
TDDD25
Distributed Systems

Replication

Christoph Kessler

IDA
Linköping University

Sweden

2

Agenda

REPLICATION

1. Motivation and Requirements

2. Architectural Model

3. Request Ordering

4. Implementing Total and Causal Ordering

5. Update Protocols

3

Motivation

Replication is the maintenance of on-line copies of data (files).

 Each copy is located on a separate replica manager (server).

 Each copy is called a replica.

Benefits of replication:

 Increased availability and fault tolerance:

 The system remains operational and available to the users despite
failures.

 Alternate copies of a replicated data can be used when a primary copy
is unavailable.

 Performance enhancement:

 Data shared between a large number of clients should not be held at a
single server; such a single server becomes a bottleneck.

 Data should be replicated on several servers,
each one providing service to a group of users close to the server.

 Thus, network traffic is also reduced.

4

Main Requirements with Replication

 Replication transparency:
 The clients should not be aware that multiple physical copies of data exist.

 Consistency:
 Consistency implies that any access from a client should be served with

correct data (regardless of the replica manager it directly has access to)
 What correct means, depends on the particular application:

 In some situations, it is enough that all operations are eventually
performed on all copies; it is acceptable that, at certain moments,
different clients read different versions of the replicated data.

– Question: how different?
Often, client access has to provide the most recent version of the data.

Problems:
1. The order in which operations are performed on the different replicas.
2. Do we always need to update all replicas?

If not, how can we guarantee that an access is always served with
the latest version?

3. The effect of replication on performance:
strong requirements on consistency can lead to significant overheads.

5

Architectural Model

 Client (C): makes a request (read or update)

 Front-end (FE): proxy server, communicates with one or more
replica managers (provides replication transparency)

 Replica managers (RM): contain the replicas and perform
operations on them

Different alternative models are possible, depending on the particular
communication pattern between FEs and RMs, and between the
different RMs.

6

Architectural Model

All RMs communicate with each other in order to agree on operations so that
coherence is preserved between copies.

A "primary" RM coordinates the other RMs managing copies of the same data
 Update requests are directed from FEs to that primary RM, which

propagates them to the other RMs.
 Read requests can be directed to any RM.

7

Example: Bulletin Board System

 Users at different sites share a bulletin board.

 A server at each site hosts a replica of the board content.

 Each user can

 post new items,

 select a certain item to visualise, and

 respond to a given message.

8

Example: Bulletin Board System

 Items are displayed as available at a certain server,
in the order in which they have been received.

9

Request Ordering

Ordering of requests at the replica manager is sometimes essential in
order to preserve consistency as required by the specific application.
 Total ordering

 If r1 and r2 are requests, then
either r1 is processed before r2 at all replica managers
or r2 is processed before r1 at all replica managers.

 In this case, users at different sites will see the items in identical
order and can refer to them by their number.

10

Request Ordering

Causal ordering
 If two requests r1 and r2 are in a happened-before relation r1 r2,

then r1 is processed before r2 at all replica managers.

In this case, a user will never see an answer message
before she has seen the initial message.
In general, total ordering does not necessarily imply causal ordering;
it only means that all replica managers handle requests in the same
(possibly, non-causal) order.

11

Total vs. Causal Ordering
of Multicast Messages / Requests

Totally ordered

Causally ordered
for causally related
messages M1M2,
M1M3,
but not totally ordered
(M2 || M3)

T1 T2

Time

Process Process Process

M1

M2

Time

Process Process Process

M3

12

Implementing Total Ordering

The basic idea:

 Assign totally ordered identifiers uid(r) to requests;

 Each replica manager makes the same ordering decision
based on these identifiers.

 Notice: it is not sufficient the identifiers to be unique:

 For a total ordering algorithm, it is needed that
a site knows when to process a request r1 with unique
identifier uid(r1), so that no other request r2 can arrive later
so that uid(r2) < uid(r1).

13

Implementing Total Ordering

 Total ordering with central sequencer

 Total ordering based on distributed agreement

14

Total Ordering with Central Sequencer

All requests are sent to the sequencer.

The sequencer assigns consecutive increasing identifiers to requests
as it receives them, and forwards the requests with the corresponding
identifier to the RMs.

 One of the RMs, appointed after election,
can act as central sequencer.

 The sequencer becomes a performance bottleneck
and a critical point of failure.

central
sequencer

15

Total Ordering
Based on Distributed Agreement

 This method avoids the need for a centralized sequencer.

16

Total Ordering
Based on Distributed Agreement

 This method avoids the need for a centralized sequencer.
 Identifiers are assigned to requests as result of distributed agreement

17

Total Ordering
Based on Distributed Agreement

 This method avoids the need for a centralized sequencer.
 Identifiers are assigned to requests as result of distributed agreement

18

Total Ordering
Based on Distributed Agreement

19

Total Ordering
Based on Distributed Agreement
Unique identifiers are computed in two phases:

1. Each RM proposes a candidate unique identifier cuid(RM,r) for a
request r; the cuid is forwarded to the FE that issued the request.

20

Total Ordering
Based on Distributed Agreement
Unique identifiers are computed in two phases:

1. Each RM proposes a candidate unique identifier cuid(RM,r) for a
request r; the cuid is forwarded to the FE that issued the request.

2. One of the candidate identifiers is selected by the FE and
it becomes the unique identifier uid(r) for request r;
the selected identifier is communicated to the RMs.

21

Total Ordering
Based on Distributed Agreement

 A replica manager RMi has seen a request r
once RMi has received r and has proposed a cuid(RMi,r) to be
forwarded to the respective FE.

 A replica manager RMi has accepted a request r,
once RMi knows the ultimate choice of uid(r) made for r by the
respective FE.

22

Each replica manager RMi keeps:
 SEENi: the largest cuid(RMi,r) assigned to any request r so far seen by RMi

Total Ordering
Based on Distributed Agreement

RMi

23

Each replica manager RMi keeps:
 SEENi: the largest cuid(RMi,r) assigned to any request r so far seen by RMi

 ACCEPTi: the largest uid(r) assigned to any request r so far accepted by RMi

Total Ordering
Based on Distributed Agreement

RMi

24

Each replica manager RMi keeps:
 SEENi: the largest cuid(RMi,r) assigned to any request r so far seen by RMi

 ACCEPTi: the largest uid(r) assigned to any request r so far accepted by RMi

 Hold-back queue (HBqi): When arrived at RMi, a request r is kept on the HBqi,
ordered according to its cuid(RMi,r).
 When the final uid(r) is received, HBqi is reordered so that r is placed

according to its uid.
 When a request is at the front of HBqi and got an uid, it is moved to Pqi.

Total Ordering
Based on Distributed Agreement

RMi

25

Each replica manager RMi keeps:
 SEENi: the largest cuid(RMi,r) assigned to any request r so far seen by RMi

 ACCEPTi: the largest uid(r) assigned to any request r so far accepted by RMi

 Hold-back queue (HBqi): When arrived at RMi, a request r is kept on the HBqi,
ordered according to its cuid(RMi,r).
 When the final uid(r) is received, HBqi is reordered so that r is placed

according to its uid.
 When a request is at the front of HBqi and got an uid, it is moved to Pqi.

 Processing queue (Pqi): Pqi holds accepted requests which before had been
placed at the front of HBqi; these requests are processed in order of their uid.

Total Ordering
Based on Distributed Agreement

RMi

26

Total Ordering
Based on Distributed Agreement

 The cuid proposed by RMi for a certain request r is:
(N is the number of RMs)

cuid(RMi, r) = max(SEENi , ACCEPTi) + 1 + i / N

 Once a FE has received, for a certain request r, the cuid(RMi,r)
from all RMi, it decides on the uid for r:

uid(r) = maxi=1 .. N (cuid(RMi, r))

the identifier is unique per RMi

the identifier is unique in the system

Question: Once a request r1 with uid(r1) has been moved to Pq, is it
possible that another request r2 will be moved later and uid(r2) < uid(r1)?

27

Total Ordering
Based on Distributed Agreement
In order to be moved to Pq, the request has
 to be at the front of HBq, and
 to have got an uid.

Possible alternatives:

 r2 has already got an uid when r1 is moved
 uid(r2) > uid(r1) (r1 is in front of HBq)

 r2 has no uid yet, but has already got a cuid when r1 is moved
(r2 has been seen, but not accepted)
 uid(r2) > cuid(RM,r2)

cuid(RM,r2) > uid(r1) (r1 is in front of HBq)
 uid(r2) > uid(r1)

 r2 has no cuid yet when r1 is moved (r2 has not been seen yet) .
ACCEPT > uid(r1)
cuid(RM,r2) > ACCEPT
uid(r2) > cuid(RM,r2)
 uid(r2) > uid(r1)

28

Total Ordering
Based on Distributed Agreement

Rule for initialization:

/* performed by each RMi at initialization */

[RI1]: SEENi := 0
ACCEPTi := 0

HBqi :=
Pqi :=

Rule for handling incoming requests at an RM:

/* performed whenever a request r is received
by a replica manager RMi */

[RC1]: cuid(RMi,r) = max(SEENi , ACCEPTi) + 1 + i / N

[RC2]: SEENi := cuid(RMi,r)

[RC3]: Introduce r in HBqi, ordered according to its cuid

[RC4]: RMi sends cuid(RMi,r) to the FE which issued r.

29

Total Ordering
Based on Distributed Agreement

Rule for handling incoming uid’s at an RM:
/* performed whenever a decision concerning the uid of a request r

is received by a replica manager RMi */
[RU1]: ACCEPTi := max (ACCEPTi , uid(r))
[RU2]: if uid(r) cuid(RMi,r) then

HBqi is reordered so that r is placed according to its uid
end if

[RU3]: If the request at the front of HBqi has an uid,
it is moved to Pqi in order to be processed.

Rule for issuing requests at an FE:
/* performed by FE when it issues request r

and assigns the corresponding uid */
[RF1]: FE sends request r to all RMi, i {1,...,N}
[RF2]: After cuid(RMi,r) has been received from all RMi,

uid(r) := max i {1,...,N} cuid(RMi,r)
[RF3]: FE sends the final uid for r to all RMi

30

Total Ordering
Based on Distributed Agreement

 Compared to the central sequencer approach,
there is no performance bottleneck and unique point of failure.

 If the FE fails before sending out the final uid,
an RM can take over after an election process.

 If an RM fails before sending its cuid,
the FE can detect this after a time-out, and ignore the RM.

31

Implementing Causal Ordering

 The total ordering implemented by the previous algorithm is
not necessarily causal:

if we have two requests r1 r2, it is possible that they will be
processed on all RMs in the order r2, r1.

 For causal ordering, if two requests r1 and r2 are in a
happened-before relation r1 r2, then r1 should be processed
before r2 at all replica managers.

 Causal ordering of requests can be implemented using vector
clocks.

(See also Lecture 6, slides on causality with vector clocks)

Details and pseudocode in the book, page 673.

32

ProcessProcess

Total vs. Causal Ordering
of Multicast Messages / Requests

Totally ordered,
but not causally
ordered

M1

M2

Time

Process

Re: M1

Client

Example:
RM RMRM

Update Protocols

34

Update Protocols

Problem:

 We have a replicated file;
how do we solve that a user request is always provided with
the most recent version of the file?

Some approaches:

 Read-any - Write-all protocol

 Available-copies protocol

 Primary-copy protocol

 Voting protocols

35

Read-any - Write-all Protocol

A read operation is performed by reading any available copy of the file.
A write operation is performed by writing to all copies of the file.

 Some simple kind of locking is required: before updating, all copies
are locked, and after all have been updated, the lock is released.

 For write operations to succeed, all RMs must be available;
for read operations, only one RM must be available.

 If write operations are frequent compared to reads,
this protocol performs poorly.

36

Available-Copies Protocol

 This protocol is just a practical variant of read-any – write-all:

 not all RMs, but only those which are not down,
must be available to perform a write.

 A read operation is performed by reading any available copy of
the file.

 A write operation is performed by writing to all available copies.

 When a RM recovers after a failure, it brings itself up to date by
copying from another server, before accepting any user request.

 Failed RMs have to be detected and configured out of the system;
recovered RMs have to be configured back.

37

Primary-Copy Protocol

 A read operation is performed by reading any available copy of the file.

 A write operation is performed by writing to the primary copy.

 If consistency requirements are strong (any read should get the most
recent version):

 When the primary copy gets an update,
it immediately locks the secondary copies and updates them.

 If consistency requirements are looser:
updating secondary copies can be performed in the background

 all the secondary copies will ultimately get updated.

38

Voting Protocols

 With voting protocols, the requirement of writing to all copies
can be softened, without giving up strong consistency.

The price?

 One has to read several copies, not only one,
in order to be sure to get the most recent version.

The benefit?

 Write-performance can be improved:
updating becomes more efficient.

 Availability can be improved:
RMs can fail and updating/reading can still go on
(as long as quorums can be obtained).

39

Voting Protocols

Suppose there are n copies of the file (n RMs):

 To read the file, a minimum of r copies have to be consulted

 r is the read quorum.

 To perform a write operation, a minimum of w copies have to be "acquired"
and written

 w is the write quorum.

The rules for r and w:

 In order to avoid two writes updating the same data at the same time:

w > n / 2

 We are also sure that each write quorum includes at least one copy
that is up-to-date and has the largest version number.

 In order to ensure that each read gets the latest copy:

r + w > n

 It is guaranteed that there is a non-null intersection
between every read quorum and every write quorum.

40

Voting Protocols

 Example 1: n = 8, w = 5, r = 4

41

Voting Protocols

 Example 2: n = 8, w = 7, r = 2

42

Voting Protocols

Rule for executing a read:

 Retrieve a read quorum (any r copies).

 Of the r copies retrieved,
select the one with the largest version number.

 Perform the read operation on the selected copy.

Rule for executing a write:

 Retrieve a write quorum (any w copies).

 Of the w copies retrieved,
select the one with the largest version number.

 Increment the version number.

 Perform the update and write the new version with the new
version number into all the w copies of the write quorum.

43

Voting Protocols

 The constraints given above allow several possible selections
of r and w.

This depends on required performance and reliability
characteristics.

 A large w with small r is suitable for systems with
a large ratio of read operations relative to the writes.

 A small w with large r performs well
if the ratio of writes is large relative to the reads.

 The Read-any - Write-all protocol is a particular case of a
voting protocol, with r = 1 and w = n.

44

Acknowledgments

 Most of the slide contents is based on a previous version
by Petru Eles, IDA, Linköping University.

