
TDDD25
Distributed Systems

Distributed
Real-Time Systems

Christoph Kessler

IDA
Linköping University

Sweden

2

Agenda

DISTRIBUTED REAL-TIME SYSTEMS

1. What is a Real-Time System?

2. Distributed Real Time Systems

3. Predictability of Real-Time Systems

4. Process Scheduling

5. Static and Dynamic Scheduling

6. Clock Synchronization

7. Universal Time

8. Clock Synchronization Algorithms

9. Real-Time Communication

10. Protocols for Real-Time Communication

3

Real-Time Systems

A real-time system is a computer system in which the correctness of the
system behavior depends not only on the logical results of the computations
but also on the time when the results are produced.
 Real-time systems usually are in strong interaction with their physical

environment.
 They receive data, process it, and return results in right time.

 Examples:
 Process control systems
 Computer-integrated manufacturing systems
 Aerospace and avionics systems
 Automotive electronics
 Medical equipment
 Nuclear power plant control
 Defense systems
 Consumer electronics
 Multimedia
 Telecommunications

4

Distributed Real-Time Systems

Real-time systems often are implemented as distributed systems.
 Some reasons:

 Fault tolerance
 Certain collection/processing of data has to be performed at the

location of the sensors and actuators
 Performance issues

5

Real-Time Systems

Some Typical Features:

 They are time-critical.

 The failure to meet time constraints can lead to
degradation of the service or to a catastrophe.

 They are made up of concurrent processes (tasks).

 Processes share resources (e.g. processor) and
communicate to each other.

 This makes scheduling of processes a central problem.

 Reliability and fault tolerance are essential.

 Many real-time applications are safety critical.

 Such systems are very often embedded in a larger system,
like a car, CD-player, phone, camera, etc.

6

Soft and Hard Deadlines

Time constraints are often expressed as deadlines
at which processes have to complete their execution.

A deadline imposed on a process can be:

 Hard deadline: has to be met strictly; if not "catastrophe"

 should be guaranteed a-priori, off-line.

 Soft deadline: processes can be finished after their deadline,
although the value provided by the completion may degrade
with time.

 Firm deadline: similar to hard deadlines, but if the deadline is
missed, there is no catastrophe, only the result produced is of
no use any more.

7

Predictability

Predictability is one of the most important properties of any real-time system.
 Predictability means that it is possible to guarantee that deadlines are

met as imposed by requirements:
 hard deadlines are always fulfilled.
 soft deadlines are fulfilled to a degree which is sufficient for the

imposed quality of service.

Some problems to solve towards predictability:
 Determine worst case execution times for each process.
 Determine worst case communication delays on the network.
 Determine bound on clock drift and skew (see later).
 Determine time overheads due to operating system (interrupt handling,

process management, context switch, etc.).

After all the problems above have been solved, comes the "big question":
 Schedulability:

Can the given processes and their related communications be scheduled
on the available resources (processors, buses),
so that deadlines are fulfilled?

8

Scheduling

The scheduling problem:

Which process and communication has to be executed at a
certain moment on a given processor or bus respectively,
so that time constraints are fulfilled?

 A set of processes is schedulable if, given a certain
scheduling policy, all constraints will be completed
(if a solution to the scheduling problem can be found).

9

Scheduling Policies

static scheduling

When are the decisions taken?

dynamic scheduling

preemptive scheduling

Are processes preempted?

non-preemptive scheduling

10

Static Scheduling

Static scheduling: decisions are taken off-line.

 A table containing activation times of processes and
communications is generated off-line.

 This table is used at run-time by a very simple kernel
(table-driven execution).

11

Static Scheduling

12

Static Scheduling

13

Static Scheduling

14

Static Scheduling

What is good?

 High predictability.

 Deadlines can be guaranteed - if the scheduling algorithm
succeeded in building the schedule table.

 Easier to debug.

 Low execution time overhead.

What is bad?

 Assumes prior knowledge of processes (communications)
and their characteristics.

 Not flexible

 it works well only as long as processes/communications strictly
behave as predicted

15

Dynamic Scheduling

 No schedule (predetermined activation times)
is generated off-line.

 Will the processes meet their deadlines?

 This question can be answered only in very particular
situations of dynamic scheduling!

 Schedulability analysis tries to answer it.

16

Dynamic Scheduling

 Processes are activated in response to events
(arrival of a signal, message, etc.)

 Processes have associated priorities

 If several processes are ready to be activated on a processor,
the highest priority process will be executed.

 Priority based preemptive scheduling:

 At any given time, the highest priority ready process is running.

 If a process becomes ready to be executed (the respective
event has occurred), and it has a higher priority than the
running process, the running process will be preempted and
the new one will execute.

17

Dynamic Scheduling

With restrictions in the process model,
schedulability analysis is possible:

For example:

 One single processor.

 All the n processes are periodic and have a fixed (worst
case) computation time ci, and period Ti.

 All processes have a deadline equal to their period.

 Priorities are assigned to processes according to their period
 the process with shorter period gets the higher priority.

Under the circumstances above,
known as rate-monotonic scheduling,
all processes will meet their deadline if

 See IDA course on real-time systems

18

Specific Issues
in Distributed Real-Time Systems

1. Clock synchronization

2. Real-Time Communication

19

Clock Synchronization

The need for synchronized distributed clocks:

 Time-driven systems:
In statically scheduled systems, activities are started at
"precise" times in different points of the distributed system.

 Time stamps:
Certain events or messages are associated with a time stamp
showing the actual time when they have been produced.

 Certain decisions in the system are based on the "exact"
time of the event.

 Calculating the duration of activities:
If such an activity starts on one processor/computer and
finishes on another (e.g. transmitting a message), calculating
the duration needs clocks to be synchronized.

20

Computer Clocks

 A quartz crystal oscillates at well defined frequency
and oscillations are counted (by hardware) in a register.

 After a number of oscillations, an interrupt is generated;
this is the clock tick.

 At each clock tick, the computer clock is incremented
by (system) software.

V. alpha CC BY 3.0

21

Computer Clocks

The problems:

1. Crystals cannot be tuned perfectly.

 Temperature and other external factors can also influence
their frequency.

 Clock drift: the computer clock differs from the real time.

2. Two crystals are never identical.

 Clock skew: the computer clocks on different computers
of the distributed system show different time.

22

"Universal" Time

 The standard for measurement of time:
International Atomic Time (TAI).

 It defines the standard second
and is based on atomic oscillators.

 Coordinated Universal Time (UTC):
is based on TAI, but is kept in step with astronomical time
(by occasionally inserting or deleting a "leap second").

 UTC signals are broadcast from satellites and land-based
radio stations.

23

External and Internal Synchronization

External Synchronization
 Synchronization with a time source external to the distributed

systems, such as UTC broadcasting system.
 One computer in the system (possibly several) is equipped with

UTC receiver (time providers).
 By external synchronization, the system is kept synchronous

with the "real time".
This allows to exchange consistently timing information with
other systems and with users.

Internal Synchronization
 Synchronization among computers of the distributed system.

 Needed to keep a consistent view of time over the system.
 A few computers synchronize externally, and the whole system

is kept consistent by internal synchronization.
 Sometimes only internal synchronization is performed

(if we do not care for the drift from external/real time).

24

Drifting of Clocks

25

Drifting of Clocks
In ideal case, the clock shows UTC:

C = t

In reality,
 is the
maximum
drift rate;
specified by
the manu-
facturer.

Two processors with similar clocks
could be apart by S < 2t

To guarantee a precision Smax =
(max. skew between the two clocks),
the clocks have to be synchronized
at an interval:
t = Smax / 2 = / 2

26

Drifting of Clocks
Only if we assume that, after
synchronization, the clocks are
perfectly aligned, then:

Smax = 2t and thus,
t = Smax / 2

In reality, the alignment after
synchronisation is not perfect.

• The convergence function
 denotes the offset of the
time values immediately
after resynchronisation.

In order to achieve a certain
precision Smax:

Smax = + 2t

t = (Smax -) / 2

27

Clock Synchronization Algorithms

Centralized Algorithms

 There exists one particular node, the so-called time server node.

 Passive time server: the other machines ask periodically for the time.
Goal is to keep clocks of all nodes synchronized with the time server.
Often the case when the time server has an UTC receiver.

 Active time server: the time server is active, polling the other
machines periodically. Based on time values received, it computes an
update value of the clock, which is sent back to the machines.

Distributed Algorithms

 There is no particular time server.
The processors periodically reach an agreement on the clock value.

 This can be used if no UTC receiver exists (no external
synchronization). Only internal synchronization is performed.

 Even if several computers (possibly all) have an UTC receiver, this
does not avoid clock skews.
Internal synchronization is performed using a distributed clock
synchronization strategy.

28

Cristian’s Algorithm

Cristian’s algorithm is a centralized algorithm with passive time server.
The server is supposed to deliver the correct time (has a UTC receiver).

 Periodically (with period less than (Smax –) / 2), each client
sends a message to the time server asking for the current time:

T0 and T1 are the time shown by the
clock of the client when sending the
request and receiving the answer,
respectively.

Simplest: set receiving client clock
Trec = C

However, it takes a certain time, Ttrans,
for the reply to get back to the client:
Trec = C + Ttrans

How large is Ttrans? Estimation:

Trec = C + (T1 – T0) / 2 ?

Time to receive the answer can be
different from that to transmit request!
Can we, at least, determine the
accuracy of the estimation?

29

Cristian’s Algorithm

Cristian’s algorithm is a centralized algorithm with passive time server.
The server is supposed to deliver the correct time (has a UTC receiver).

 Periodically (with period less than (Smax –) / 2), each client
sends a message to the time server asking for the current time:

T0 and T1 are the time shown by the
clock of the client when sending the
request and receiving the answer,
respectively.

Suppose the minimum time tmin for a
communication between the machine
and the time server is known:

Trec
min = C + tmin

Trec
max = C + (T1 – T0) – tmin

Time set with absolute accuracy
± ((T1 – T0)/2 – tmin)

Improve accuracy: issue several
requests; the answer with the smallest
(T1 – T0) is used to update the clock.

The range:
Trec

max – Trec
min = (T1 – T0) – 2tmin

30

The Berkeley Algorithm

The Berkeley algorithm is a centralized algorithm with active
time server.
 It tries also to address the problem of possible faulty clocks.

31

The Berkeley Algorithm

The Berkeley algorithm is a centralized algorithm with active
time server.
 It tries also to address the problem of possible faulty clocks.

The server polls periodically every machine and gets their time offset.

Based on received values, the server computes an average.

The server, finally, tells each machine by which amount to advance
or slow down its clock.

32

The Berkeley Algorithm

The situation is more complicated:

 The server performs corrections, taking into consideration
estimated propagation times for messages,
before computing averages.

 If on a certain processor the clock has to be set back, this has
to be performed in a special way, in order to avoid problems.

 The server tries to avoid taking into consideration values from
clocks which are drifted badly or that have failed.

Only clock values are considered that do not differ from one
another by more than a certain amount.

33

Distributed Clock Synchronization Algorithms

With distributed clock synchronization there is no particular time server
Distributed clock synchronization proceeds in three phases,
which are repeated periodically:
1. Each node sends out information concerning its own time, and

receives information from the other nodes concerning their local
time.

2. Every node analyzes the collected information received from the
other nodes and calculates a correction value for its own clock.

3. The local clocks of the nodes are updated according to the values
computed at step 2.

The typical algorithm used at point 2 performs the following:
 The correction value for the local clock is based on an average of

the received clock values.
 Corrections are performed taking into consideration estimated delays

due to message passing (as above for Cristian’s algorithm).
 Only clock values are considered that do not differ from one another

by more than a certain amount.

34

Distributed Clock Synchronization

Localized Averaging Algorithm

 With a large network it is impractical to perform synchronization
among all nodes of the system. Broadcasting synchronization
messages from each node to all other nodes generates huge traffic.

 In large networks, nodes are logically grouped into structures,
like k-D grid or ring (overlay network).
Each node synchronizes with its neighbours in the structure.

 Example: a 2D grid (2D mesh):

Pr6 synchronizes with
Pr2, Pr7, Pr10, and Pr5

Pr7 synchronizes with
Pr3, Pr8, Pr11, and Pr6

35

Adjusting Drifted Clocks

The problem:

 Suppose that the current time on the processor is Tcurr and,
as result of clock synchronization, it has to be updated to Tnew

 If Tnew > Tcurr: advance the local clock to the new value Tnew

 If Tnew < Tcurr, we are not allowed to just set back the local
clock to Tnew

Why?

 Setting back the clock can produce severe errors,
like faulty time stamps to files (copies with identical time stamp,
or later copies with smaller time stamp) and events.

It is not allowed to turn time back!

Instead of turning the clock back, it is "slowed down" until it,
progressively, reaches a desired value.

36

Adjusting Drifted Clocks

At each clock tick, an increment of the internal clock value
is performed:

(is the step by which the internal clock
is incremented).

 In order to be able to perform time adjustment, the software
time (Tcurr), which is visible to the programs, is not directly ,
but a software clock which is updated at each tick with a
certain correction relative to :

Tcurr := *(1 + a) + b

 if no adjustment is needed, then a = b = 0.

 the parameters a and b are set when a certain adjustment
is needed, and used for the period the adjustment is going
on.

37

Adjusting Drifted Clocks

Suppose at a certain moment:
 The internal clock shows
 The software clock shows Tcurr

 The clock has to be adjusted to Tnew

 The adjustment performed "smoothly" over a period of N clock ticks.

We have to fix a and b that are to be used during the adjustment period:
 For the starting point we have to have:

Tcurr = (1 + a) + b (1)
 After N ticks,

 the "real" time will be: Tnew + N
 the software clock will show: (+ N)(1 + a) + b

 If after N ticks the time adjustment is to be finished:
(+ N)(1 + a) + b = Tnew + N (2)

From (1) and (2) we get:
 a = (Tnew – Tcurr) / N
 b = Tcurr – (1 + a)

38

Adjusting Drifted Clocks

 The strategy works regardless if the adjustment has to be
performed forward (Tnew > Tcurr) or backward (Tnew < Tcurr).

 If the adjustment is forward, it can be performed by just
updating the clock.

 If the adjustment is backward, the clock has to be changed
smoothly.

39

The Precision Time Protocol (PTP)

 The Precision Time Protocol – PTP (IEEE-1588 standard)
provides a method to precisely synchronise distributed
computer clocks over a Local Area Network with an accuracy
of less than 1 microsecond.

 PTP is primarily intended for use in special-purpose networks
for industrial automation, measurement systems, robotics,
automotive technology, etc.

 The synchronisation approach in PTP is based on a
centralised technique: a master node synchronises one or
several slave nodes connected to it
(remember Cristian’s algorithm).

40

The Precision Time Protocol

 The Master node is provider of time;
the Slave node synchronises to the Master.

 The time of the Master is reported to the Slave as accurately
as possible.

 The goal of the employed algorithm is to compensate for the
processing times on the nodes and for communication delays.

41

The Precision Time Protocol

 Sync: issued at T1, arrives at T2

 Sync Follow-up: carries the value of T1;

 Delay Request: issued at T3 arrives at T4;

 Delay Response: carries the value of T4.

Question: Why does not the Sync message
carry the value of T1?

Answer: The value of T1 is the exact moment
when the Sync message has left the master.
This is later than the moment when the message
is assembled and issued for transmission;
thus, the value of T1 cannot be written into the
message.
By this policy, the interval T1-T2 does not
contain any delay due to running the protocol
stack or due to the queuing time of the message
in the case of congestion.

Master Slave

T1

T2

T3

T4

42

The Precision Time Protocol

Using timestamps T1, T2, T3, T4 the slave is
able to accurately synchronize its clock.

Performed in two phases:

 Phase 1: offset calculation

 Messages Sync and Sync Follow-up;

 Phase 2: delay measurement

 Messages Delay Request and Delay
Response;

Master Slave

T1

T2

T3

T4

43

The Precision Time Protocol

A naive approach:

Calculate the masterslave offset MS:

MS = T2 – T1

Update the slave clock TS:

TS = TS – MS = TS – (T2 – T1)

The offset MS, calculated above, includes the
communication delay of the Sync message

 The above synchronization is accurate only if
this delay is zero (which, of course, it is not)!

Master Slave

T1

T2

T3

T4

44

The Precision Time Protocol

An accurate approach:

Estimate the communication delay:

T2 – T1 = MS +
T4 – T3 = MS +
 = (T2 – T1 + T4 – T3) / 2

Update the slave clock:

MS = T2 – T1 –
TS = TS – MS = TS – (T2 – T1) +

 Phase 1 is performed typically every 2 seconds.

 Phase 2 is performed at greater intervals
(between 4 and 60 seconds).

 Between two runs of Phase 2, the last update
of delay is used for the server clock update
after each run of Phase 1.

Master Slave

T1

T2

T3

T4

45

The Precision Time Protocol

The calculation of assumes that the communication delay was
identical on the way master slave and slave master!

 This is true if we have a direct connection between
master and slave.

 If there are switches/routers on the way,
this is not true any more

queuing delay, congestion etc.
can produce significant fluctuation

Boundary clock switches solve this!

46

The Precision Time Protocol

Boundary clock (BC) switches
contain a clock that is synchro-
nized to a connected master.
 Switch blocks all PTP

messages to/from subnetwork
 They themselves behave as

masters on all other ports and
are used for synchronization
by connected slaves.

 Using BC switches, all
synchronizations are over
point-to-point connections.

A Best-Master-Clock Algorithm
(BMC) determines master-slave
relations depending on accuracies
of clocks.
 As result, a tree structure is

determined automatically,
with the node containing the
best available clock – the
grand master – as root.

subnetwork

Router/
switch

47

The Precision Time Protocol

In order to achieve high precision, the time-stamping has to be
implemented with hardware support.

 Software implementation

 A PTP software daemon running on non-standard
hardware:
Synchronization in the range 10 -100 microseconds
is achievable.

 Hardware implementation

 Hardware timestamping at master and slave
plus PTP-enabled network switches (with boundary clock):
Synchronization in the range 10 - 100 nanoseconds
is achievable.

48

The Network Time Protocol (NTP)

The NTP has been adopted as a de-facto standard
for clock synchronization in general-purpose UNIX,
Windows, etc. workstations and servers.

 Connection over global Internet by standard routers
and gateways is assumed (no specialized hardware).

 There are no particular hardware requirements and
customized components.

 Accuracy at the level of milliseconds can be achieved.

 Network overhead is an issue with NTP,
since the network is shared with demanding Internet
applications (such as speech, video);
clock update intervals can be in the range of minutes (even
hours).

 The actual master-slave synchronization algorithm is, in
broad terms, similar to that used in PTP.

David L. Mills,
1938-2024
Inventor of NTP

49

Acknowledgments

 Most of the slide contents is based on a previous version
by Petru Eles, IDA, Linköping University.

