among themselves 
through (reliable) messengers 
on whether to attack or retreat.

A commanding general (C) will make 
the decision whether or not to attack.

Any of the generals, including the 
commander, may be traitorous:
they might send messages to attack
to some generals and messages 
to retreat to others.
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The Byzantine Generals Problem

The problem in the story:

 The loyal generals have all to agree to attack, or all to retreat.

 If the commanding general is loyal, all loyal generals must 
agree with the decision that he made.

The problem in real life:

 All non-faulty processes must use the same input value.

 If the input unit (P1) is not faulty, 
all non-faulty processes must use the value it provides.
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The Byzantine Generals Problem

The case with three generals:

No agreement is possible 
if one of three generals is traitorous
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The Byzantine Generals Problem

The case with four generals:

 Gen. left: attack, ???, retreat.
 Gen. middle: ???, attack, retreat.
 Gen. right: retreat, ???, attack.

 The generals decide by
majority voting 
on their input; 
if no majority exists, a default
value is used (retreat, for example):

 If ??? = attack  all three decide on attack.
 If ??? = retreat  all three decide on retreat. 
 If ??? = dummy  all three decide on retreat.

The three loyal generals have reached agreement, 
despite the traitorous commander.



35

The Byzantine Generals Problem

The case with four generals (cont.):

 Gen. left:  attack, attack, anything.
 Gen. middle:  attack, attack, anything.

By majority vote on the input messages, 
the two loyal generals have agreed on the message 
proposed by the loyal commander (attack).
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The Byzantine Generals Problem

The conclusion in general:

 To reach agreement with k traitorous generals 
requires a total of at least 3k + 1 generals.

 We need 3k + 1 processors to achieve k-fault-tolerance 
for agreement with Byzantine faults.

To mask one faulty processor:  total of 4 processors;

To mask two faulty processors:  total of 7 processors;

To mask three faulty processors:  total of 10 processors;

 ...
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The Byzantine Generals Problem

Let us come back to our real-life example, 
this time with four processes:

P2, P3, and P4 will reach agreement 
on the default value, e.g. 0 (used 
when no majority exists), despite 
the faulty input unit P1.

P2, P3, and P4 will reach 
agreement on value 3, 
despite the faulty input unit P1.
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The Byzantine Generals Problem

Let us come back to our real-life example, 
this time with four processes:

The two non-faulty processors P2 and P3 agree on value 3, 
which is the value produced by the non-faulty input unit P1.
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