
Encoding of ATN-B1 CPDLC for Cybersecurity
Evaluation

Niklas Karlsson
Department of Computer and Information Science

Linköping University
Linköping, Sweden

nikka560@student.liu.se

Hampus Rosenquist
Department of Computer and Information Science

Linköping University
Linköping, Sweden

hamro777@student.liu.se

Abstract—Aeronautical Telecommunications Network Baseline
1 (ATN-B1) was developed to alleviate the ever-increasing conges-
tion of airspace with a more capacity effective and reliable com-
munication protocol. However, ATN-B1 was constructed without
security in mind. This paper investigates potential security flaws
in the protocols Controller-Pilot Data Link Communication
(CPDLC) and VHF Data Link Mode 2 (VDL Mode 2) that are
included in ATN-B1. This was done by the construction and use
of encoders & decoders for the protocols to replicate the message
chain and prove the ability of spoofing.

I. INTRODUCTION

With the high air traffic amounts of today, secure Air
Traffic Control (ATC) is of utmost importance. To handle
this crowded air space, specifications such as Aeronautical
Telecommunications Network Baseline 1 (ATN-B1) has been
developed. ATN-B1 consists of several protocols, two of which
are relevant to our topic, namely Controller-Pilot Data Link
Communication (CPDLC) and VHF Data Link Mode 2 (VDL
Mode 2).

The CPDLC protocol complements voice communication
over Very High Frequency (VHF), delivering increased ef-
ficiency. VDL Mode 2 is the network that CPDLC uses to
enable CPDLC communication between aircraft and ATC.

To evaluate and test attacks of said protocols, certain soft-
ware and hardware are necessary. Inexpensive hardware and
an open-source decoder of CPDLC over VDL Mode 2 already
exist, but no encoder is available to the public, to the best of
our knowledge.

In this paper, we intend to create an encoder of CPDLC
messages for VDL Mode 2 communication and evaluate
said protocols’ cybersecurity. By doing so, future research
can focus on evaluations rather than implementations of the
communication chain.

II. BACKGROUND

This section will present a brief introduction to each subject,
software, and hardware that has been used in this project.

A. ATN-B1

ATN-B1 is the European version of an internetwork ar-
chitecture that defines several protocols to enable ground-to-
ground and air-to-ground communication over data links in
the European airspace. While ATN-B1 was created in the early

1990s, the mandate to use it started as late as February 5, 2020,
by the European Union Aviation Safety Agency (EASA).

The idea of the new architecture was to deliver a faster, more
reliable, and more capacity-effective mean of communication
in the European airspace. A capacity effective communication
system was an important aspect to relieve the ever-increasingly
congested airspace [1].

To enable this, VDL Mode 2 was specified to be used for
radio communication, which can be read more about in the
section below.

B. CPDLC

CPDLC is a protocol that defines the format for simple text-
based communication between ATCs and pilots. The pilot can
use CPDLC to report various information, request clearance,
respond to ATC messages and declare or recall an emergency.
The ATC can issue crossing constraints, level assignments,
lateral deviations, speed- and radio frequency assignments, as
well as request information from the pilot. It is also possible
to send a free text message that does not conform to any pre-
specified format.

CPDLC exists in two types, namely FANS 1/A+ CPDLC
which is specified in the Future Air Navigation System
(FANS), and ATN-B1 CPDLC which is specified in ATN-B1.
Contrary to what the FANS name suggests, it is the simpler
and more outdated version and is not mandated in either
European or United States of America’s domestic airspace
[2]. In this paper, we focus solely on the ATN-B1 version
of CPDLC.

C. VDL Mode 2

VDL Mode 2 is the second – and main – version of VHF
Data Link which specifies the radio communication over VHF
between aircraft and ground stations. It specifies both the
modulation and several layers of headers. VDL Mode 2 is
the network that ATN-B1 CPDLC is sent over.

The VDL frame structure is presented in figure 1 and the
resulting data from the VDL frame structure is channel coded
using bit scrambling with a pseudo-random sequence to avoid
long sequences of 0:s or 1:s that might otherwise complicate
synchronization.



Thereafter, the data is transmitted over VHF on the band
117.975 - 137.000 MHz with a 25 kHz wide channel. The
channel is a time-division duplex (TDD) channel; meaning
only one radio transmitter can be used at a time. However, in
crowded areas, aircraft may be assigned a different frequency
after the initial link establishment.

The modulation used is Differential 8 Phase Shift Keying
(D8PSK). Using phase shifting of the carrier wave, relative to
the previous element sent, to convey data, it transmits at a rate
of 31 500 bits per second which translates to 10 500 symbols
for D8PSK since three bits represent one symbol, 0-7 [3].

Figure 1. Complete VDL frame structure [3].

D. Hardware

1) HackRF One: is a Software-Defined Radio (SDR) de-
vice that can transmit and receive radio signals in the fre-
quency span between 1 MHz to 6 GHz. It can be connected
to a standard personal computer through USB and has software
for Unix systems to interact with the device. Both hardware
and software are open-source [4].

2) RTL-SDR: is an inexpensive radio receiver that can be
connected to a computer through USB. It comes in different
versions and models but can usually receive frequencies in the
span of 500 kHz to 1.75 GHz. Open-source drivers are widely
available [5].

E. Software

1) dumpvdl2: is an open-source VDL Mode 2 message
decoder and protocol analyzer. It runs on Linux and supports a
variety of SDR hardware, including RTL-SDR. It also supports
an array of different protocols that use VDL Mode 2, including
ATN-B1 CPDLC [6].

2) ATN-B1 CPDLC Encoder: As a part of Anton Mag-
nusson’s and Vilhelm Melkstam’s bachelor’s thesis that is
discussed in section III-A, they created an encoder for the
CPDLC part of ATN-B1 CPDLC, without VDL Mode 2
encoding due to time constraints. In this report we have
continued their work, focusing on the encoding of VDL mode
2 to complete the communication chain of ATN-B1.

III. RELATED WORKS

In this section, previous work done by others will be
introduced to give a better understanding of the background
of the subject as well as developed software.

A. Using Software-Defined Radio for ATN B1: A look into
CPDLC encoding and VDL Mode 2 transmission

Anton Magnusson and Vilhem Melkstam evaluated CPDLC
and VDL Mode 2 for potential vulnerabilities by threat mod-
eling [7]. They concluded that spoofing, replay- and jamming-
attacks were possible when transmitting CPDLC messages and
could endanger the safety of airplanes using ATN-B1. While
they did not construct the VDL Mode 2 part of the message
chain, they believe that the vulnerabilities will remain even
with VDL Mode 2 encoding since the protocol only regulates
the mode of transmission and does not come with any security
features that would hinder the attack.

B. Technical details of VDL Mode 2

Stefan Lundström constructed a basic overview of the
technical details for VDL Mode 2 [3]. This paper disassembles
the layers of VDL Mode 2 and gives an overview of what each
layer consists of. The report does not go into detail about every
part of each layer, but is nevertheless useful to get an overview
of the transmission mode, and where to find a more detailed
explanation.

C. Demonstrating ADS-B AND CPDLC Attacks with
Software-Defined Radio

Gustafsson and Eskilsson showed the possibility to use
HackRF SDR in order to transmit CPDLC and ADS-B mes-
sages [8]. By reconstructing their setup, one could transmit
CPDLC messages with an HackRF One, and receive them
with an RTL-SDR dongle with the help of a software called
GNU Radio.

IV. ENCODING OF VDL MODE 2

Here an in-depth explanation of the encoding for VDL mode
2 will be introduced. This will contain both the hardware and
software to properly run the encoder.

The VDL frame is made up of several layers shown in figure
1. It can also be divided into two categories, the data link
layer, and the physical layer. Which part belongs to which
will become clear below.

A. Data link layer

The encoding of the data link layer consists of constructing
an 8208 (X.25) header and formatting the data into an Aviation
VHF Link Control (AVLC) data structure [3].

1) 8202 (X.25) header: is also know as the SubNetwork
Access Protocol (SNAcP) which in turn is based on the ISO
8208 standard (a.k.a. X.25) [3]. It’s format can be seen in
figure 2.

The header contains three fields in four octets. The first octet
contains a version number that always takes on the value of 01.
The second octet is the semantics field and can take one of four

2



Figure 2. SNAcP header format [9].

values, and is determined by the layer above; the internetwork
sublayer (CPDLC in our case) [9].

The last two octets consist of an OSI checksum that is
defined in ISO 8473 and is constructed as follows [10]:

1: C0 ← C1 ← 0

2: Process each octet of the header sequentially from i = 1
to L by

C0 ← C0 ← Oi

C1 ← C1 ← C0
3: Calculate:

X ← (L− 8)C0 − C1 mod 255
Y ← (L− 7)(−C0) + C1 mod 255

4: If X = 0, then X ← 255

5: If Y = 0, then Y ← 255

6: Place the values of X and Y in octets 3 and 4 respec-
tively.

2) AVLC layer: is a slightly modified version of the High-
level Data Link Control (HDLC) protocol which is presented
in ISO 13239 and is formatted as shown in figure 3 [11]. In
the original HDLC frame format, there is only one address
field with a length of one octet. In AVLC both destination and
source addresses exist and are four octets long each [3].

Figure 3. AVLC frame structure [3].

The flag field is always set to 01111110. While the control
field is specified in figure 4 where the first row for I format
is relevant for our case. N(S) equals the transmitting send
sequence number which is calculated by N(S) = N(S)prev+
1 mod 7, where N(S)prev is taken as input data.
N(R) is the transmitting receive sequence number and is

calculated by N(R) = N(S)prev + 2 mod 7.
P/F is the poll bit and is always set to 0 in our case, to

present that the transmission is from a primary station and not
a secondary- or combined station response frame transmission.

Following the control field is the actual data in its entirety
from the above layer as seen in figure 1. Thereafter, a two-
octet long frame checking sequence (FCS) is calculated and
included per the algorithm presented in figure 5.

Figure 4. Control field formats from ISO 13239.

Figure 5. 16-bit frame checking sequence (FCS) from ISO 13239.

Last but not least, a final octet containing the flag represents
the end of the frame.

It should also be noted that in case more than one AVLC
frame is on queue to be transmitted, they may be included in
a sequence inside the Information field, only separated with
one flag [11].

The data link layer is now completed and is passed on to
the encoding of the physical layer as demonstrated in figure
1.

B. Physical layer

1) Interleaving, bit stuffing, and RS FEC: In this part of the
physical layer, the incoming AVLC data is separated into 249
octet blocks (1992 bits), each accompanied by a calculated
Reed Solomon (RS) Forward Error Correction (FEC) field as
protection against data corruption. If the incoming AVLC data
is smaller than 249 octets (either before or after a potential
split), the block is padded with zeros to fill out to 249 octets
before generating the RS FEC field. The RS FEC is calculated
using the python library reedsolo’s function RSCodec, with the
input RSCodec(48, 2040) – representing a 48 bit (6 octets)
long RS FEC for a total length of 2040 bits (255 octets) when
the RS FEC is included. However, depending on the length of
the message, not all RS FEC octets should be transmitted [3].
Namely:

• data ≤ 2 octets: no error correction
• 3 ≤ data ≤ 30: the first two RS FEC octets
• 31 ≤ data ≤ 67: the first four RS FEC octets
• 67 < data: all 6 RS FEC octets
However, all FEC octets should always be generated, and

later removed according to the list above. After that, any

3



potential bit stuffing that was previously added is removed.
Then, if multiple blocks were created, they are added after
each other in sequence and passed on to the next layer as
described in figure 1 [3].

2) Training sequence: Since VDL Mode 2’s D8PSK mod-
ulation requires synchronization, a training sequence is gener-
ated based on a unique predetermined synchronization word,
among other fields. The structure is presented in figure 6. The
transmission length is taken as input and must specify the
number of bits following the header FEC, while not including
the RS FEC and padded bits in the AVLC frame. The input
is transformed into a 17-bit format with the LSB first [3].

Figure 6. Training sequence structure. [3].

The five-bit FEC header is calculated as described in figure
7.

Figure 7. Training sequence’s FEC header calculation [3].

3) Channel coding: is applied on all bits following the
training sequence and is done by using a pseudo-random (PN)
sequence. As displayed in figure 8, the PN sequence is created
by a 15-stage generator with a predetermined initial bit pattern
[3].

Figure 8. PN generator for channel coding [3].

4) D8PSK modulation: For the last step, GNU Radio is
used to generate a python script that performs the D8PSK
modulation. The GNU Radio schematic can be seen in figure
9. Input and output were handled with files, which can be
seen in the schematics as File Source [12] and File Sink [13].
To match the VDL Mode 2 specifications, every symbol was
represented by ten samples, and the sample rate was set to 105
kHz. Leading to a symbol rate of 10.5 k symbols per second.

The actual modulation is done by the Constellation Mod-
ulator [14] with appropriate settings for specifically D8PSK
modulation, being

• Differential encoding = Yes
• Samples/Symbol = 10
• Excess bandwith = 1.06
• Constellation object =

– Symbol map = [1,0,7,6,5,4,3,2]
– Constellation points = [0.383+0.924j, 0.924+0.383j,

0.924-0.383j, 0.383-0.924j, -0.383-0.924j, -0.924-
0.383j, -0.924+0.383j, -0.383+0.924j]

– Rotational symmetry = 8
– Dimensionality = 1
– Normalization type = Amplitude
– Soft decisions precision = 8
– Soft decisions LUT = None

Apart from the modulation scheme presented in figure 9,
a schematic with modulation, demodulation, and a graphical
interface (GUI) was created as can be seen in figure 10. This
was used to test the implementation. The rendered GUI can
be seen in figure 11 in the appendix.

Thereafter, the open-source program hackrf [15] was used
to communicate the generated signal with the HackRF One
hardware over a local free frequency, such as 868 MHz here
in Sweden.

Figure 9. GNU Radio schema for D8PSK modulation.

Figure 10. GNU Radio schema for D8PSK modulation and demodulation,
with GUI.

V. EVALUATION OF CPDLC SECURITY PATCH

To secure the protocol from potential attacks that CPDLC
has been proven vulnerable to [16], a secure key exchange
patch has been suggested for CPDLC [17]. This security
patch proposes an elliptic curve digital signature technique
(ECQV) to secure the integrity of messages and authentication
of identities. By securing these two properties, the existing
vulnerabilities would no longer work, potentially securing
the communication protocol. This patch comes with both a

4



computational and storage overhead, which may affect its
usefulness since ATN-B1 has been constructed with speed in
mind as delayed instructions may impact the possibility of
properly executing an instruction by the pilot, endangering the
aircraft.

As the patch consists of two messages, one from the
ground which is 896 bits long, and one from the aircraft
which is either 800 or 1088 bits long, one can calculate the
worst-case scenario of the overhead. The worst-case scenario
would be the longest key exchange followed by an empty
message. Comparing this scenario with that of just sending
the empty message we can see the largest overhead difference
the security patch can achieve. The above-mentioned lengths
are before the VDL Mode 2 encoding.

Mkeys = Mground +Maircraft =

1120 + 1336 + 224 = 2680 bits

As seen in the equation above the largest difference created
from the patch would result in 2456 bits after encoding the
messages. Calculating a theoretical speed that does not take
into account any computational time for parsing or encoding
of the messages, 2546 bits would take 78 ms at the expected
transfer rate of 31 500 bits/s. As such, it seems like the security
patch is a reasonable extension to the protocol as the added
overhead does not take up a significant time to send.

VI. RESULTS

This section will present the resulting status of the encoder
implementation, including any possible limitations or room for
improvement.

All stages of encoding have been implemented. However,
after putting all the pieces together, it is unfortunately not in
working condition as this project comes to an end.

Testing the individual stages of encoding to a high degree
of certainty of its correct functionality has been very difficult.
The instructions presented in section IV make out the lion’s
share of the available information. Meaning, no access to any
examples of correct output for different inputs to evaluate the
implementations. Some testing was of course done to evaluate
the different parts of the encoding, but for certain parts, it was
hard to conclude with high confidence that it was correctly
implemented.

The only concrete test available was testing the entire
encoding chain against a decoder, like dumpvdl2. This of
course is an integration test of sorts Big-Bang testing and all
the consequences that come with that strategy.

Gathering and interpreting all the necessary information to
implement the encoding turned out to be a large part of the
project. Certain parts were vaguely defined and left room for
interpretation, posing a further threat to the functionality of
the final product.

As time runs out, we have not been able to identify what is
malfunctioning. However, we do believe the implementation
is in good progress towards completing the encoding chain of
ATN-B1 CPDLC.

As for the result from the evaluation of the CPDLC security
patch, it was concluded that the overhead introduced from
the proposed security patch was within reason, regarding
transmission data size and transfer rate.

VII. CONCLUSIONS

This section will conclude what the results mean for both
the protocols’ cybersecurity and future research on the subject.

While it proved hard to complete the communication chain
for ATN-B1 CPDLC within the limited scope of this project,
a foundation was created that enables further development
that may take large advantage of the work already done.
This means researchers are one step closer to accessing a
solution that enables practical evaluation of the ATN-B1
CPDLC protocol independently and in turn, contributes to the
protocols’ cybersecurity.

Having access to a complete communication chain for
independent researchers may enable testing proposed security
patches, such as [17] presented earlier, in practice and stress
test the implementations.

Therefore, we believe our work will contribute, at the very
least as a proof of concept, to the protocols’ cybersecurity and
future research on the subject.

REFERENCES

[1] UniversalAvionics, “Understanding Data Comm Systems with Domestic
and Oceanic FANS 1/A+ and ATN B1 Services.” November 2020.

[2] GlobalAerospaceDesignCorporation, “Controller-Pilot Data Link Com-
munications (CPDLC).” February 2021.

[3] S. Lundström, “Technical details of VDL Mode 2.” 2016.
[4] GreatScottGadgets, “HackRF One,” 2021.
[5] RTL-SDR.com, “ABOUT RTL-SDR,” 2013.
[6] T. Lemiech, “Github: szpajder/dumpvdl2,” 2021.
[7] V. Melkstam and A. Magnusson, “Using Software-Defined Radio for

ATN B1: A look into CPDLC encoding and VDL Mode 2 transmission,”
bachelor’s thesis, March 2022.

[8] S. Eskilsson, H. Gustafsson, S. Khan, and A. Gurtov, “Demonstrating
ADS-B AND CPDLC Attacks with Software-Defined Radio,” in 2020
Integrated Communications Navigation and Surveillance Conference
(ICNS), pp. 1B2–1–1B2–9, 2020.

[9] R. Hagens, N. Hall, and M. Rose, “Use of the Internet as a Subnetwork
for Experimentation with the OSI Network Layer (RFC 1070),” February
1989.

[10] ISO/IEC-8473, “Information technology — Protocol for providing the
connectionless-mode network service: Protocol specification,” Novem-
ber 1998.

[11] ISO/IEC-13239, “Information technology - Telecommunications and
information exchange between systems - High-level data link control
(HDLC) procedures,” 2002.

[12] GNURadioWiki, “File Source,” 2022.
[13] GNURadioWiki, “File Sink,” 2022.
[14] GNURadioWiki, “Constellation Modulator,” 2021.
[15] GreatScottGadgets, “Github: greatscottgadgets/hackrf,” 2021.
[16] A. Lehto, I. Sestorp, S. Khan, and A. Gurtov, “Controller Pilot Data Link

Communication Security: A Practical Study,” in 2021 Integrated Com-
munications Navigation and Surveillance Conference (ICNS), pp. 1–11,
2021.

[17] S. Khan, A. Braeken, P. Kumar, and A. Gurtov, “Securing Ground–Air
Communication: A Robust Protocol for Controller-Pilot Data Link
Communication.” March 2022.

5



APPENDIX

Figure 11. GNU Radio generated GUI produced by schema in figure 10.

6


