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Abstract—This study proposes and tests a binary classifier
for opaque predicates based on Isolation Forest. The proposed
classifier did not work well.

Opaque predicates are branch conditions which force a specific
branch when running the code. The branch that is never taken
can jump to an address between ”valid” instructions. These
branches confuses disassemblers and makes revers engineering
of malware and programs harder.

Machine code distributed in an Ubuntu installation ISO
are used to train an Isolation Forest machine learning models
to recognize normal” code after a branch instruction. The
model can then say which branch is more unusual. 3 medium
sized programs were compiled using “desync-cc* (a compiler
that inserts opaque predicates). Two different kinds of opaque
predicates were tested. The resulting machine code was used to
verify the model as a binary classifier.

The binary classifier distinguished some what successfully
uniform noise from machine code when looking at at most 1 x86
instruction. When more input was feed to the binary classifier
the models worked less well. The models quickly degraded in
quality when looking at multiple x86 instructions and failed to
produce accurate predictions.

Reasoning and thoughts about why Isolation Forest only
handles a fixed complexity are documented. The leading
hypothesis is that Isolation Forest doesn’t have enough
computational power to fully understand a language as complex
as x86 assembly.

I. INTRODUCTION AND BACKGROUND

Reading and understanding program code can aid a
lot in documenting, understanding, preventing and limiting
malicious programs. There is always an ongoing arms race
between security researchers and malware writers. Malicious
program writers seek to gain an edge in any way they can,
and one tool is code obfuscation.

Code obfuscation is a technique for making it hard to
interpret the true meaning of a program without running it
— at which point it can be too late. One specific kind of code
obfuscation is dissassembly desynchronization. Disassembly
desynchronization is a way to hide the intent of assembly
code by fooling the disassembler. Usually a branch instruction
or a jump is used that lands in an unreachable region
of the program. One common way of doing disassembly
desynchronization is to inject garbage data in paths the
program never can take.

A. Introduction to disassembly desynchronization

Disassembly desynchronization is a collection of techniques
that try to confuse the disassembler — a disassembler is

a program that converts binary machine code into “high
level” assembly code. For disassembly desynchronization to
be possible there are a few requirements. The machine code
instruction set needs to support variable length instructions
— for example some instructions are 2 bytes long while other
are 4 bytes long. x86-64 (also called: 64bit x86, x64, AMDG64,
Intel 64) is a variable length instruction set [15] and one of
the most common instruction sets (as of 2022).

It is often helpful to look at an example. Consider this small
extract of assembly code:

0x77b18: xor rll, rll
0x77blb: je 0x77b21
0x77bld: imul ebx,
dword ptr [rdx + 0x2ae83fec], 0x11
0x77b24: sbb eax, dword ptr [rax]

There are four lines in this example but we only need to
understand the first two. Let’s break this example down.

The first instruction: xor rll, rl1l, does an xor on the
register r11 with itself — this is equivalent to setting the
register to 0 and updating flags. Specifically it sets the flag
ZF=1 (zero flag).

The second instruction: je 0x77b21, jumps to the address
0x77b21 if ZF is set, which it always will be. We can
think of these instructions combined as a guaranteed jump
to 0x77b21. [5]

This also means that the disassembled code seen above is
irrelevant after the je instruction. The instructions at offset
0x77bld and 0x77b24 will never be run. Note that the
offset 0x77b21 lies in between the disassembled instructions.
In this example, junk bytes have been inserted after the branch
and before address 0x77b21. This causes a disassembly
desynchronization. The junk bytes attempt to confuse the
disassembler. If we wanted to see what instructions would
run if the branch is taken — which we might not know when
analyzing this program — we would have to disassemble the
program again starting at 0x770b21. Here’s the rub. These
branches are easy to make, and can require significant amount
of time and effort to understand.

The short example above is a case of “opaque predicates”.
It is known when the program is written that the jump will
always be taken — since the predicate is always true — but the
fact is hidden when reading the disassembly. In this case the
predicate makes it easy (trivial even) to see which branch is



taken. But code could be more complex or involve multiple
processes, making it a lot harder to untangle the unreachable
code. [[11]

B. Methods of disassembly desynchronization in this paper

There are two methods of disassembly desynchronization
referenced in this paper.

1) With junk bytes: Here junk data is inserted after a branch
instruction. The junk data is has to be a valid x86 instruction.
But the junk data is never run. The branch is therefore always
taken. The branch lands at an instruction between instructions
— if we parse the junk bytes. This is explained in more detail
in section

2) Without junk bytes: Here the branch is never taken.
The branch lands at an offset in the middle of an existing
instruction. But if we parse the machine code from where the
branch instruction lands, we can get other instructions.

C. Methods to detect disassembly desynchronization

We will focus more precisely on detecting invalid branches
after opaque predicates — branches of code that is never taken.
There are methods that look at the instructions leading up to to
the branch. Either through simulating the code, sophisticated
machine learning techniques or by using heuristics. [|12]

Another possibility is to look at the instructions/bytes after
a jump, and running a “sanity-check” on the branches. This
second approach is what this paper will focus on. More
precisely if it can be done using the isolation forest machine
learning technique. [3]]

D. Isolation forest — a technique for unsupervised machine
learning

Isolation forest is an algorithm that lets a computer detect
anomalies in a data set. The basis for the algorithm is that is
harder to describe a “normal” piece of data than an “unusual”
piece of data. The data set is split many times using random
“split values” (which can be thought of as trees) until each
sample is isolated (hence the name). The number of splits
required to uniquely identify a sample is referred to as the
“path-length” for a sample. The "path-length” can be thought
of as a measure of how “unusual” the sample is. One aspect
isolation forest is said to handle better than many other
anomaly detection methods is data with high dimensionality.
Machine code has high dimensionality, since each byte can be
thought of as a dimension. [3]

This paper will use scikit-learn’s implementation of
isolation forest. [[10]

E. Tools

GCC One of the most commonly used C/C++ compilers —
but can also compile other languages.

Desync-CC is a drop-in replacement for GCC that can inject
opaque predicates and invalid branches into a program while
compiling. [|6]

scikit-learn learn is a collection of implemented machine
learning algorithms for the Python programming language. [9]]

F. The research question and a brief overview of the study

Can the isolation forest algorithm be used to identify
disassemble desynchronization?

There have been previous works summarized by Ucci
andothers. These include successful applications of machine
learning models in malware classifications. There are also
methods with dataflow analysis. Though these methods have
limitations of their own. [[14] [8] [[11] [[12] But little research
has been done applying isolation forest to detect disassembly
desynchronization.

This paper aims to collect data, train a simple machine
learning model using the data then using the model as a binary
classifier on pairs of valid and invalid paths.

There are some interesting observations made about the
machine code generated by commonly used compilers. Both
Clang and GCC do not generate jump instructions landing
at invalid program offsets. Clang and GCC keeps data
and program code separate in their generated binaries.
That is, Clang and GCC does not generate disassembly
desynchronizing machine code. Since most binaries on the
internet are compiled using these compilers, it should be very
easy to find “valid” code to train on. [1]]

G. Expected results

Since similar works have been tried successfully with other
machine learning methods, it’s expected that this technique
will work and the machine model will be able to distinguish
successfully between valid and invalid paths. [12] [14] [8]
A model that works more than 80% of the time would be a
model that works well. There is a lot of randomness and noise
involved in this process. The experiments are also set up to
give isolation forest optimal conditions. If the model cannot
perform close to 100% here — it’s just not good enough.

Note that since we are making a binary classifier we want
the models to be far from 50%. Since given a binary classifier
that is always wrong. We can negate it’s output. This gives us
a binary classifier that is always right.

II. METHOD

Data Collection. To be able to apply machine learning data
needs to be collected. To this end, the internet was searched
for small sized C-programs. In the end Git [4], Curl [2] and
a single file version of Gzip [7] were used.

These projects were compiled with Desync-CC [6] using 2
configurations. The configurations for Desync-CC is included
in the appendix, one configuration with junk and one
configuration without junk (VI-B). These data sets will be
referred to as the verification sets. The tool Desync-CC [6]
inserts labels for all desync points — a desync point is is the
start of the instruction after the desyncronizing jump. From
these compiled libraries and executable files all desync points
were listed and branches were extracted using the following
methods.

For the generated data with junk-bytes present These
desync points contain information about the number of junk
bytes. This information makes it easy to extract the bytes



before and after the junk bytes. The path that jumps is always
the correct path, and is labeled as such in the data. Both paths
are stored together in a labeled pair.

For the generated data where there’s no junk bytes
The instruction right before these desync points contains a
jump instruction. And the byte right before the desync point
contains the jump offset. We then double check that this
jump lands inside an instruction - not at the start of a parsed
instruction. The path that does not jump is always the correct
path, and is labeled as such in the data. Both paths are stored
together in a labeled pair.

Binaries were extracted from a Linux installation ISO. A
simple bash script was used to extract all X86 ELF dynamic
libraries and executable file from the latest available Ubuntu
LTS installation ISO (20.04.3 — latest version at time of
writing) [13[]. A simple python script was then used to
disassembled the binaries (libraries and executable files). Up
to 50 bytes after the jump instruction and the jump destination
were copied out. All the data was then de-duplicated. This data
set will be referred to as the training set.

All data was then stored base-64 encoded in a JSON files
ready for the training step.

Training. One variable was varied - the number of bytes of
look ahead for each branch. The byte look ahead was varied
between 1 and 50 bytes. The training set was first trimmed so
all pieces of training data is the desired number of bytes long.
If some samples are too short they are filtered out. All samples
are then used to train the model. Using the scikit-learn option:

# The 1.0 means use 100% of the

# available data to train on.
max_samples=1.0

# The number of trees.
n_estimators=1000

# The number of cores to train on.
n_Jjobs=12

All other options were left to their default values.

The training set had around 200000 unique data points.

Verification. We then run the model on the verification sets
using the decision_function. The decision_function is our
classifier — but it gives out an “anomaly score”.

Then we compare the “anomaly score” of these branches
too see if one looks more “odd” than the other. If the
desyncronised path is more “odd” than the correct path we
label the test a success. The fraction of the number of tests
that pass can then be plotted.

The verification sets had around 5000 unique data points
each.

Histograms were also generated for all data sets — both the
verification set and the training sets. The histograms had the
first byte of all samples.

III. LIMITATIONS AND FURTHER RESEARCH

There are a lot of limitations in this study. Most of the
limitations arise from time constraints since this paper was

written as part of the course TDDD17 — Information Security,
Second Course at Linkoping’s University.

A. Not finding the data in the wild”

All the data was either generated or collected from assumed
good binaries or generated using a tool. This might make the
data-set very “unnatural” and might not at all represent how
good this approach is on actual data. But the method would
still describe a “best case” for the algorithm.

All machine learning algorithms have to have seen at least
parts of a problem to be able to solve it successfully. It’s
possible there are instances of disassembly desynchronization
which this model won’t be able to distinguish from valid
programs. This model might need to be paired with a
sophisticated algorithm or human judgment to always be
correct.

The histogram in Figure [2] shows that there are big
differences in the statistical properties between the first bytes
of our verification set with junk bytes. It would be trivial for
a malware writer to generate junk bytes which follows the
statistical properties of instructions after jumps. This further
cements the problems of this method.

B. Possible over-fitting to compiler optimizations

There is one potential difference between the code from
the Ubuntu installation medium and the code compiled as
part of this project. The Ubuntu binaries might have been
compiled with optimizations — to make the model more general
programs compiled with and without optimizations should be
used.

C. Tricking models of this kind

One very easy counter attack against a model like this is
to simply inject valid looking code for the look ahead length.
After the 50 bytes — since we used 50 bytes in this paper —
you can let the code devolve into garbage data. This would
force the model to be completely retrained since the model
must have a finite look ahead.

D. What are the limits of what Isolation Forest can learn?

There could possibly be a mapping between computational
complexity and the computational power of isolation forest.
Maybe a variable length instruction set is simply too hard for
a model of this complexity to learn.

E. Maybe a well tuned statistical algorithm can outperform
isolation forest

The use of histograms in this paper leads to the intuition
behind a very simply algorithm. An algorithm that simply
calculates the odds of bytes being at each position if the
program should “look valid”. This algorithm could very
possibly outperform the isolation forest.
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Fig. 1. Odds for path pairs to be labeled correctly. That is the invalid path
was seen as “more odd”. For short byte look ahead — 1 to 5 bytes — the model
works well. For longer byte look ahead, the model performs very poorly.

IV. RESULTS
A. Results with junk data

When the model was run on verification data generated by
Figure [T shows that the model is highly accurate with
short look ahead. The machine models with more data perform
Worse.

The Figure (1| shows that the classification gets a lot worse
once we get past the first initial bytes of junk-data. Since there
is a suspicious peek at the 4-byte look ahead point. This is also
the size of the junk data. It is therefore possible that more data
makes the model more uncertain. The models seem to have
a difficult time differentiating between relevant and irrelevant
information.

This specific case is a very poor representative of how well
this technique would work in practice. Judging from Figure
[I] the models struggle when fed more data. The verification
set does not match the statistical features of the training
data. Some bytes are over represented compared to “valid”
code. This dataset therefore unfairly favors the model as it is.
Classification is trivial for anyone with access to the histogram
of the training data.

The histogram in Figure [2] shows that the first byte of the
invalid path is very likely to differ from the training data and
actual programs. First bytes of valid paths are very alike the
training data. Peeks in the invalid paths don’t correspond to
peaks in the training data.

B. Results without junk data

When the model was run on verification data generated
by As seen from the graph in Figure [3] the models
perform worse the more bytes are looked at. The models
perform poorly for anything other than 2 byte of look ahead.
Adding more bytes to look at seems to confuse the models.
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Fig. 2. Histogram over the first bytes in the training data and the verification
data generated with junk.
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Fig. 3. Odds for path pairs to be labeled correctly. That is the invalid path
was seen as "more odd”. For very short byte look ahead — 1 to 2 bytes — the
model works. For all other byte look ahead, the model performs very poorly.

It is therefore possible that more data makes the model
more uncertain. The models seem to have a difficult time
differentiating between relevant and irrelevant information.

Peaks in the both version of the verification data
corresponding to peaks in the training data. This implies the
verification data is more alike the training data.

V. CONCLUSION

Both of these tests have favorable conditions for isolation
forest. Both models performed poorly — except when
comparing 1 uniformly generated random byte. Both of the
models had problems with longer byte look ahead. Some
thoughts on why the models don’t perform well are listed in

il
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Fig. 4. Histogram over the first bytes in the tranining data and the verification
data generated without junk bytes.

Isolation Forest as a model does not seem fit for this kind
of machine code classification.

When the faulty branches contain randomly generated bytes
the models might perform well for short byte look ahead. This
performance is not due to isolation forests ability to generalize
— but more likely statistical properties of the first bytes of the
synthetic data. That is, the model knows how to distinguish
noise from a single x86 instruction. Reasoning about sets
of instructions requires more reasoning power than isolation
forest seams to have.

This work gave Isolation Forest favorable conditions — and
the technique struggles. If the method has a chance of working
it requires a more complex model. Either more “heavy duty”
machine learning techniques or something in conjunction with
isolation forest, maybe even reasoning on the level of single
instructions.
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V1. APPENDIX
A. config.cfg — with injected junk bytes

verbose
print_assembly

use_spilling

dry_run
seed
instruction_pattern

junk_length_distribution
junk_length_min
Jjunk_length_max

interval
predicate_file
predicate_pattern
predicate_distribution

always_taken_fraction

false
false

true

false

uniform
4
4

50
predicates/basic.txt
XOT . *

uniform

1.0

B. config.cfg — without injected junk bytes

verbose
print_assembly

use_spilling

dry_run
seed
instruction_pattern

junk_length_distribution
junk_length_min
junk_length_max

interval
predicate_file
predicate_pattern
predicate_distribution

always_taken_fraction

false
false

true

false
0

.k

uniform
4
4

50
predicates/basic.txt
XOT . *

uniform
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