TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

CORBA [Szyperski, Chapter 13]

Overview, Goals

Basic interoperability:
IDL
ORB
Object Adapter
IOR
GIOP/IIOP
Dynamic Calls
Trader Service

Evaluation of CORBA as a composition system
Following: CCM CORBA Component Model

Appendices:

CORBA Services and CORBA Facilities
CORBA, Web and Java

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Background literature on CORBA

F. Bolton: Pure CORBA. Sams Publishing, 2002.

Java and C++ examples

M. Aleksy, A. Korthaus, M. Schader: Implementing Distributed
Systems with Java and CORBA. Springer, 2005.

Special issue of Communications of the ACM 41(10), Oct. 1998.
All articles. Overview of CORBA 3.0.

Tanenbaum, van Steen: Distributed Systems. Pearson, 2003.
Principles and paradigms.

OMG: CORBA 2.2 and CORBA 3.0 Specification.

http://www.omg.org
See also further material from the OMG on the Web

OMG: CORBAfacilities: Common Object Facilities Specifications.
http://www.omg.org

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised hv C_Ka

r"

CORBA OIRAIG "

OBJECT MAMAGEMENT GROUP
CORBA

= Common Object Request Broker Architecture®
= Founding year of the OMG (Object Management Group) 1989

= Goal: plug-and-play components everywhere

= CORBA1.11991 (IDL, ORB, BOA)
= ODMG-93 (Standard for OO-databases)

= CORBA 2.0 1995.
Version 2 is a separate line, 2.2 and 2.4 are status quo

= CORBA 3.01999 (POA).
Current version (2005) is 3.0.3.

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Ingredients of CORBA

= Component Model

= Components == classes (and objects), i.e., similar to object-oriented
software. CORBA components have more component secrets.

= Basic interoperability
= Language interoperability by uniform interfaces description
= Transparent distribution
= Transparent network protocols

« CORBA Services

= CORBA Facilities
= Horizontal (general-purpose) vs. vertical (domain-specific)
= CORBA MOF

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Corba’s Hydrocephalus

- Corbais large
= Object Request Broker — 2000 pages of specification
= Object Services — 300 pages
= Common Facilities — 150 pages

= Technical reasons
= Clean detailed solution
= Sometimes overkill

= Sociologic reasons
= OMG is large (over 800 partners) and heterogeneous
= Standard covers a wide range

= Linguistic reasons
= Own language
= Lots of unintuitive 3-capitals-names (OMG, ORB, IDL, ...)
= Appears larger than necessary

Corbas Mechanisms
for Composition

(Basic Interoperability)

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Solutions for
Language and Location Transparency

Recall:

Client

Activation of servants,
Dispatch of incoming calls to
skeleton(s),

Creation of object references

Server

Client

Stub

A

\ 4

(OA)

A

[4

i

OA ‘Skeleton] |Servant

y 3
4

L |

Run-time system
(ORB)

WY = = e e e e e === -

IGIOP / 11OP %

-—— = A
S

Dispatch of incoming
requests to OA(S)
(multiplexing TCP/IP port)

Also:
Object references
Dynamic invocation via reflection

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Language Transparency

= Interface definition language — CORBA IDL
= CORBA Interface Definition Language describes interfaces

= From that, glue code is generated
(glue code is code that glues non-fitting components together)

= Generate stub and skeletons for language adaptation
= Powerful type system
= Standardized (ISO 14750)

- Language bindings for many languages
= Antique: COBOL
= Classic: C
= OO: C++, SmallTalk, Eiffel, Java
= Scripting: Python

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Concepts in the CORBA
Interface Definition Language (IDL)

module <identifier> { ypes
<type declarations>
<constant declarations> objects i

<exception declarations> :
non-objects

/] classes IOR g value objectsi

interface <identifier> : <inheriting-
from> {

<type declarations>
<constant declarations>

basic types constructors

<exception declarations>
// methods
<optype> <identifier>(<parameters>)

Ints (short,..) i Struct

Any i Reals (float..)i Sequence

} Bool Char, string, i Union

1113

i

Enum octet i Array

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

IDL-to-Language Mapping

= Bijective mapping
from Corba IDL types to programming language types
= Maps basic types directly

= Maps type constructors

= Mapping makes transparent
= Byte order (big-endian / little-endian)
= Word length
= Memory layout
= References

= One standard for each programming language!

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

IDL-to-C,

Mapping for basic types

Iable I-1 Data Type Mappings
OMG IDL C
short CORBA_short
long CORBA_long
long long CORBA_long_long

unsigned short

CORBA_unsigned_short

unsigned long

CORBA_unsigned_long

unsigned long
long

CORBA_unsigned_long_long

float

CORBA_float

double

CORBA_double

long double

CORBA_long_double

char

CORBA_char

wchar

CORBA_wchar

boolean

CORBA_boolean

any

typedef struct CORBA_any { CORBA_TypeCode _type; void
* value; }

CORBA_any;

Source: OMG, www.omg.org

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

IDL-to-Java, mapping of basic types

Iable 2-1 Basic Type Mappings

source: OMG,

VWW.0mg.org

IDL Type Java type Exceptions

boolean boolean

char char CORBA::DATA_CONVERSION

wchar char CORBA::DATA_CONVERSION

octet byte

string java.lang.String CORBA::MARSHAL
CORBA::DATA_CONVERSION

wstring java.lang.String CORBA::MARSHAL
CORBA::DATA_CONVERSION

short short

unsigned short short

long int

unsigned long int

long long long

unsigned long long

long)

float float \

double double

fixed java.math.BigDecimal CORBA::DATA_CONVERSION

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Hello World in IDL

hello.idl count.idl
#ifndef HELLOWORLD_IDL module Counter {
#define HELLOWORLD IDL /I unbounded sequence of longs:
B B typedef sequence<long> oneDimArray;
module HelloWorld { /I specify interface for a counter:
interface SimpleHelloworld { interface Count {
string sayHello(); attribute long sum; // counter
% long increment();
}; void readCtr (in oneDimArray X,
in long position k);
#endif }
}

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Which Parts of Clients and Servers are
Generated

IDL interface

e.g., (JDK:)
>1idlj -fall hello.idl

IDL
compiler

Client stubs

To be written by
the programmer

Client
Implementation

Server
skeletons

\

Server
Implementation

To be written by
the programmer

To be written by
the programmer

_ : Server Client
Implementation O:‘dgbgg’ft Compiler Compiler
Repository (+ Linker) (+ Linker)

> javac HelloClient.java

| Server I Client i

—

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Example: Counter.idl

I/ IDL

module Counter {
Interface Counter {
attribute long thecounter,
void inc(in long k);
long getcounter ();
%
I

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Example (cont.): IDL compiler result

-« Example: (for CORBA supplied in JDK 1.2 and later)
idlj -fall Counter.idl

generates the following files:

= Counter.java -- the Java interface for Counter
= CounterOperations.java -- the Java interface for Counter methods

= CounterPOA.java -- servant impl. class should inherit from this one
CounterPOATie.java -- or delegate to this one (see later)

= CounterHolder.java -- serialization/deser. code for passing Counters
= CounterHelper.java -- type conversion routines for Counters
_CounterStub.java -- class with the client-side stub code

(here no Skeleton code required, as the OA already “speaks” Java)

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Example (cont.): CounterOperations.java

/ IDL

package Counter; module Counter {
interface Counter {

- attribute long thecounter;
/ o void inc(in long k):

* Counter/CounterOperations.java . long getcounter ():

* Generated by the IDL-to-Java compiler (portable), version "3.2" 1

* from Counter.id| b

* den 23 april 2007 kl 10:02 CEST
*/

public interface CounterOperations

{

Int thecounter (); // getter method for thecounter, created automatically
void thecounter (int newThecounter); // setter method for thecounter...
void inc (int k);

Int getcounter ();

}

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Example (cont.): Counter.java

/ IDL

module Counter {
package Counter; interface Counter {
attribute long thecounter;
void inc(in long k);
. _ long getcounter ();
Counter/Counter.java . :
* Generated by the IDL-to-Java compiler (portable), version "3.2" b ’

/**

* from Counter.idl
* den 23 april 2007 kl 10:02 CEST
*/

public interface Counter
extends CounterOperations,
org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEnNtity

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Example (cont.): CounterPOA. java

package Counter;

/ IDL
/**
* Counter/CounterPOA .java . module Counter {
* Generated by the IDL-to-Java compiler (portable), version "3.2” from Counter.iq interface Counter {
*/ attribute long thecounter;
public abstract class CounterPOA extends org.omg.PortableServer, Yoor:(; gé:t(cglulnotg?(l;),

implements Counter.CounterOperations, org.omg.CORBA.portabl y
{

/Il Registry for Counter-methods:

private static java.util.Hashtable _methods = new java.util.Hashtable ();
static {
_methods.put (*_get thecounter”, new java.lang.Integer (0));
__methods.put (*_set_thecounter", new java.lang.Integer (1));
__methods.put ("inc", new java.lang.Integer (2));
__methods.put ("getcounter", new java.lang.Integer (3));

}

public org.omg.CORBA.portable.OutputStream _invoke (String $method,
org.omg.CORBA.portable.InputStream in,
org.omg.CORBA.portable.ResponseHandler $rh)
{
org.omg.CORBA .portable.OutputStream out = null;
java.lang.Integer __method = (java.lang.Integer) methods.get ($method);

/...
switch (method.intValue ()) { ... } /| call skeleton by method index — see next page

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Example (cont.). CounterPOA.java (cont.)

switch (__method.intValue ()) {

case 0: // Counter/Counter/_get_thecounter /DL

{ module Counter {
int $result = (int)0; interface Counter {
$result = this.thecounter (); attribute long thecounter;
out = $rh.createReply(); void inc(in long k);
out.write_long ($result); long getcounter ();
break; _},

} It

case 1. // Counter/Counter/_set_thecounter

{..

}

case 2. // Counter/Counter/inc

{
int k =in.read_long ();
this.inc (k);
out = $rh.createReply();
break;

}

default: throw new org.omg.CORBA.BAD_OPERATION (0,
org.omg.CORBA.CompletionStatus. COMPLETED _MAYBE);
}

return out; // result of invoke

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Example (cont.): CounterStub.java

package Counter;

[/ IDL

* Counter/_CounterStub.java . module Counter {

* Generated by the IDL-to-Java compiler (portable), version "3.2" from Counter.idl deny interface Counter {

*/ attribute long thecoun

public class _CounterStub extends org.omg.CORBA.portable.Objectimpl ?’Oor:d '”gt(c'c:‘umgg(%_)?
implements Counter.Counter . 99 ’

{ b

// some other methods omitted ...
public void inc (int k)
{
org.omg.CORBA.portable.InputStream $in = null;
try {
org.omg.CORBA.portable.OutputStream $out = request ("inc", true);
$Sout.write_long (k);
$in = _invoke ($out);
return;
} catch (org.omg.CORBA.portable.ApplicationException $ex) {
$in = $ex.getlnputStream ();
String _id = $ex.getld ();
throw new org.omg.CORBA.MARSHAL (_id);
} catch (org.omg.CORBA.portable.RemarshalException $rm) { inc (k);}
finally { _releaseReply ($in); }

m'} /I inc

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

The Top Class: CORBA::Object

CORBA::Object

get_implementation
get_interface

Is_nil

IS _a

create_request
duplicate

release

The class CORBA::Object is
Inherited to all objects

= Supports reflection and
Introspection

Reflective functions:

= get_interface
delivers a reference to the entry
In the interface repository

= get_implementation
a reference to the implementation

Reflection also by the Interface
Repository
(list_initial_references from the
CORBA:.:ORB interface).

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Problem: Multiple Inheritance

CORBA::Object includes code into a class

Many languages only offer single inheritance
= Application superclass must be a delegatee

CORBA::Object

ApplicationClass
SuperClass

ApplicationClass
that needs
connection

CORBA::Object

ApplicationClass
SuperClass

/ =

ApplicationClass
that needs
connection

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Interoperable Object Reference (IOR)

= An object reference provides information to uniquely specify
an object within a distributed ORB system

= Unigue name or identifier

- Language-transparent:
Mapped to client's normal source language references
(unique mapping for each supported language)

= Implementation in CORBA:
Obiject reference to a server object is given out by the server's
OA,
shipped to clients as IOR object and stored there in a proxy
object.
ORB supports stringification / destringification of IOR's.
Retrieval of references by client: supported by naming service

All referencing goes via the server's ORB
-> enables distributed reference counting

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Interoperable Object Reference (IOR) -

cont.

= Transient (terminates with server) or persistent
= |OR is larger, more time-consuming than language-bound reference:

« Consists of;

= Type name (code), i.e. index into Interface Repository

= Protocol and address information
(e.g. TCP/IP, port #, host name),
could support more than one protocol

= Object key:

= Object adapter name (for OA)

= Opaque data only readable by the generating ORB (local reference)

/

IOR /Type Name:
interface

repository
reference

Port

Protocol
Address

Obiject key
Object Adapter

Opaque unique data

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

IOR Example

4 .
IDL: IIOP Object key

TimeServer: iiop.my.net OA 2

Version 1.0 1234 0x0003

OA 1 (BOA/POA)

Corba Object
Corba Object j0x0001

Corba Object px0002
s

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

How to get an IOR?

= Object references originate in servers.
= If client needs a reference, a server must create it.
= —> Chicken-and-egg problem...

Solutions:

= Server write stringified IOR to a file (e.g., stdout)
= Ok for tests, but not for realistic distributed systems

= Use the CORBA naming service
= Naming service stores (name, IOR) bindings in central location
= Only location of naming service needs to be known to client
= Use the CORBA trading service
- = Look up IOR for objects by reg. properties, instead of by name
27

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Example: Time Service

Call provides current time
(on server)

Code to write:

Interface in IDL
Server
« Starts ORB
= Initializes Service
= Gives IOR to the output
Client
« Takes IOR
« Calls service

//TestTimeServer.idl

module TestTimeServer{
interface ObjTimeServer{
string getTime();
};
3

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Time Service Component
as part of the server implementation (Java)

//TestTimeServerImpl.java
import CORBA.*;

class ObjTestTimeServerImpl
extends TestTimeServer.ObjTimeServer_Skeleton
//which is generated from IDL

{
//Variables

//Constructor

//Method (Service) Implementation

public String getTime() throws CORBA.SystemException
{

return “Time:

+ currentTime;

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Time Service

The other part of the server implementation

// TimeServer_Server.java
import CORBA.*;
public class TimeServer_Server {
public static void main(String[] argv) {
try {
CORBA.ORB orb = CORBA.ORB.1ni1t();

ObjTestTimeServerImpl obj
= new ObjTestTimeServerImpl(..);

// print stringified object reference:
System.out.printin(orb.object_to_string(obij));
}
catch (CORBA.SystemException e){
System.err.printin(e);

}

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Time Service
Client Implementation

//TimeServer_Client. java
import CORBA.*;

public class TimeServer_Client{

public static void main(String[] argv) {
// pass stringified object reference as argv[0]

try {

CORBA.ORB orb = CORBA.ORB.init();

EORBA.object obj = orb.string_to_object(argv[0]); //IOR

TestTimeServer.ObjTimeServer timeServer = // downcast

TestTimeServerImpl.ObjTimeServer_var.narrow(obj);

System.out.printin(timeServer.getTime()); // invoke

31 1

}
catch (CORBA.SystemException e) { System.err.printlin(e); }

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Time Service
Execution

C:\> java TimeServer_Server

TOR:00000000000122342435 ..

C:\> java TimeServer_Client
TIOR:00000000000122342435 ..

Time: 14:35:44

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

GIOP / 1IOP

OSI Networking Model layers CORBA GIOP / lIOP layers

= [Application - ORB

« 6 Presentation « GIOP

= 5 Session « lIOP

= 4 Transport = TCP

« 3 Network « IP

« 2 DataLink « Data Link
= 1 Physical = Physical

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

GIOP General Inter-ORB Protocol

General protocol, simple, abstract

= Independent of any particular transport protocol (IIOP: over TCP/IP)
Asymmetric (client-server) connections

=« Client creates connection

= Server receives requests and replies (without knowing client)
Connection-oriented transport, no packet size restrictions
Common data representation (CDR): octet (8-bit bytes) stream

= Sender endianness information in header
= Sender alignment information (1, 2, or 4 bytes) in header
= Sender sends natively aligned data, receiver adapts if necessary

= Encoding of the IDL datatypes
Message formats:

= Request, LocateRequest, CancelRequest (client)
= Reply, LocateReply (server)
= MessageError, Fragment, CloseConnection (both)

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

IIOP (Internet Inter-ORB Protocol)

= Implementation of GIOP on top of TCP/IP
« TCP/IP Socket communication
= Adds socket address information to IOR contents

IOR:

lIOP Socket address _

Object key

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2009.

Basic CORBA Connections

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Basic Connections in CORBA

« Static method call with static stubs and skeletons
« Local or remote

= Polymorphic call
= Local or remote
= Event transmission
= Callback
= Dynamic invocation (DII, request broking)

= Searching services dynamically in the web
(location transparency of a service)

= Trading

= Find services in a yellow pages service, based on properties

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Static CORBA Call

- Advantage: the participants (methods) are statically known
= Call by stub and skeletons, without involvement of an ORB
= Supports distribution:
Exchange of local call in one address space to remote call is very easy:
= Inherit from a CORBA class
= Write an IDL spec
= No search for service objects - rather fast
= Better type check, since the compiler knows the involved types

= The call goes through the server object adapter
= This hides the detail whether the server is transient or persistent

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Client side protocol for static calls

Step 1. Initialize the ORB
= global orb = CORBA::ORB Init (argc, argv);
Step 2: Obtain an object reference (here: from file)

=« CORBA:Object obj =
global _orb -> string_to_object(read_refstring(“filename.ref”));

and narrow it to expected object type (dynamic downcast)
= Counter::Counter ctr = Counter::Counter::_narrow(obj);

Step 3: Invoke on Count object
= Cctr->increment();

Step 4. Shut down the ORB
= global orb->shutdown(1); global orb->destroy();

30

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Server Side,
Old-style Protocol (BOA)

Server Implementation

(Servant instance
] (Object) Implem. _—

Impl_is_ready

object_is_ready

Object Adapter

|[deactivate obj

deactivate_impl

]
Skele-
ton

[T

— ORB Core

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Basic Object Adapter BOA

The BOA hides

CORBAIBOA - Life time of the server object
(activation: start, stop)
create
get_id = Persistency
dispose o _
set_exception The BOA is implemented in every

impl_is_ready
obj_is_ready
change_implementation The BOA maintains the
deactivate_impl _ _ :
deactivate_obj Implementation repository

(component registry).

ORB, for minimal service provision

create POA

Sl ol pIel e It supports non-object-oriented code
activate object_with_id

the_POAManager (.activate) In CORBA 3.0 replaced by POA

ﬁervant_to_reference (Portable Object Adapter) .

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Object Activation on the Server
(BOA version)

Object adapter

Server object1 object2 CORBA::BOA
create .. e

Hait >
ol o vroncdyv, »
U 1s_1cau "l
cnot 1A >
gctT_1u >
Al [P rancyvs >
OujIo—_1Cau >
Lol 1 vroanadyvs >

TP _1o_TvdAduy g Process client

requests here...

AdAoactinsata Al I

ucabllvaLC_UUJ ~

doactiniata 1rmnl I

Ut Aauvltilyv LC_l ||'J| v

v v v v

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

POA
Portable Object Adapter

: : CORBA::BOA
The POA is an evolution of the BOA
_ create
Nested POAs possible, get_id
with nested name spaces dispose
set_exception
= Root POA (one per server) impl_is_ready
started/accessed by ORB. obj_is_ready
- A POA can create new POAs. ghange_implen?emaﬂon
: eactivate_imp
= A POA may serve a group of objects deactivate_obj
and handle references to them.
CORBA::POA
POAs can be named
. ORB maintains a registry of named create_:?fOA y
POAs, e.g. for reactivation as needed. create_litespan_policy
activate_object_with _id
Policies for object management tsr;?;zriAtl\ga?;ge?gr&a: tivate)
. e.g. Lifespan: transient / persistent -

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Towards Dynamic Call
(DIl, Request Broking)

= Dynamic call viathe ORB's DIl (Dynamic Invocation Interface)

= Services can be dynamically exchanged,
or brought into the play a posteriori

= Without recompilation of clients

« Slower than static invocations

= Requires introspection

= Requires descriptions of semantics of service components...
= For identification of services

= Metadata (descriptive data):
catalogs of components (interface repository, implem. repository)

= Naming service, Trading service, Property service (later)

- ... and a mediator that looks up for services: the ORB
45

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Object Request Broker ORB

ORB is a Mediator

CORBA::ORB Hides the the environment from clients

Init

object_to_string List_initial_services:

string_to_object yields list of names of initial services
create_list e.g. Naming Service
create_operation_list

get_default_context Resolve initial_references:
create_environment h . . t t
list_initial_services uses the naming sgrwce e.g. to get an
resolve initial references IOR to “NameService” or the “RootPOA’

ORB is responsible for managing all
communication:

Can talk to other ORBs on the network
(IIOP Internet Inter-ORB protocol)

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

ORB Activation

Client
bject CORBA ORB
Initialize the ORB
—ORB-init—— — first step to set up

the CORBA environment
for a CORBA application

(BOAAD »f (Initializes the server BOA
- — deprecated in CORBA 3)
listinitigl_services " Delivers service names
resolve—initial-references » Delivers object references

to server objects from
service nhames

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Protocol Dynamic Call (DlIl)

Client Server Naming
object object Request Context OperationDef ORB

-get-interface-
resolve

N

4

arguments
createlist >

n

A 4

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Example for Dynamic Call

// Ship.idl
module Ship {

Interface Aircraft {
string codeNumber();

J

Interface AircraftCarrier {
Aircraft launch (in string name);

%
%

Source: Infowave, Building distributed applications...,
www.waveman.com/etac/corba/pagel3.html, 1998

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Example 1: Dynamic Call in C++
Client program

ORBA::ORB_ptr orb;

// Build request (short form)

main(int argc, char* argv[]) { CORBA::Request_ptr rg= obj->_request("op");
orb = CORBA::ORB init(argc,argv, ORBID); // Create argument list
/I alternative description of service rq-arguments() = orb->create_list();
CosNaming::NamingContext_ptr naming = rg->arguments()->add_value("argl",vall, CORBA::ARG_IN);
CosNaming::NamingContext::_narrow(rg->arguments()->add_value("arg2",val2, CORBA::ARG_OUT);

::resolve_initial_reference(*NameService”));| rg->arguments()->add_value("arg3",val3,CORBA::ARG_INOUT)
CORBA::Object_ptr obj;
try { /Il Invoke request:

obj = naming->resolve(mk_name("dii_smpl")); | rgq->invoke();
} catch (CORBA::Exception) {

cerr << "not registered"” << endl; exit(1); /I Analyze result

} CORBA::Short rslt ;
if (*(rg->result()->value()) >>=rslt) {

/l Construct arguments: // Analyze the out/inout-parameters (argl has index 0)
CORBA::Any vall; CORBA::Short _arg2, arg3;
vall <<= (CORBA::Short) 123; *(rg->arguments()->item(1)->value()) >>= _arg2;
CORBA::Any val2; *(rg->arguments()->item(2)->value()) >>= _args3;
val2 <<= (CORBA::Short) O; cout<<"arg2=" <<arg2 <<"arg3="-<<_arg3
CORBA::Any val3; <<"return=" << rslt<<endl; }
val3 <<= (CORBA::Short) 456; else {

cout << “result has unexpected type" << endl; }

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Example 2: DIl Invocation in Java
Client program (1)

/I Client.java

// Adapted from: Building Distributed Object Applications with CORBA
/I Infowave (Thailand) Co., Ltd.

/[Jan 1998

public class Client {
public static void main(String[] args) {

if (args.length = 2) {
System.out.printin("Usage: vbj Client <carrier-name> <aircraft-name>\n");
return;

}

String carrierName = args[0];

String aircraftName = args[1];

org.omg.CORBA.Object carrier = null;

org.omg.CORBA.Object aircraft = null;

.omg.CORBA.ORB orb = null; e
?r:?{omg oh s Step 1: Initialize the ORB

orb = org.omg.CORBA.ORB.init(args, null);
}
catch (org.omg.CORBA.SystemException se) {
System.err.printin("ORB init failure " + se);
System.exit(1);

}

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Example 2: DIl Invocation in Java
Client code (2)

{ /] scope of request object:

}

try { ... (simplified) Step 2. Query the DIl to get a ref to an interface by name:
carrier = intf_rep.lookup("IDL:Ship/AircraftCarrier:1.0");

}

catch (...) {
System.err.printin("..." + se); _ o
System.exit(1); Step 3: Create a DIl request object for this interface

} and fill it with method name, arguments, return type:

org.omg.CORBA.Request request = carrier._request("launch");
request.add_in_arg().insert_string(aircraftName);

request.set_return_type(orb.get_primitive_tc(org.omg.CORBA.TCKind.tk_objref));
I/l Step 4: Invoke request:

request.invoke();

/[Step 5: Read result value:

aircraft = request.result().value().extract_Object();

{ I/ scope of another DIl call (use a fresh request object):

1

org.omg.CORBA.Request request = aircraft._request("codeNumber");
request.set_return_type(orb.get_primitive_tc (org.omg.CORBA.TCKind.tk_string));
request.invoke();

String designation = request.result().value().extract_string();

System.out.printin ("Aircraft " + designation + " is coming your way");

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Example 2

Server code (Java, POA version)

/ Building Distributed Object Applications with CORBA

import java.io.*;
import org.omg.CosNaming.*;

public class Server

{

public static void main(String[] args)

{ Step 1: Initialize server ORB
org.omg.CORBA.ORB orb =

org.omg.CORBA.ORB.init(args, null);
org.omg.CORBA.Object objPOA = null;

objPO

}
catch (org.omg.CORBA.ORBPackage.InvalidName

ex) {...}
org.omg.PortableServer.POA rootPOA = null;

rootPOA = (org.omg.PortableServer.POA) objPOA;

(downcast)

/ Infowave (Thailand) Co., Ltd. http://www.waveman.com, Sep 2000

Step 4: Create new POA

try {SteE 2: Get RootPOA ref from naming S
orb.resolve_initial_references("RootPOA");

L Step 3: Narrow it to a RootPOA object -

with specific policies:

org omg.PortableServer.POA myPOA = null;
try {
myPOA = rootPOA.create POA(
“personalPOA",
rootPOA.the_ POAManager() ,
new org.omg.CORBA.Policy[] {
rootPOA.create_id_assignment_policy (
org.omg.PortableServer.
IdAssignmentPolicyValue.USER_ID) });
}
catch (java.lang.Exception ex) {
System.err.printin("Create POA Exception " + ex);
System.exit(1);
} Step 5: Create new servant object
org.oma.PortableServer.Servant carrier = null
try { ...pass the POAo its constructor
carrier = new AircraftCarrierimpl(myPOA);
myPOA.activate object_with_id
("Nimitz".getBytes(), carrier); and activate it

}
catch (org.omg.CORBA.SystemException se) {...}

catch (org.omg.CORBA.UserException ue) {...}

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Example 2
Server code (Java, POA version) - continued

/[Write object reference to an IOR file

org.omg.CORBA.Object initRef = null;

try {
initRef = myPOA.servant_to_reference(carrier);

FileWriter output = new FileWriter("ns.ior");
output.write(orb.object_to_string(initRef));
output.close();
System.out.printin("Wrote IOR to file: ns.ior");

Step 6: Activate the POA manager:
myPOA.the_ POAManager().activate();
System.out.printin(carrier + " ready for launch !!");

orb.run(); Step 7: Hand over application control to the ORB

} _ to service incoming calls
catch (java.lang.Exception exb) {

System.err.printin("Exception Last deep in here " + exb);
System.exit(1);
}
}

}

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Example 2

Servant implementation (Java, POA version)

{
private org.omg.PortableServer.POA _myPOA,;

I/l Constructor:
public AircraftCarrierimpl (
org.omg.PortableServer.POA myPOA) {

} (here, in constructor)
public Ship.Aircraft launch (String name) {
org.omg.PortableServer.Servant aircraft
= new Aircraftimpl(name);
try{ Can register created objects ...
_myPOA.activate_object_with_id(
"name".getBytes(), aircraft);

} ... as CORBA objects with my POA

catch (java.lang.Exception ex)

{

System.exit(1);

/ Adapted from: Building Distributed Object Applications with CORBA
/ Infowave (Thailand) Co., Ltd. http://www.waveman.com, Sep 2000

public class AircraftCarrierimpl extends Ship.AircraftCarrierPOA

_myPOA = myPOA; Record a ref. to my POA

System.err.printin("Exception 2 " + ex);
o

}

System.out.printin(name + " on Catapult 2");

Ship.Aircraft _aircraft = null;
try {
_aircraft = Ship.AircraftHelper.narrow(
_myPOA.create_reference_with_id(
"name".getBytes(),
aircraft._all _interfaces(null, null)[0]));

}

catch (java.lang.Exception ex)

{

System.err.printin("Exception 3 " + ex);
System.exit(1);
}

return _aircraft;

}

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

CORBA interoperablility mechanisms

Summary and further components

INTERFACE IMPLEMENTATION
EFEPOSITORY CDI'I.'[F'ILER EFEPOSITORY

CLIENT [(OBJ) ﬂperatmn{) OBJECT

SERVAMNT
REF | gui args + return value ()
~a i)

l i TDL
DEIRE];‘ﬂmf“](nmm}

ADAPTEERE
GIOP/IIOP

@ STANDARD INTERFACE @ STANDARD LANGUAGE MAPPING

a ORB-SPECIFIC INTERFACE D STANDARD PROTOCOL

Source: http://www.cs.wustl.edu/~schmidt

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Avalilable ORBs

Java-based

IBM WebSphere

SUN NEO, Joe: own protocol.
the Java Transaction Service
JTS is the JOE Corba Object
Transaction Service OTS.

IONA Orbix: developed in Java,
l.e., ORBlets possible, C++,
Java-applications

BEA WebLogic

Borland Visibroker
(in Netscape Communicator),
IOP based. Also for C++.

free: JacORB, ILU, Jorba,
DynaORB, OpenORB, JDK1.4+

C-based

= ACE ORB TAO, University
Washington (with trader)

= Linux ORBIT (gnome)
(also for Cygwin).

= Linux MICO (kde 1.0 used it)

Python-based
= fnorb

http://www.omg.org

[Szyperski CS 13.4]

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Beyond Dynamic Call:
The Trader Service

= Trader mediates services,
based on published properties (“yellow page service”)

= Matchmaking
- Mediator

2. Request service IOR
by functionality pattern

1. Export service
functionality
description

—
3. Interact

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

ORBs and Traders

= The ORB resolves operations still based on naming
(with the Naming service = “White pages”)

= The Trader service, however, resolves operations (services)
without names, only based on properties and policies
= “Yellow pages”

= The trader gets offers from servers, containing new services

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Service offers for the Trader service

= Service offer (IOR, properties)
= Properties describe services
= Are used by traders to match services to queries

= Dynamic property
= A property can be gueried dynamically by the trader of service

= The service-object can determine the value of a dynamic property
anew

= Matching with the standard constraint language
= Boolean expressions about properties
= Numeric and string comparisons

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Traders Provide Service Hopping

« |If atrader does not find a

service, it can ask neighbor Flow of the
traders properties of
the service

= Design pattern uery Offers with
“Chain of Responsibility” the trader
= Graph of traders Policies that change /
- Links to neighbors the values of

the properties during

via TraderLink passing on
= TraderLink filters
and manipulates queries \, v

via policies F i I

« A distributed search
algorithm (also used in P2P)
61

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Modification of Queries

= Policies parameterize the behavior
of the traders and the TraderLinks

= Filters, i.e., values, limiting / modifying the queries:

= max_search_card: maximal cardinality for the ongoing searches
= max_match_card: maximal cardinality for matchings

= Mmax_hop_count: maximal search depth in the graph

») »
L »

cardinalities cardinalities l

for search for matching offer

S

P

Cardinalities
for return

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Interfaces Trading Service

« Basic interfaces

= Lookup (query)
= Reqgister (for export, retract, import of services)
= Admin (info about services)

= Link (construction of trader graph)

- How does a query look like?

= Lookup.Query(in ServicetypeName, in Constraint, in PolicySeq,
in SpecifiedProperties, in how_to_y,
out OfferSequence, offerlterator)

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

CORBA Trader Types

Lookup Lookup Register Lookup Register Admin

¢ ? o 1
[yt] [ompewr | e]

Lookup RegisterAdmin

° 9o

Lookup Register Admin Lookup Register Admin

@ O
Link proxy

proxy

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Callbacks with the Callback Service

= Callback function registration

= Procedure variable,
closure (procedure variable with arguments)
or reference to an object

Client Client2

. Callback works Server

for all languages i registerCallback()
. Callback reverses roles riseEvent()

of client and server callCallback()

return()
l ~ signal()
V‘ ¢

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Events

= Send event objects from event suppliers to event consumers
unidirectional event channels decouple supplier and consumer

= Event objects (also called messages) are immutable once sent
= Asynchronous communication; order of events is not respected
= No return values (except with references to collector objects)

= Unicast: one receiver
= Multicast: many receivers

= Dynamically varying receivers
(register at channels as supplier / consumer; event type filtering)

Works for every CORBA language

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

CORBA Event Service

Push model:
Supplier sends event object by calling push operation on channel,
which calls push to deliver event object to all registered consumers

Pull model:
Consumer calls pull operation on channel (polling for arriving events)

which triggers calls to pull to registered suppliers
As intermediate instances, an event channel can be allocated

= They buffer, filter, and map pull to push
Untyped generic events, or typed by IDL
Advantage:
= Asynchronous working in the Web (with [IOP and dynamic Call)

= Attachment of legacy systems
Interesting for user interfaces, network computing etc.

/. Pisadvantage: Very general interface

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Corba 3.0
since 1999

= Provides the well-defined packaging for producing components
= Messaging
= Language mappings that avoid hand-writing of IDL

= Generating IDL from language specific type definitions

« C++2IDL, Java2IDL, ...

= XML integration (SOAP)
= Quality of Service management
= Real-time and small footprint versions
= CORBA Component Model (CCM)
= Similar to EJB, see later

= Scripting (CORBA script), a composition language

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Corba 3.0 (cont.)

= New Basic services:
= POA, the Portable Object Adapter, replaces BOA

= SFA, Server Framework Adapter
= Value objects

=« Services:

= Message Service MOM:
Objects as asynchronous buffered messages

= Corba Beans-components
= Script language
= Facilities:
compound documents, Mobile Agents, BOF (business object
facility)

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2009.

Evaluation of CORBA

as composition system

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Evaluation:
Component Model

- Mechanisms for secrets and transparency: very good
= Interface and Implementation repository

= Component language hidden (interoperability)
= Life-time of service hidden
= ldentity of services hidden

« Location hidden
= No parameterization

= Many standards (see following subchapters)

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Evaluation:
Standardization

= Quite good!
= Services, application services

= On the other hand, some standards are FAT

= Technical vs. application specific vs business components:
= Corba has standards for technical and application specific components

= ... but for business objects, standards must be extended
(vertical facilities)

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Evaluation:
Composition Technigue

Mechanisms for connection

= Mechanisms for adaptation: stubs, skeletons, server adapters
= Mechanisms for glueing: marshalling based on IDL

= Mechanisms for aspect separation

= Multiple interfaces per object
= Nothing for extensions

= Mechanisms for Meta-modeling
= Interface Repositories with type codes, implementation repositories
= Scalability

= Connections cannot easily be exchanged
(except static local and remote call)

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Evaluation:
Composition Language

« Weak

= CORBA scripting provides a facility to write glue code,
but only black-box composition

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

What Have We Learned (1)

= CORBA is big, but universal:

= The Corba-interfaces are very flexible, work,
and can be used in practice

= ... but also complex and fat, maybe too flexible
= If you have to connect to legacy systems, CORBA works

= CORBA has the advantage of an open standard

= Trading and dynamic call
are advanced communication mechanisms

= CORBA was probably only the first step,
web services might be taking over

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

APPENDIX

= Advanced material on CORBA (for self-study)

« CORBA services
« CORBA facilities
« CORBA and the web, ORBlets

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

OMA
(Object Management Architecture)

« A software bus

Application Interfaces Domain Interfaces Common Facilities

Object Request Broker

E_\f/entsI Time
Ple?:igeence Security

) : Licensing
Transactions CORBA Services Properties

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2009.

Corba Services

OMG: CORBAservices: Common Object Service
Specifications.

http://www.omg.org.

OMG: CORBAfacilities: Common Object Facilities
Specifications.

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Overview on Corba Services

16+ standardized service interfaces (i.e., a library)

= Standardized, but status of implementation different depending on
producer

= Object services
= Deal with features and management of objects

= Collaboration services
= Deal with collaboration, i.e., object contexts

= Business services
= Deal with business applications

« The services serve for standardization.
They are very important to increase reuse.

= Available for every language, and on distributed systems!

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Object Services

= Name service (directory service)
= Records server objects in a simple tree-like name space

= (Is a simple component system itself)

= Lifecycle service (allocation service)
=« Not automatic;: semantics of deallocation undefined

= Property service (feature service for objects)

= Persistency service (storing objects in data bases)

= Relationship service to build interoperable relations and graphs
= Support of standard relations: reference, containment

« Divided in standard roles: contains, containedin, references,
referenced

= Container service (collection service)

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Collaboration Services

=« Communication services

= Resemble connectors in architecture systems, but cannot be
exchanged to each other

= Event service

= push model: the components push events into the event
channel

= pull model: the components wait at the channel and empty it
= Callback service

= Concurrency service
= Distributed locks

= Object transaction service, OTS
= Flat transactions on object graphs

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Business Services

- Trader service
= Yellow Pages, localization of services

= Query service
= Search for objects with attributes and the OQL, SQL (ODMG-93)

= Licensing service
= For application providers (application servers)

= License Mmanagers

= Security service
« Use of SSL and other basic services

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Dependencies Between the Services

Trader

Query Licenses

\ 4

Security

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Object Services: Names

= Binding of a name creates an object in a name space
(directory, scope, naming context).

= A name space is a container with a set of bindings of names to values.
= They can reference each other and build name graphs

= Therepresentation of a name is based on abstract syntax,
not on the concrete syntax of a operating system or URL.

= A name consists of a tuple (Identifier, Kind).

= The Identifier is the real name, the Kind tells how the name is
represented (e.g., c_source, object_code, executable, postscript,..).

= For creation of names there is a library (design pattern Abstract
Factory).

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Use of Names

System-dependent name

object

v
CORBA name name space

object

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Naming Service

CosNaming::NamingContext

bind (in Name n, in Object obj)
rebind (in Name n, in Object obj)
bind_context

rebind_context

mk_name(String s)

Obiject resolve

unbind (in Name n)
NamingContext new_context;
NamingContext bind_new_context (in Name n)
void destroy

void list (..)

_harrow()

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Naming Service

void bind(in Name n, in Object ob))
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);
void bind _context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);
Name mk_name(String s);
Object resolve(in Name n)
raises(NotFound, CannotProceed, InvalidName);
void unbind(in Name n)
raises(NotFound, CannotProceed, InvalidName);
NamingContext new_context();
NamingContext bind _new_context(in Name n)
raises(NotFound, AlreadyBound, CannotProceed, InvalidName);
void destroy()
raises(NotEmpty);
void list(in unsigned long how_many,
m out BindingList bl, out Bindinglterator bi);

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Object Services: Persistency

= Definition of a Persistent Object Identifier (PID)
= references the value of a CORBA object
(in contrast to a CORBA object)

« Interface
= connect, disconnect, store, restore, delete

= Attachment to data bases possible

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Object Services: Property Service

Management of lists of features (properties) for objects

= Properties are strings

= Dynamically extensible

Concept well-known as
= LISP property lists, associative arrays, Java property classes

Iterators for properties

Interface:

= define_property, define_properties, get_property value,
get_properties, delete property

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Collaboration Services: Transactions

« What a dream: the Web as data base with nested
transactions.

Scenarios:

= Accounts as Web-objects.
Transfers as transaction on the objects of several banks

= Parallel working on web sites: how to make consistent?
- Standard 2-phase commit protocol:
= begin_ta, rollback, commit

« Nested transactions

= begin_subtransaction, rollback subtransaction,
commit_subtransaction

CORBA Facilities

(Standards for Application
Domains)

Application-domain-specific interfaces

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Horizontal Facilities
(applicable in many domains)

= User interfaces

= Printing, Scripting

= Compound documents
e.g. OpenDoc (since 1996 accepted as standard format. Source code

has been released of IBM. Now obsolete.)

= Information management

= Metadata (meta object facility, MOF)

= Tool interchange:
a text- and stream-based exchange format for UML (XMI)

= Common Warehouse Model (CWM):
MOF-based metaschema for database applications

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Vertical Facilities
(Domain-Specific Facilities)

The Domain technology committee (DTC) creates
domain task forces DTF for an application domain

= Business objects

« Finance/insurance
= Currency facility

« Electronic commerce

= Manufacturing
= Product data management enablers (PDM)

= Medicine (healthcare CorbaMed)
= Lexicon Query Service
= Person ldentifier Service PIDS

= Telecommunications
= Audio/visual stream control object
= Notification service

= Transportation

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2009.

CORBA, Web and Java

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

Corba and the Web

HTML solves many of the CORBA problems

HTTP only for data transport

= HTTP cannot call methods, except by CGl-gateway-functionality
(CGI = common gateway interface)

= Behind the CGl-interface is a general program, communicating with
HTTP via untyped environment variables (HACK!)

= HTTP servers are simple ORBs, pages are objects
= The URI/URL-name schema can be integrated into CORBA

IIOP becomes a standard internet protocol
= Standard ports, URL-mappings and standard-proxies for firewalls
will be available

CORBA is an extension of HTTP of data to code

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

CORBA and Java

= Javais an ideal partner for CORBA :
= Bytecode is mobile

= Applets: move calculations to clients (thin/thick client problem)
= can be used for migration of objects, ORBs, and agents

= Since 1999 direct CORBA support in JDK 1.2

= |IDL-to-Java mapping, IDL compiler, Java-to-IDL compiler,
name service, ORB

= Corba supports for Java a distributed interoperable infrastructure
- Java imitates functionality of CORBA

Basic services:
Remote Method Invocation RMI, Java Native code Interface JNI

Services: serialization, events

Application-specific services (facilities):
reflection, properties of JavaBeans

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA/ TU Dresden. Revised by C. Kessler, 2005-2010..

Corba and the Web (Orblets)

= ORBs can be written as bytecode applets if they are written in
Java (ORBlet)

= Coupling of HTTP and IIOP:

« Download of an ORBIlet with HTTP

= Talk to this ORB to get contact to server

= Replaces CGI hacks!

= WiIll be realized in web services (see later).

TDDDO05 Component-based software. IDA, Linkdpings universitet. Some sllides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005-2010..

ORBlets

100

1) Fetch page

Web-Client

2) fetch ORBlet

Http server i
/

3) communicate with IIOP

> ORB
Server

Business objects

Web server

data bases
_>

Lotus Notes

	Slide 1: CORBA [Szyperski, Chapter 13]
	Slide 2: Background literature on CORBA
	Slide 3: CORBA
	Slide 4: Ingredients of CORBA
	Slide 5: Corba’s Hydrocephalus
	Slide 6: Corbas Mechanisms for Composition (Basic Interoperability)
	Slide 7: Recall: Solutions for Language and Location Transparency
	Slide 8: Language Transparency
	Slide 9: Concepts in the CORBA Interface Definition Language (IDL)
	Slide 10: IDL-to-Language Mapping
	Slide 11: IDL-to-C, Mapping for basic types
	Slide 12: IDL-to-Java, mapping of basic types
	Slide 13: Hello World in IDL
	Slide 14: Which Parts of Clients and Servers are Generated
	Slide 15: Example: Counter.idl
	Slide 16: Example (cont.): IDL compiler result
	Slide 17: Example (cont.): CounterOperations.java
	Slide 18: Example (cont.): Counter.java
	Slide 19: Example (cont.): CounterPOA.java
	Slide 20: Example (cont.): CounterPOA.java (cont.)
	Slide 21: Example (cont.): _CounterStub.java
	Slide 22: The Top Class: CORBA::Object
	Slide 23: Problem: Multiple Inheritance
	Slide 24: Interoperable Object Reference (IOR)
	Slide 25: Interoperable Object Reference (IOR) - cont.
	Slide 26: IOR Example
	Slide 27: How to get an IOR?
	Slide 28: Example: Time Service
	Slide 29: Time Service Component as part of the server implementation (Java)
	Slide 30: Time Service The other part of the server implementation
	Slide 31: Time Service Client Implementation
	Slide 32: Time Service Execution
	Slide 33: GIOP / IIOP
	Slide 34: GIOP General Inter-ORB Protocol
	Slide 35: IIOP (Internet Inter-ORB Protocol)
	Slide 36: Basic CORBA Connections
	Slide 37: Basic Connections in CORBA
	Slide 38: Static CORBA Call
	Slide 39: Client side protocol for static calls
	Slide 40: Server Side, Old-style Protocol (BOA)
	Slide 41: Basic Object Adapter BOA
	Slide 42: Object Activation on the Server (BOA version)
	Slide 44: POA Portable Object Adapter
	Slide 45: Towards Dynamic Call (DII, Request Broking)
	Slide 46: Object Request Broker ORB
	Slide 47: ORB Activation
	Slide 48: Protocol Dynamic Call (DII)
	Slide 49: Example for Dynamic Call
	Slide 50: Example 1: Dynamic Call in C++ Client program
	Slide 51: Example 2: DII Invocation in Java Client program (1)
	Slide 52: Example 2: DII Invocation in Java Client code (2)
	Slide 53: Example 2 Server code (Java, POA version)
	Slide 54: Example 2 Server code (Java, POA version) - continued
	Slide 55: Example 2 Servant implementation (Java, POA version)
	Slide 56: CORBA interoperability mechanisms Summary and further components
	Slide 57: Available ORBs
	Slide 58: Beyond Dynamic Call: The Trader Service
	Slide 59: ORBs and Traders
	Slide 60: Service offers for the Trader service
	Slide 61: Traders Provide Service Hopping
	Slide 62: Modification of Queries
	Slide 63: Interfaces Trading Service
	Slide 64: CORBA Trader Types
	Slide 65: Callbacks with the Callback Service
	Slide 66: Events
	Slide 67: CORBA Event Service
	Slide 68: Corba 3.0 since 1999
	Slide 69: Corba 3.0 (cont.)
	Slide 70: Evaluation of CORBA
	Slide 71: Evaluation: Component Model
	Slide 72: Evaluation: Standardization
	Slide 73: Evaluation: Composition Technique
	Slide 74: Evaluation: Composition Language
	Slide 75: What Have We Learned (1)
	Slide 76: APPENDIX
	Slide 77: OMA (Object Management Architecture)
	Slide 78: Corba Services
	Slide 79: Overview on Corba Services
	Slide 80: Object Services
	Slide 81: Collaboration Services
	Slide 82: Business Services
	Slide 83: Dependencies Between the Services
	Slide 84: Object Services: Names
	Slide 85: Use of Names
	Slide 86: Naming Service
	Slide 87: Naming Service
	Slide 90: Object Services: Persistency
	Slide 91: Object Services: Property Service
	Slide 92: Collaboration Services: Transactions
	Slide 93: CORBA Facilities (Standards for Application Domains)
	Slide 94: Horizontal Facilities (applicable in many domains)
	Slide 95: Vertical Facilities (Domain-Specific Facilities)
	Slide 96: CORBA, Web and Java
	Slide 97: Corba and the Web
	Slide 98: CORBA and Java
	Slide 99: Corba and the Web (Orblets)
	Slide 100: ORBlets

