
TDDD25
Distributed Systems

Distributed Mutual
Exclusion and Election

Christoph Kessler

IDA
Linköping University

Sweden

2

Agenda

DISTRIBUTED MUTUAL EXCLUSION
AND ELECTION

1. Mutual Exclusion in Distributed Systems

2. Non-Token-Based Algorithms

3. Token-Based Algorithms

4. Distributed Election

5. The Bully and the Ring-Based Algorithms

3

Mutual Exclusion

 Mutual exclusion ensures that concurrent processes
make a serialized access to shared resources or data.

 Solves the well-known critical section problem!

 In a distributed system, no shared variables (semaphores) can
be used in order to implement mutual exclusion!

 Mutual exclusion has to be

based exclusively on message passing,

in the context of unpredictable message delays and

no complete knowledge of the state of the system.

4

Mutual Exclusion

 Sometimes the resource is managed by a server which implements its
own lock locally together with the mechanisms needed to synchronize
access to the resource

 mutual exclusion and the related synchronization are
transparent for the process accessing the resource.
 For example, database systems with transaction processing

 Often there is no synchronization built in that implicitly protects the
resource (files, display windows, peripheral devices, etc.).

 A mechanism has to be implemented at the level of the processes
requesting for access.

 Basic requirements for a mutual exclusion mechanism:

 safety: only one process may execute a critical section (CS) at a time;

 liveness: a process requesting entry to the CS is eventually granted it
(so long as any process executing the CS eventually leaves it).

Liveness implies freedom of deadlock and starvation.

5

Mutual Exclusion

There are two basic approaches to distributed mutual exclusion:

1. Non-token-based:

 Each process freely and equally competes
for the right to use the shared resource;

 Requests are arbitrated
- either by a central control site
- or by distributed agreement.

2. Token-based:

 A logical token representing the access right to the shared
resource is passed in a regulated fashion among the processes;

 whoever holds the token is allowed to enter the critical section.

6

Non-Token-Based Mutual Exclusion

 Central Coordinator Algorithm

 Ricart-Agrawala Algorithm

7

Central Coordinator Algorithm

 A central coordinator process grants permission to enter a CS.
 For example, the process with largest network address

 To enter a CS, a process sends a request message to the coordinator
and then waits for a reply;
 during this waiting period, the process can continue with other work.

 The reply from the coordinator gives the right to enter the CS.
 After finishing work in the CS, the process notifies the coordinator with a

release message.

The central coordinator
process maintains a

FIFO queue of pending
lock-acquire requests

8

Central Coordinator Algorithm

 The scheme is simple and easy to implement.

 It requires only three messages per use of a CS
(request, OK, release).

Problems

 The coordinator can become a performance bottleneck.

 The coordinator is a critical point of failure:

 If the coordinator crashes, a new coordinator must be created.

 The coordinator can be one of the processes competing for
access;

 an election algorithm has to be run
in order to choose one and only one new coordinator.

9

Ricart-Agrawala Algorithm

 In a distributed environment, it seems more natural to implement mutual
exclusion based on distributed agreement - not on a central coordinator.

 It is assumed that all processes keep a (Lamport’s) logical clock.

 The algorithm requires a total ordering of requests

 requests are ordered according to their global logical timestamps;
if timestamps are equal, process identifiers are compared to order
them.

 A process that requires entry to a CS multicasts the request message to
all other processes competing for the same resource;

 it is allowed to enter the CS when all processes have replied to this
message.

 The request message consists of the requesting process’ timestamp
(logical clock) and its identifier.

 Each process keeps its state with respect to the CS:

 RELEASED, REQUESTED, or HELD.

10

Ricart-Agrawala Algorithm

Rule for process initialization:
/* performed by each process Pi at initialization */
[RI1]: statePi := RELEASED

Rule for access request to CS:
/* performed whenever process Pi requests an access to the CS */
[RA1]: statePi := REQUESTED

TPi := the value of the local logical clock
corresponding to this request.

[RA2]: Pi sends a request message to all processes;
the message is of the form (TPi, i), where i is an identifier of Pi

[RA3]: Pi waits until it has received replies from all other n-1 processes.

Rule for executing the CS:
/* performed by Pi after it received the n-1 replies */
[RE1]: statePi := HELD

Pi enters the CS.

11

Ricart-Agrawala Algorithm (cont.)

Rule for handling incoming requests:
/* performed by Pi whenever it received a request (TPj, j) from Pj */
[RH1]: if statePi = HELD

or ((statePi = REQUESTED) and ((TPi, i) < (TPj, j))) then
Queue the request from Pj without replying

else
Reply immediately to Pj.

end if

Rule for releasing a CS:
/* performed by Pi after it finished work in a CS */
[RR1]: statePi := RELEASED.

Pi replies to all queued requests.

 A request issued by a process Pj is blocked by another process Pi
only if Pi is holding the resource or if it is requesting the resource with a
higher priority (this means a smaller timestamp) than Pj.

12

Ricart-Agrawala Algorithm

Problems
 The algorithm is expensive in terms of message traffic;

 it requires 2(n-1) messages for entering a CS:
(n-1) requests and (n-1) replies.

 The failure of any process involved makes progress impossible
if no special recovery measures are taken.

13

Token-Based Mutual Exclusion

 Ricart-Agrawala Second Algorithm

 Token Ring Algorithm

14

Ricart-Agrawala Second Algorithm

 A process is allowed to enter the critical section when it got the token.

 Initially, the token is assigned arbitrarily to one of the processes.

 In order to get the token, a process sends a request to all other processes
competing for the same resource.
 The request message consists of the requesting process’ timestamp

(logical clock) and its identifier.

 When a process Pi leaves a critical section, it passes the token to one of the
processes that are waiting for it.
 If no process is waiting,

Pi retains the token (and is allowed to enter the CS if it needs);
it will pass over the token as result of an incoming request.

How does Pi find out if there is a pending request?
 Each process Pi records the timestamp corresponding to the last request it

got from process Pj, in requestPi[j].
 In the token itself, token[j] records the timestamp (logical clock) of Pj’s last

holding of the token.
 If requestPi[j] > token[j] then Pj has a pending request.

15

Ricart-Agrawala Second Algorithm

 Each process keeps its state with respect to the token:

 NO-TOKEN, TOKEN-PRESENT, TOKEN-HELD.

16

Ricart-Agrawala Second Algorithm

Rule for process initialization:
/* performed at initialization */
[RI1]: statePi := NO-TOKEN for all processes Pi, except one process Px for which

statePx := TOKEN-PRESENT
[RI2]: token[k] initialized to 0 for all elements k = 1 .. n.

requestPi[k] initialized to 0 for all processes Pi and all elements k = 1 .. n.

Rule for access request and execution of the CS:
/* performed whenever process Pi requests an access to the CS.

Note that Pi can already possess the token (state TOKEN-PRESENT) */
[RA1]: if statePi = NO-TOKEN then

Pi sends a request message to all processes;
the message is of the form (TPi, i),
where TPi = CPi is the value of its local logical clock.

Pi waits until it receives the token.
end if
statePi := TOKEN-HELD
Pi enters the CS.

17

Ricart-Agrawala Second Algorithm

Rule for handling incoming requests:
/* performed by Pi whenever it received a request (TPj, j) from Pj */
[RH1]: requestPi[j] := max (requestPi[j], TPj)
[RH2]: if statePi = TOKEN-PRESENT then

Pi releases the resource (see rule RR2).
end if

Rule for releasing a CS:
/* performed by Pi after it finished work in a CS, or

when it holds the token without using it and got a request */
[RR1]: statePi = TOKEN-PRESENT
[RR2]: for k = [i+1, i+2, ..., n, 1, 2, ..., i-2, i-1] do

if requestPi[k] > token[k] then // pass the token to Pk :
statePi := NO-TOKEN
token[i] := CPi, the value of the local logical clock
Pi sends the token to Pk

break /* leave the for loop */
end if

end for

A process Pk with a pending
request is searched for

in the round-robin order
[i+1, i+2,..., n, 1, 2,..., i-2, i-1].

This in order to
avoid starvation!

18

Ricart-Agrawala Second Algorithm

19

Ricart-Agrawala Second Algorithm

20

Ricart-Agrawala Second Algorithm

21

Ricart-Agrawala Second Algorithm

22

Ricart-Agrawala Second Algorithm

23

Ricart-Agrawala Second Algorithm

Eventually, Pi got the token, executed its CS
and now it is ready to give the token away.
(Its local logical clock shows 11)
To whom should it pass the token?

24

Ricart-Agrawala Second Algorithm

Eventually, Pi got the token, executed its CS
and now it is ready to give the token away.
(Its local logical clock shows 11)
To whom should it pass the token?

25

Ricart-Agrawala Second Algorithm

Eventually, Pi got the token, executed its CS
and now it is ready to give the token away.
(Its local logical clock shows 11)
To whom should it pass the token?

26

Ricart-Agrawala Second Algorithm

Eventually, Pi got the token, executed its CS
and now it is ready to give the token away.
(Its local logical clock shows 11)
To whom should it pass the token?

27

Ricart-Agrawala Second Algorithm

28

Ricart-Agrawala Second Algorithm

 The complexity is reduced compared to the (first) Ricart-Agrawala
algorithm:

 it requires n messages for entering a CS:
(n-1) requests and one reply.

 The failure of a process, except the one which holds the token,
does not prevent progress.

29

Token Ring Algorithm

 A very simple way to solve mutual exclusion

 Arrange the n processes P1, P2, ... , Pn

in a logical ring.

 The logical ring topology is created
by giving each process the address
of one other process, which is its
neighbour in the clockwise direction.

 The logical ring topology is unrelated to the physical
interconnections between the computers.

30

Token Ring Algorithm

 The token is initially given to one process.

 The token is passed from one process
to its neighbour round the ring.

 When a process requires to enter the CS,
it waits until it receives the token from
its left neighbour and it retains it;

 after it got the token, it enters the CS;

 after it left the CS, it passes the token
to its neighbour in clockwise direction.

 When a process receives the token but does not require to enter
the critical section, it immediately passes the token over along the
ring.

31

Token Ring Algorithm

 It can take from 1 to n-1 messages to obtain a token.

 Messages are sent around the ring even when no process requires
the token  additional load on the network.

 The algorithm works well in heavily loaded situations,
when there is a high probability that the process which gets the
token wants to enter the CS.
It works poorly in lightly loaded cases.

 If a process fails, no progress can be made until a reconfiguration
is applied to extract the process from the ring.

 If the process holding the token fails, a unique process has to be
picked, which will regenerate the token and pass it along the ring

 An election algorithm has to be run for this purpose.

Distributed Election

33

Election

 Many distributed algorithms require one process to act as a
coordinator or, in general, perform some special role.

 Examples with mutual exclusion:

 Central coordinator algorithm:
at initialisation or whenever the coordinator crashes, a new
coordinator has to be elected.

 Token based algorithms:
when the process holding the token fails, a new process
has to be elected which generates the new token.

34

Election

 We consider that it does not matter which process is elected.
 What is important is that one and only one process is chosen

(we call this process the coordinator)
and all processes agree on this decision.

 We assume that each process has a unique number (identifier);
 in general, election algorithms attempt to locate the process with

the highest number, among those which currently are up.

 Election is typically started after a failure occurs.
The detection of a failure (e.g. the crash of the current coordinator)
is normally based on time-out
 a process that gets no response for a period of time suspects a
failure and initiates an election process.

 An election process is typically performed in two phases:
1. Select a leader with the highest priority.
2. Inform all processes about the winner.

35

The Bully Algorithm
 Each process knows the identifiers of all processes (but not which one is still up!);

the process alive with the highest identifier is selected.

 Any process could fail even during the election procedure.

 Pi detects a failure  coordinator has to be elected:

 it sends an election message to all processes with higher identifier
and waits for an answer message:

 If no answer arrives within a time limit, Pi becomes the coordinator
(as all processes with higher identifier are down)

 it broadcasts a coordinator message to all processes to let them know.

 If an answer message arrives,
Pi knows that another process has to become the coordinator

 it waits in order to receive the coordinator message.
If this message fails to arrive within a time limit (which means
that a potential coordinator crashed after sending the answer message),

Pi resends the election message.

 When receiving an election message, a process Pj replies with an answer message
and starts an election procedure itself, unless it has already started one

 it sends an election message to all processes with higher identifier.

 Eventually, all processes get an answer message,
except the one which becomes the coordinator.

36

The Bully Algorithm

By default, the state of a process is ELECTION-OFF

Rule for election process initiator:
/* performed by a process Pi, that triggers the election procedure, or that starts
an election after receiving itself an election message for the first time */
[RE1]: statePi := ELECTION-ON.

Pi sends an election message to all processes with a higher identifier.
Pi waits for answer message.
if no answer message arrives before time-out then

Pi is coordinator and sends a coordinator message to all processes
else

Pi waits for a coordinator message to arrive.
if no coordinator message arrives before time-out then

restart election procedure according to RE1
end if

end if

37

The Bully Algorithm

Rule for handling an incoming election message:

/* performed by a process Pi at reception of an election message
from Pj */

[RH1]: Pi replies with an answer message to Pj.

[RH2]: if statePi := ELECTION-OFF then

start election procedure according to RE1

end if

38

The Bully Algorithm

Example:
P4 suspects that the previous
coordinator P7 has crashed,
and starts the election process.

39

The Bully Algorithm

40

The Bully Algorithm

41

The Bully Algorithm

If P6 crashes before sending the coordinator message,
P4 and P5 restart the election process.

The best case: the process with the second-highest identifier notices
the coordinator’s failure.
It can immediately select itself and then send n-2 coordinator messages.

The worst case: the process with the lowest identifier initiates the election.
It sends n-1 election messages to processes which themselves initiate each
one an election  O(n2) messages.

42

The Ring-Based Algorithm

 We assume that the processes are arranged in a logical ring

 Overlay network – only used for election

 Each process knows the address of one other process,
which is its neighbour in the clockwise direction.

 Each process must also know the next neighbor of that neighbor,
so that a crashed process (e.g. coordinator) can be bypassed
and the ring be closed again.
 Exercise: extend the algorithm below to update this information

 The algorithm elects a single coordinator,
which is the process in the ring with the highest identifier.

43

The Ring-Based Algorithm

 Election is started by a process
which has noticed that the current coordinator has failed.
The process places its identifier in an election message that is
passed to the following process.

 When a process receives an election message,
it compares the identifier in the message with its own.
 If the arrived identifier is greater, it forwards the received

election message to its neighbour;
 If the arrived identifier is smaller, it substitutes its own identifier

in the election message before forwarding it.
 If the received identifier is that of the receiver itself
 the receiver process is the coordinator.
The process sends a coordinator message through the ring.

44

The Ring-Based Algorithm

For an election:

 On average:
 n/2 (election) messages needed

to reach the node with maximal identifier;
 n (election) messages to return to this node;
 n messages to rotate coordinator message.
 Number of messages: 2n + n/2.

 Worst case:
 n-1 messages needed to reach the maximal node;
 Number of messages: 3n - 1.

The ring algorithm is more efficient on average than the bully
algorithm.

45

General Observation

Ring-based algorithms

 e.g. token ring mutex algorithm, ring election

vs. Multicast-based algorithms

 e.g. bully algorithm, Ricard-Agrawala first algorithm:

Ring-based algorithms trade fewer total messages for longer
latency

46

Acknowledgments

 Most of the slide contents is based on a previous version
by Petru Eles, IDA, Linköping University.

