
TDDD25

Distributed Systems

Models

of Distributed Systems

Christoph Kessler

IDA
Linköping University

Sweden

2024

2

Agenda

1. Architectural Models

2. Interaction Models

3. Fault Models

3

Basic Notions

▪ Resources in a distributed system are shared between users.

▪ They are normally encapsulated within one of the computers
and can be accessed from other computers by communication.

▪ Each resource is managed
by a program,
the resource manager

▪ It offers a communication
interface enabling the resource
to be accessed by its users.

▪ Resource managers can,
in general, be modelled as processes.

▪ If the system is designed according to an object-oriented
methodology, resources are encapsulated in objects.

4

Architectural Models

What are architectural models about?

▪ Software architecture and hardware architecture

▪ How are responsibilities distributed between system components,
and how are these components placed?

▪ Client-server model

▪ Peer-to-peer

And variations of the above two:

▪ Proxy server

▪ Mobile code

▪ Mobile agents

▪ Network computers

▪ Thin clients

▪ Mobile devices

5

Client – Server Architecture Model

▪ The system is structured as a set of processes, called servers,

that offer services to the service users, called clients.

▪ The client-server model is usually based on a simple request/reply

protocol, implemented

▪ with send/receive primitives or

▪ using remote procedure calls (RPC)

or remote method invocation (RMI):

– The client sends a request (invocation) message to the

server asking for some service.

– The server does the work and returns a result (e.g. the

data requested) or an error code if the work could not be

performed.

6

Client-Server Architecture Model

▪ Client and Server are software roles associated with processes,

which may be mapped differently to hardware (computer nodes).

▪ E.g., a server can itself request services from other servers;

in this new relation, the server itself acts like a client.

7

Peer-to-Peer (P2P) Architecture Model

All processes (objects) play a similar role:

▪ Processes (objects) interact
without particular distinction
between clients and servers.

▪ The pattern of communication
depends on the particular application.

▪ A large number of data objects
are shared

▪ Any individual computer holds only
a small part of the application data(base).

▪ Processing and communication loads
for access to objects are distributed
across many computers and access links.

This is the most general and flexible model.

▪ Data / file sharing (→later)

▪ Most common representative / standard in HPC:
MPI Message Passing Interface https://www.mpi-forum.org

▪ Covered in great detail in TDDC78

https://www.mpi-forum.org/

8

Peer-to-Peer vs. Client-Server

Some problems with client-server:

▪ Centralisation of service → poor scaling

Limitations:

▪ capacity of server

▪ bandwidth of network connecting the server

Peer-to-Peer tries to solve some of the above problems

▪ It distributes shared resources widely

→ computing and communication loads are shared

Problems with peer-to-peer:

▪ High complexity, due to need to

▪ cleverly place individual objects

▪ retrieve the objects

▪ maintain a potentially large number of replicas.

9

Variations of the Basic Models

▪ Client-server and peer-to-peer can be considered as basic models.

▪ Several variations have been proposed, →

considering factors such as:

▪ multiple servers and proxy servers / caches

▪ mobile code and mobile agents

▪ mobile devices

10

Proxy Server

A proxy server provides copies
(replications) of resources
which are managed
by other servers.

▪ Proxy servers are typically used as caches for remote resources.

▪ They maintain a cache of recently visited web pages or other resources.

▪ When a request is issued by a client, the proxy server is first checked
if the requested object (information item) is available there.

▪ Proxy servers can be located at each client,
or can be shared by several clients.

▪ The purpose is to increase performance and availability,
by avoiding frequent accesses to remote servers.

▪ Extension of proxy principle: Heavily used servers can be replicated to
multiple “back-end” servers (the service/data is “mirrored”)

▪ server farm or spread geographically, plus front-end (proxy) server

▪ the proxy server delegates service tasks (e.g., web page / file download,
video streaming, search) e.g. round-robin across the back-end servers

11

Mobile Code

▪ Mobile code:

code sent from one computer to another and run at the destination.

▪ Advantage: remote invocations are replaced by local ones.

▪ Typical example: Java applets.

12

Mobile Agents

Mobile agent:

a running program that travels from one computer to another,

carrying out a task on someone’s behalf.

▪ A mobile agent is a complete program, code + data,

that can work (relatively) independently.

▪ The mobile agent can invoke local resources/data.

Typical tasks:

▪ Collect information

▪ Install/maintain software on computers

▪ Compare prices from various vendors by visiting their sites.

Attention: potential security risk (like mobile code)!

13

Interaction Models

▪ How do we handle time?

▪ Are there time limits on process execution,

message delivery, and clock drifts?

▪ Synchronous distributed systems

▪ Asynchronous distributed systems

14

Synchronous Distributed Systems

▪ Main features:

▪ Lower and upper bounds on execution time of processes can be set.

▪ Transmitted messages are received within a known bounded time.

▪ Drift rates between local clocks have a known bound.

▪ Important consequences:

1. In a synchronous distributed system, there is a notion of
global physical time
(with a known relative precision depending on the drift rate).

2. Only synchronous distributed systems are predictable in terms of
timing.

Only such systems can be used for hard real-time applications.

3. In a synchronous distributed system, it is possible and safe to use
timeouts in order to detect failures of a process or communication
link.

But ...

▪ It is difficult and costly to implement synchronous distributed
systems.

15

Asynchronous Distributed Systems

Many distributed systems (including those on the Internet) are asynchronous:

▪ No bound on process execution time
(nothing can be assumed about speed, load, reliability of computers).

▪ No bound on message transmission delays
(nothing can be assumed about speed, load, reliability of
interconnections)

▪ No bounds on drift rates between local clocks.

Important consequences:

1. In an asynchronous distributed system, there is no global physical time.
Reasoning can be only in terms of logical time.

2. Asynchronous distributed systems are unpredictable in terms of timing.

3. No timeouts can be used.

Asynchronous systems are widely and successfully used in practice.

▪ In practice, timeouts are used with asynchronous systems for failure
detection.

▪ However, additional measures have to be applied in order to avoid
duplicated messages, duplicated execution of operations, etc. →

16

Fault Models

What kind of faults can occur and what are their effects?

▪ Omission faults

▪ Arbitrary faults

▪ Timing faults

Faults can occur both in processes and communication channels.

▪ The reason can be both software and hardware.

Fault models are needed in order to build systems with predictable
behavior in case of faults (systems which are fault-tolerant).

A fault-tolerant system will function according to the predictions
only as long as the real faults behave as defined by the fault model.
Otherwise ...

17

Omission Faults (Fail-Stop Model)

A processor or communication channel fails to perform actions it is

supposed to do: the particular action is not performed by the faulty

component!

▪ With omission faults:

▪ If a component is faulty, it does not produce any output.

▪ If a component produces an output, this output is correct.

▪ With omission faults, in synchronous systems,

faults are detected by timeouts.

▪ Since we are sure that messages arrive within a time interval,

a timeout will indicate that the sending component is faulty.

Such a system has a fail-stop behavior.

18

Arbitrary (Byzantine) Faults

This is the most general and worst possible fault semantics:

▪ Intended processing steps or communications are omitted or/and

unintended ones are executed.

Results may not come at all,

or may come but carry wrong values.

→ Everything, including the worst, can happen!

19

Timing Faults

▪ Timing faults can occur in synchronous distributed systems,

where time limits are set to process execution, communications,

and clock drifts.

▪ A timing fault results in any of these time limits being exceeded.

20

Acknowledgments

▪ Most of the slide contents is based on a previous version

by Petru Eles, IDA, Linköping University.

	Slide 1: TDDD25 Distributed Systems Models of Distributed Systems
	Slide 2: Agenda
	Slide 3: Basic Notions
	Slide 4: Architectural Models
	Slide 5: Client – Server Architecture Model
	Slide 6: Client-Server Architecture Model
	Slide 7: Peer-to-Peer (P2P) Architecture Model
	Slide 8: Peer-to-Peer vs. Client-Server
	Slide 9: Variations of the Basic Models
	Slide 10: Proxy Server
	Slide 11: Mobile Code
	Slide 12: Mobile Agents
	Slide 13: Interaction Models
	Slide 14: Synchronous Distributed Systems
	Slide 15: Asynchronous Distributed Systems
	Slide 16: Fault Models
	Slide 17: Omission Faults (Fail-Stop Model)
	Slide 18: Arbitrary (Byzantine) Faults
	Slide 19: Timing Faults
	Slide 20: Acknowledgments

