
TDDD25

Distributed Systems

Distributed Heterogeneous

Applications and CORBA

Christoph Kessler

IDA
Linköping University

Sweden

2

Agenda

Distributed Heterogeneous Applications

and CORBA

1. Heterogeneity in Distributed Systems

2. Middleware

3. Objects in Distributed Systems

4. The CORBA Approach

5. Components of a CORBA Environment

6. CORBA Services

3

Heterogeneity in Distributed Systems

Distributed applications are typically heterogeneous:

▪ different hardware: mainframes, workstations, PCs, servers, etc.;

▪ different software: UNIX, Windows, IBM OS/2, Real-time OSs, etc.;

▪ unconventional devices: teller machines, telephone switches,
robots, manufacturing systems, etc.;

▪ diverse networks and protocols: Ethernet, wireless, FDDI, ATM,
TCP/IP, UDP, HTTP, etc.

Why?

▪ Different hardware/software solutions are considered to be optimal
for different parts of the system.

▪ Different users who have to interact are deciding for different
hardware/software solutions/vendors.

▪ Legacy systems.

4

Middleware

A key component of a heterogeneous distributed client-server
environment is middleware.

▪ Middleware is a set of services that enable applications and
end users to interact with each other across a heterogeneous
distributed system.

▪ Middleware software resides above the network and below the
application software.

5

Middleware

▪ Middleware should make aspects of a heterogeneous system, here
the network, transparent to the applications and end users

→ Users and applications should be able to perform the same
 operations across the network that they can perform locally.

▪ Middleware should hide the details of computer hardware, OS,
software components across networks.

▪ Different kind of software qualifies, to certain extent, as middleware,
for example:

▪ File-transfer packages (FTP) and email;

▪ Web browsers;

▪ CORBA

Remark: Middleware software also exists for other purposes than network abstraction,
e.g. for system-independent message passing (MPI), portable CPU performance counter
access (PAPI), etc., see TDDE65. Also the Java Virtual Machine (JVM) is a middleware.
CORBA also abstracts from the client/server programming language, not only the network.
Indeed, an important use case of CORBA is accessing legacy software/hardware systems.

6

Objects in Distributed Systems

▪ A distributed application can be viewed as a collection of objects

(user interfaces, databases, application modules, customers).

Object:

• data surrounded by code;

• has its own attributes and methods

which define the behavior of the object;

• objects can be clients, servers, or both.

Object broker:

• allows objects to find each other and

interact over a network;

• they are the backbone of the

distributed system.

Object services:

• allow to create, name, move, copy,

store, delete, restore, and manage

objects.

7

RMI: Objects in Distributed Systems

8

RMI: Objects in Distributed Systems

Distributed Application

9

RMI: Objects in Distributed Systems

Object Request Broker (ORB)

10

RMI: Objects in Distributed Systems

Middleware

11

RMI: Objects in Distributed Systems

Border between Application and Middleware (Proxy objects, Glue code)

12

Interface Definition Language

An interface specifies how the clients can invoke operations on objects
(regardless if server-side or local):

▪ the set of operations (methods)

▪ For each operation,

▪ the input parameters with their data types

▪ the return parameters with their data types

▪ exceptions (= special return parameters indicating errors)
where applicable

Interfaces are defined by using an interface definition language (IDL).

▪ CORBA IDL is an example of such a language.

IDLs are declarative languages; they do not specify any executable
code, but only declarations.

13

Interface Definition Language

▪ Middleware products (such as CORBA) provide interface

compilers that parse the IDL description of the interface.

An IDL compiler produces the following code:

▪ classes corresponding to the stubs / proxies (in the

programming language of the client)

▪ classes corresponding to the skeletons (in the

programming language of the server).

▪ Language mappings have to be defined which allow to

generate proxies and skeletons in the implementation

languages of the clients and of the server respectively.

14

CORBA

▪ Object Management Group (OMG):
a non-profit industry consortium formed in 1989 with the goal to
develop, adopt, and promote standards for the development of
distributed heterogeneous applications.

▪ https://www.omg.org/

▪ One of the main achievements of OMG is the specification of a
Common Object Request Broker Architecture (CORBA).

▪ The CORBA specification details the interfaces and
characteristics of the Object Request Broker:

▪ It specifies a set of middleware functions (API) which allow
objects to communicate with one another no matter where they
are located, who has designed them, and in which language
they are implemented.

▪ OMG only provides a specification; there are several products
which, to a certain extent, implement the OMG specification.

15

CORBA

Key concepts:

▪ CORBA specifies the middleware services used by application objects.

▪ An object can be a client, a server or both.

▪ Object interaction is through requests:

▪ The information associated with a request is

1. an operation to be performed

2. a target object

3. zero or more arguments (that match the operation’s IDL type signature)

▪ CORBA supports static as well as dynamic binding

Dynamic binding between objects uses a generic stub for run-time
identification of callee objects based on argument types.

▪ The interface represents the contract between client and server;

▪ to be written for each callable server class in CORBA IDL

▪ proxies and skeletons (client and server stubs) are generated as result
of IDL compilation.

▪ CORBA objects do not know the underlying implementation details; an
object adapter maps the generic model to a specific implementation.

16

CORBA

Components of a CORBA environment:

static stubgeneric stub

17

CORBA

Components of a CORBA environment:

static stubgeneric stub

Interface Repository

• Provides a representation of interfaces for all server objects in the system. It

corresponds to the server objects’ IDL specification.

• Clients can access the repository to learn about server objects, the types of

operations which can be invoked and the corresponding parameters.

• This is used for dynamic invocation of objects.

18

CORBA

Components of a CORBA environment:

static stubgeneric stub

Implementation Repository

• Stores implementation details for the objects implementing each interface

• the main information is a mapping from the server object’s name to the binary

file name which implements the respective service;

• the implementation repository is used by the object adapter (generic server-side

entry point) to solve an incoming call and activate the right method (via a skeleton).

19

The Object Request Broker (ORB)

▪ ORB and its interfaces:

The ORB, through its interfaces, provides mechanisms by which objects

transparently interact with each other.

• Issuing of a request can be dynamic or static; it is performed through the client

stubs (proxies) or through the dynamic invocation interface (generic stub). →

• Invocation of a specific server method is performed by the server skeleton which

gets the request forwarded from the object adapter.

• The ORB interface (API) can be accessed directly by application objects for

services like directory, naming, manipulation of object references.

20

Static and Dynamic Invocation

CORBA allows both static and dynamic invocation of objects.

▪ The choice is made depending on how much information,

concerning the server object, is available at compile time.

Static Invocation

▪ Static invocation is based on compile time knowledge of the

server’s interface specification. This specification is formulated in

IDL and is compiled into a proxy (client stub) code in the same

programming language in which the client object is encoded.

▪ For the client, an object invocation is like a local invocation to a

proxy method. The invocation is then automatically forwarded to the

object implementation through the ORB, the object adapter and the

skeleton.

▪ Static invocation is efficient at run time, because of the relatively

low overhead.

21

Static and Dynamic Invocation

Dynamic Invocation

▪ Dynamic invocation allows a client to invoke requests on an object
without having compile-time knowledge of the object’s interface.

▪ The object and its interface (methods, parameters, types) are
detected at run-time.

▪ The dynamic invocation interface (DII) allows to inspect the
interface repository and dynamically construct invocations
corresponding to the server’s interface specification.

▪ It is a generic stub, like an interpreter in contrast to to the compiled fixed-
function stub for static calls

▪ The execution overhead of a dynamic invocation is huge.

▪ Once the request has been constructed and arguments placed, its
invocation has the same effect as a static invocation.

▪ From the server’s point of view, static and dynamic invocation
are identical; the server does not know how it has been invoked.

▪ The server invocation is always issued through its skeleton,
generated at compile time from the IDL specification.

22

CORBA Services

Goal:

▪ Provide a portable execution environment with standardized, reusable
functionality atop heterogeneous hardware and system software

▪ Avoid that programmers hardcode their own solution (no reuse), even in a
platform-specific way

The following → services
have been specified in the OMG CORBA standard
(however, some products only implement part of them):

▪ CORBA Naming Service

▪ CORBA Trader Service

▪ CORBA Transaction Management Service

▪ CORBA Concurrency Control Service

▪ CORBA Security Service

▪ CORBA Time Service.

▪ and others

23

CORBA Services

▪ CORBA Naming Service and Trader Service:

▪ The basic way an object reference is generated is at creation of the (server)
object when the reference is returned (to the client calling the constructor).

 An interoperable object reference contains, in particular, the referenced
object’s server IP address and port number

 Can be passed around to other nodes and called from there

▪ Object references can be stored together with associated information (e.g.
names and properties).

▪ The naming service allows clients to find objects based on names.

▪ The trader service allows clients to find objects based on properties.

▪ CORBA Transaction Management Service: provides two-phase commit
coordination among recoverable components using transactions.

▪ CORBA Concurrency Control Service: provides a lock manager that can
acquire and free locks for transactions or threads.

▪ CORBA Security Service: protects components from unauthorized users;
it provides authentication, access control lists, confidentiality, etc.

▪ CORBA Time Service: provides interfaces for synchronizing time;
provides operations for defining and managing time-triggered events.

▪ ...

24

Inter-ORB Architecture

Implementations of ORBs differ from vendor to vendor

→ how do we solve interaction between objects
 running on different CORBA implementations?

General Inter-ORB Protocol (GIOP): (defined in CORBA 2.0)

GIOP specifies a set of message formats and portable common data representations

for interactions between ORBs and is intended to operate over any connection-

oriented transport protocol.

• Internet Inter-ORB Protocol (IIOP): IIOP is a particularization of GIOP; it

specifies how GIOP messages have to be exchanged over a TCP/IP network.

Node 1 Node 2

25

Additional Material on CORBA

▪ Coulouris et al., “Distributed Systems – Concepts and Design”

(5th edition), Chapter 8

or:

▪ Tanenbaum, van Steen: Distributed Systems. Chapter 9.

▪ Extra slide set on CORBA with Java example code

▪ for background reading

▪ on the course web page

▪ CORBA documentation by OMG https://www.omg.org/

26

The Legacy of CORBA

▪ CORBA has influenced many later frameworks for portable RMI abstraction

▪ Java RMI (language-specific) – slow

▪ Enterprise Java Beans (EJB) (language-specific)

 Heavyweight, replaced by Spring framework, but still in use

▪ RESTful services (Representational State Transfer) –
text-based (XML, JSON, ...) client-server communication API

 Example: Web services

– No object abstraction as in CORBA

– Interfaces, data type specifications, and portable request and reply
messages are all encoded in XML atop HTTP
and parsed/interpreted at runtime

 Very high overheads

 Limited middleware beyond communication (fewer portable services)

▪ ...

▪ The runtime efficiency of CORBA static calls with compiled stubs/skeletons
has never been matched by these.

▪ CORBA is still in use today for interfacing to legacy SW/HW systems

27

Acknowledgments

▪ Most of the slide contents is based on a previous version

by Petru Eles, IDA, Linköping University.

	Slide 1: TDDD25 Distributed Systems Distributed Heterogeneous Applications and CORBA
	Slide 2: Agenda
	Slide 3: Heterogeneity in Distributed Systems
	Slide 4: Middleware
	Slide 5: Middleware
	Slide 6: Objects in Distributed Systems
	Slide 7: RMI: Objects in Distributed Systems
	Slide 8: RMI: Objects in Distributed Systems
	Slide 9: RMI: Objects in Distributed Systems
	Slide 10: RMI: Objects in Distributed Systems
	Slide 11: RMI: Objects in Distributed Systems
	Slide 12: Interface Definition Language
	Slide 13: Interface Definition Language
	Slide 14: CORBA
	Slide 15: CORBA
	Slide 16: CORBA
	Slide 17: CORBA
	Slide 18: CORBA
	Slide 19: The Object Request Broker (ORB)
	Slide 20: Static and Dynamic Invocation
	Slide 21: Static and Dynamic Invocation
	Slide 22: CORBA Services
	Slide 23: CORBA Services
	Slide 24: Inter-ORB Architecture
	Slide 25: Additional Material on CORBA
	Slide 26: The Legacy of CORBA
	Slide 27: Acknowledgments

