Data Anonymization Method — An Analysis

William Vedin

John Lindstrom

Email: {wilve383, johli305}@student.liu.se
Supervisor: Jenni Reuben, jenni.reuben@foi.se

Project Report for Information Security Course (TDDD17)
Linkopings universitetet, Sweden

Abstract

The objective of data anonymization is to
ensure that individual entries in a dataset
cannot be identified in the supposedly
anonymous dataset while still maintaining the
utility of the data. One of the most common
methods for this is k-anonymity. In order to
study this method, three experiments were
conducted. The first experiment was conducted
using the ARX tool to observe the impact of
applying the same anonymization methods on
three datasets of different sizes. The second
experiment was conducted using the ARX tool
to observe the impact of changing a specific
quasi identifier had on data loss when
combined with additional quasi identifiers. The
third experiment was conducted by attempting
to develop a Python implementation to ensure
k-anonymity of a dataset.

The first experiment showed a trend of a
smaller amount of data lost through
anonymization as the size of a dataset
increased. It also showed a trend of a
proportionally larger amount of the data loss
was the result of generalization compared to
suppression as the size of a dataset increased.

The second experiment concluded that the
impact of exchanging a singular quasi
identifier from one with relatively few unique
records to a quasi identifier with a larger
number of unique records increased the amount

of data loss through anonymization with one
additional quasi identifier. The proportion of
data loss caused by changing between the
quasi identifier with a lower domain value to
the quasi identifier with a higher domain value
was lower when combined with five auxiliary
quasi identifiers.

For the third experiment, the implementation
was ultimately unsuccessful but still concluded
that it is difficult to test a program that has the
purpose of verifying that something else is
working correctly. It also concluded that
because querying a dataset for- and altering a
single record is an expensive operation, it is
necessary to keep this to a minimum in order to
achieve a reasonable execution time.

1. Introduction

A big problem when it comes to working with
datasets from the real world is to ensure the
privacy of all the individual entries in the
dataset. This is usually done by anonymising the
dataset by replacing some of the information
that might be used to identify the individuals
with synthetic data. This project aims to conduct
three experiments to find some interesting
properties about the k-anonymity privacy model
and algorithm.

The experiments conducted for this project are
as follows.

mailto:jenni.reuben@foi.se

1. Generalization & data loss for
differently sized datasets

2. Impact of number of unique quasi
identifier values

3. Implementing a Python program to
achieve k-anonymity

2. Background

This chapter aims to provide the necessary
background information to understand the
content of this report.

2.1 Identifiers

There are four different identifiers used in this
report: explicit identifiers, quasi identifiers,
sensitive attributes and non-sensitive
attributes.'

Explicit identifiers (often referred to as just
identifiers) are attributes that can explicitly
identify an entry in a dataset, such as a name or
a unique medical ID.

Quasi identifiers are a set of non-sensitive
attributes that when combined may lead to
identification of a supposedly anonymous entry
in the database.

Sensitive attributes (sometimes confidential
outcome attributes) are attributes that contain
sensitive information about the entry, for
example salary or a disease.

Non-sensitive attributes are the remaining
attributes, meaning the attributes that are
unlikely to be useful for deanonymizing a user,

! https:/link.springer.com/article/10.1007/s10618-005-0007-5

or attributes that otherwise are not sensitive to
the user.”

2.2 k-anonymity

K-anonymity is a privacy model that ensures
that entries in a dataset are indistinguishable
from k-1 other entries. In order for a dataset to
satisfy k-anonymity, every record in the dataset
has to share the values of its quasi identifiers
values with at least k-1 other records.’ In order
to achieve this, either suppression or the
generalization is used. Suppression is a method
of removing attributes from the dataset
completely, whereas generalization is turning
specific attributes into more general ones. A
common way of using generalization is to use
age spans rather than discrete values for data
entries. Below are examples illustrating this.

Name Zip code Age
Erik 53436 25
Rolf 53436 23
Jens 53435 30
Theo 53435 35

Table 1: 0-anonymous dataset

In table 1, name is obviously an identifying
attribute, and is a clear way to link a dataset
entry to a person. In order to attain any form of
anonymity, this cannot be included and as such
this attribute will be suppressed from the
dataset completely.

This is not enough however, as the age values
of each entry in the dataset are different. By
generalizing the age attribute and suppressing
the name field, the following table can be
produced.

2 https://arx.deidentifier.org/overview/privacy-criteria/
® https://cloud.google.com/dlp/docs/compute-k-anonymity

Zip code Age

53436 20-29
53436 20-29
53435 30-39
53435 30-39

Table 2: 2-anonymous dataset

In table 2, the pair of rows 2 and 3 as well as 4
and 5 are indistinguishable from each other.
Each entry has at least 2-1 seemingly identical
fields for the quasi identifiers zip code and age,
and as such the anonymized dataset satisfies
2-anonymity.

2.3 l-diversity

L-diversity is a privacy model used in
conjunction with k-anonymity. In order for a
dataset T to satisfy l-diversity, it implies that
for every set of records with the same value for
each quasi identifier, there are at least | distinct
values for each of the sensitive attributes of a
dataset. In contrast to k-anonymity that implies
a certain indistinguishability between values of
quasi-identifiers in a dataset, I-diversity implies
indistinguishability between sensitive attributes
in a dataset.

Assume the dataset from table 2 is a log of
medical entries, with the added attribute of the
diagnostic from the medical visit. This would
not be an identifying attribute as it on its own
would not link the entry to a person. In this
case it would not be a quasi identifier as it
would not assist in identifying a sole user from
the dataset, as it is a sensitive attribute.

Zip code Age Diagnosis
53436 25 Cold
53436 23 Flu

53435 35 Tetanus
53435 35 Tetanus

Table 3: 0-diverse dataset

In table 3, although the third entry is
indistinguishable from the fourth, one can
deduct that by knowing that an individual
person had been admitted to the medical
facility, living in the zip code 53435, and is of
age of 35 had been diagnosed with tetanus.
This implies that table 3 does not achieve
2-anonymity in the regard of l-diversity.

L-diversity uses the same suppression and
generalization methods used in k-anonymity to
achieve a higher degree of anonymity.
Applying generalization and suppression to the
dataset in table 3 results in the following table.

Zip code Age Diagnosis
5343* 20-39 Cold
5343* 20-39 Flu

5343* 20-39 Tetanus
5343* 20-39 Tetanus

Table 4: 4-diverse dataset

In table 4, part of the zip code is generalized,
and the precision of the age attribute is reduced
as the span is increased. This results in the
sensitive diagnostic attribute being protected.
As the separate users cannot be mapped to any
of the sensitive attributes, the dataset in table 4
has the I-diversity property of 4-diversity. It
should also be noted that the dataset now has
the property of 4-anonymity.

2.4 o-presence

Delta-presence is a privacy model that
determines the highest probability of an
individual record in a bigger population is an
entry in the smaller analyzed dataset.* Unlike
l-anonymity and k-anonymity, the 6 parameter
in o-presence is not a discrete integer, but rather
a value in the interval [0, 1]. A low d parameter
is also considered more secure, unlike
k-anonymity and I-diversity where a high
parameter value is prefered.

1-presence implies a 100% probability of a user
from the larger population being part of the
smaller dataset, and O-presence in contrast
implies a 0% probability.

Assume the scenario of a lottery that chooses
to publicly display data including ZIP code and
the age of their winners as shown in table 5.

Zip code Age

53436 20-29
53436 20-29
53436 30-39
53436 30-39

Table 5: 0.4-presence dataset

Public statistics show that there are ten people
in the zip code in the age interval [20, 29] and
five people in the age interval [30, 39]. For the
younger age group, the probability of a member
of the larger population is 2/10 = 0.2. The
probability for a member of the older age group
is 2/5 = 0.4. As the 6-presence is defined by the
greatest ratio in the dataset, the dataset in table
5 has a 0.4-property.

Like k-anonymity and l-diversity, the methods
of suppression and generalization can be

4 https://cloud.google.com/dlp/docs/compute-d-presence

applied to attain a lower o-value for the
produced dataset, as shown below in table 6.

Zip code Age

5343* 20-29
5343* 20-29
5343* 30-39
5343* 30-39

Table 6: 0.04-presence dataset

For simplicity, assuming that the population in
the nine other ZIP codes starting with 5343
have ten and five people in the spans [20, 29]
and [30, 39] respectively, this would give the
respective probability of 2/100=0.02 and 2/50 =
0.04. This implies that the dataset in table 6 has
the property of 0.04 presence.

2.5 Data loss

When generalizing a dataset, some of the data
will inherently be lost. The goal of data
generalization is usually to achieve the desired
level of anonymity, while minimizing the
amount of data lost in the process. Data loss can
be measured using different metrics for different
types of columns’. In this project, the metric

used to measure data loss is discussed in section
2.6.

2.6 ARX Data Anonymization Tool

In order to both implement and measure the
generalization strategy, the tool ARX Data
Anonymization, hereafter referred to as ARX, is
used. ARX allows the user to load datasets and
define an anonymization strategy to be
automatically applied to the dataset. It is
possible to set rules for how the program will
automatically generalize each quasi identifier.
This can be done in multiple generalization

5

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504813/

levels per quasi identifier, as specified by the
generalization hierarchy set for each quasi
identifier. An example of a generalization of the
quasi identifier date of birth is shown in table 6
below.

Level 1 Level 2 Level 3
1987/10/2 1987/10 1987
1987/10/5 1987/10 1987
1987/1/2 1987/1 1987
1987/6/6 1987/6 1987

Table 6: Example of generalization levels

After the anonymization strategy has been
entered into the program, the user can choose
between different anonymization models and
their corresponding parameter values to ensure
the anonymity of the dataset. In this project,
k-anonymity has been used for this purpose. If
the user selects k-anonymity and a k-value and
runs the anonymization strategy, it will be
presented with all of the solutions that achieve
k-anonymity. These solutions will be in the form
of the level of generalization that has been
applied to each quasi identifier that was
necessary to achieve k-anonymity. For each
solution, the user can then view the amount of
data loss, what percentage of rows have been
suppressed, and an ARX-generated score for
both anonymity and data loss. ARX will also
highlight the solution that achieves k-anonymity
while losing as little data quality as possible,
and what permutations of quasi identifier

Figure 1 is an example of the solutions for the
current configuration as presented by ARX.
Each node represents a solution based on the
transformations that were applied, with each
number corresponding to a level in the
generalization hierarchy for this quasi identifier.
The golden node is the optimal solution, and the
4th integer in this node implies that the 5th
generalization specified for that quasi identifier

is used in the optimal solution. Although not
shown here, ARX shows the user a specific
utility measure for each node. Although
multiple utility metrics are available, this project
uses data loss and suppression level exclusively.

0,0,1,50

Figure 1. ARX solution space

2.7 Implementing a Python program to
verify k-anonymity

As part of this project, an attempt at
implementing a basic Python program to verify
k-anonymity for a dataset was made. The goal
for this program was that it would be able to
handle a large dataset in the .csv file format,
check for violations of k-anonymity, and finally
generalize or suppress sensitive records in the
dataset if it did not already satisfy k-anonymity.

The purpose of this program was to create a
baseline algorithm for achieving k-anonymity,
and measure the output for comparison with the
ARX tool.

As a way of handling the large datasets used in
this project, an external library was used. The
library chosen for this task was Dask. Dask
describes itself as a scalable library for parallel
computing in Python. It is a wrapper library that

implements features that make it easier to work
with large datasets using functionality from the
more well known libraries Pandas and NumPy.
Some of the features offered by Dask are
delayed computation, dividing the datasets into
chunks to save memory, and parallel computing,
all on top of the already existing functionality
from Pandas and NumPy.°

Dask, through Pandas, offers a large amount of
features for handling big datasets. It is possible
to read a csv file through the use of a Dask
library function, and save it in a Dask
dataframe, which is a large collection of data
that can be partially loaded into memory when
needed. These dataframes formed the basis upon
which the algorithm was built.

3. Method & experiments

This chapter aims to explain the experiments
that were conducted for this project.

3.1 Generalization & data loss for
differently sized datasets

This experiment investigates the generalization
strategies and the data loss for applying the
ARX k-anonymity function on differently sized
subsets of a larger dataset. The dataset used for
this experiment was the A&E Synthetic Data’,
containing 18 columns. This dataset originally
contains over 65 million records, and can be
difficult to use in its entirety. For this reason, the
experiments were conducted using subsets of
this dataset. The subsets contained 1000, 10 000
and 1000 000 records respectively. The records
in this dataset are independent of each other, and
the larger subsets contain the smaller subsets.

For this experiment, ARX was configured to
find an optimal solution in regards to data loss
that satisfies S-anonymity. All the solutions in

% https://dask.org/
7 https://data.england.nhs.uk/dataset/a-e-synthetic-data

the solution space were rated using ARX
internal scoring system for measuring data loss®,
and produced a solution for each permutation of
generalization level for each quasi identifier that
satisfies 5-anonymity. The optimal solutions for
each subset were then compared to find how the
size of the subset affected how much
generalization and suppression had to be
performed on the dataset to satisfy 5-anonymity.

In this experiment, the following columns from
the dataset were used as quasi identifiers.

Decile from LSOA
Age Band

Sex

Arrive Date
Arrive_HourOfDay
Time Mins

HRG

NNk L=

Quasi identifiers 1, 4 and 6 were attributed 3, 2
and 4 generalization levels respectively. The
remaining quasi identifiers were either
unsuitable for generalization or were already
generalized, and as such were not attributed any
generalization hierarchies.

3.2 Impact of unique quasi identifier values

This experiments investigates the impact of
changing between for different combinations of
quasi identifiers when using ARX to achieve
100-anonymity on a 1000k record subset from
the A&E Synthetic data dataset.

In this experiment, a combination of quasi
identifiers will be set up and their original and
transformed values will be examined. These
combinations will split this experiment into the
four sub experiments below:

8 https://arx.deidentifier.org/overview/metrics-for-information-loss/

A1 consists of studying a quasi variable
assigned the name Q1, which is used with one
auxiliary quasi identifier to anonymize the
dataset.

A2 consists of studying Q1, which in this sub
experiment is used with the auxiliary quasi
identifier used in A1 together with four
additional quasi identifiers. The number four
was chosen as fewer additional identifiers
didn’t result in any significant change.

B1 consists of studying a quasi variable
assigned the name Q2, which is used with the
same auxiliary quasi identifier used in A 1.

B2 - consists of studying Q2 with the same
auxiliary quasi identifiers studied in A2.

The different combinations of quasi identifiers
are shown in table 7.

Sub experiment Quasi Identifiers

A1 Q1, Q3

A2 Q1, Q3, Q4, Q5, Q6, Q7
B1 Q2, Q3

B2 Q2,Q3, Q4, Q5,Q6, Q7

Table 7: Quasi identifiers used in experiment 2

3.3 Implementing a Python program to
verify k-anonymity

For this program, the functionality was split in

two. One part to check for k-anonymity, and the

other part to suppress and generalize data.

Verifying k-anonymity

At first, a naive approach was taken towards
implementing the first part as a proof of
concept. The algorithm used was as written
below.

Input: value of k, list of quasi identifiers, name
of csv-file containing the dataset.

1. Read the csv-file to a dataframe.

2. Find all unique values in the columns
marked as quasi identifiers.

3. Generate all ordered permutations for
the unique values in step 2. These are the
equivalence classes for the dataset.

4. Query the dataframe for each
equivalence class. Make sure that the
amount of records in each equivalence
class is either zero, so that it does not
exist in the dataset, or larger than k-1. If
none of these are true, mark it for
generalization or suppression.

There are some obvious problems with this
naive approach. Step 3 above will generate
every possible equivalence class. For quasi
identifiers with a large domain, this could
generate thousands or millions of equivalence
classes that are not in the dataset, and checking
these is obviously not a good use of resources.
Querying a dataset in Dask is a slow operation,
so this algorithm was not feasible for any
dataset large enough to be anything other than a
proof of concept, as it simply took too long to
run.

After this initial approach was scrapped, an
alternative method was used. After discussion
with our supervisor, the following algorithm
was devised.

Input: value of k, list of quasi identifiers, name
of csv-file.

1. Read csv-file to a dataframe.
Group the data records by the quasi
identifiers.

3. Check all the groups generated. If any
groups have fewer than k-1 records,

mark them for suppression and
generalization.

4. For each group, get the column name
and corresponding values. Query the
dataframe for a list of columns with their
corresponding values to get the records
in each group.

5. Mark these records for generalization
and suppression.

Implementing generalization and suppression
After the records had been marked for
generalization and suppression, they were sent
as input to a generalization- and suppression
algorithm. The idea behind this algorithm was to
implement it as a higher-order function, taking
the records to be altered as well as a function to
apply to them as arguments to the function.

4. Results

In this section , the results from the performed
experiments are presented.

4.1 Generalization & data loss for
differently sized datasets

In this subsection, the results from experiment
one are presented. For each of the three dataset,
this includes the reduced solution space, the
number of records, the optimal solution and its
data loss.

All solution space figures are presented in a
reduced form with some nodes hidden to
increase readability. Their full forms can be
found in Appendix A.

1k data

In figure 2 and table 8§ below, the data from the
experiment with the subset of 1k records is
presented. The optimal solution in this case is
the solution with the largest possible amount of
generalization applied to each quasi identifier.

3,001,040

Figure 2: Reduced solution space for 1k rows

Property Value

Number of records 1000

Optimal solution [3,0,0,1,0,4,0]
Data loss in optimal solution 0.9179
Suppressed records 88.01%

Table 8: Metrics from the dataset with 1k
records

10k data

In figure 3 and table 9 below, the data from the
experiment with the subset of 10k records is
presented. The optimal solution in this case is
the solution with the largest possible
generalization for two of the three quasi
identifiers with multiple generalization levels.
For the last quasi identifier, the second highest
possible generalization is applied.

3,001,030

Figure 3: Reduced solution space for 10k rows

Property Value
Number of records 10 000
Optimal solution [3,0,0,1,0,3,0]

Data loss in optimal solution 0.3879
Suppressed records 25.336%

Table 9: Metrics from the dataset with 10k
records

1000k data

In figure 4 and table 10 below, the data from the
experiment with the subset of 1000k records is
presented. In this optimal solution, the first and
third variable quasi identifiers are two levels
below their highest generalization level, and the
second quasi identifier is at its highest
generalization level.

1,0,0,1,0, 2,0

Figure 4 reduced solution space for 1000k
dataset

Property Value
Number of records 1000 000
Optimal solution [1,0,0,1,0,2,0]

Data loss in optimal solution 0.0793
Suppressed records 1.204%
Table 10: Metrics from the dataset with 1000k

records

Overview of the experiment

ARX Loss Suppression s .
upression Rate
Subset size Metric rate ARX Loss Metric
1k 91.79% 88.01% 95.88%
10k 38.79% 25.34% 65.33%
1000k 7.94% 01.20% 15.11%

Table 11: Metrics for the optimal solution for
each dataset

Table 11 contains the ARX metrics for the
optimal solution for each of the subsets. The
suppression rate divided by the ARX loss
column is a relative metric showing the amount
of records that had to be completely suppressed
in order to satisfy k-anonymity.

4.2 Impact of unique quasi identifier values

In this subsection, the results from experiment
two are presented. For each of the four sub
experiments, this includes the number of quasi
identifiers, unique records for the quasi
identifier being observed and the number of
equivalence classes prior to the transformation.
This also includes the data loss, generalization
level and number of equivalence classes for the
optimal solution produced.

Al
In figure 5 and table 12, the data from the A1l
sub experiment is presented. It is worth noting

that Q1 is the first element in the solution space
matrices. In the optimal solution, Q1 is only
generalized to the first level. By looking at table
12, this information can be used to conclude that
there are 49 unique entries in Q1 in this
solution. This is in comparison to the 1461
unique entries in Q1 prior to the transformation.

1,1

Figure 5: Reduced solution space for Al

Property Value
Number of Quasi identifiers 2

Unique records in Q1 1461
Unique records in generalized Q1 [1461 ,49, 5]
Number of EC prior 92545
Number of EC after in optimal

solution 343

Data loss in optimal solution 5.79%
Generalization level of Q1 in optimal

solution 1
Suppressed records 0%

Table 12: Data for Al

A2
In figure 6 and table 13 below, the data from
the A2 sub experiment is presented. Q1 is the

3rd element in the solution space matrices. This
means that in the optional solution, Q1 has 5
unique entries, as opposed to the 1461 prior to
transformation.

Property Value
Number of Quasi identifiers 6
Unique records in Q1 1461
Unique records in generalized Q1 [1461 ,49, 5]
Number of EC prior 826694
Number of EC after in optimal

solution 955
Data loss in optimal solution 10.909%
Generalization level of Q1 in optimal

solution 2
Suppressed records 3.82%

Table 13: Data for A2

002300

Figure 6: Reduced solution space for A2

B1

In figure 7 and table 14 below, the data from
the B1 sub experiment is presented. Q2 is the
first element in the solution space matrices. This
means that Q2 has 11 unique records in the
optimal solution, as it had prior to the
transformation.

0,0

Figure 7: Reduced solution space for Bl

Property Value
Number of Quasi identifiers 2
Unique records in Q2 11
Unique records in generalized Q2 [11,6, 2]
Number of EC prior 1497
Number of EC after in optimal

solution 556
Data loss in optimal solution 2.38%
Generalization level of Q2 in optimal

solution 0
Suppressed records 2.38%

Table 14: Data for Bl

B2

In figure 8 and table 15, the data from the B2
sub experiment is presented. Q2 is the first
element in the solution matrices. This means
that in the optimal solution, Q2 has 6 unique
entries, as opposed to 11 prior to the
transformation

- 1,0,0,3,0,0

Figure 8: Reduced solution space for B2

Property Value
Number of Quasi identifiers 6
Unique records in Q2 11
Unique records in generalized Q2 [11,6, 2]
Number of EC prior 91195
Number of EC after in optimal

solution 998
Data loss in optimal solution 8.96%
Generalization level of Q2 in optimal

solution 1
Suppressed records 3.78%

Table 15: Data for B2
Overview of the experiment 2

Property Value
Data loss A1/ Data loss B1 2.43
Data loss A2 / Data loss B2 1 1.22
Data loss A2 / Data loss A1 1.88
Data loss B2 / Data loss B1 3.76

Table 16: Data loss metrics for experiment 2

Table 16 contains the data loss metrics from
Al, A2, Bl and B2. The ratio in row shows
that with one additional quasi identifier, the Q1
quasi identifier data loss is 2.43 times higher
compared to when using Q2. Row 2 shows that
the corresponding factor when using five

additional quasi identifiers is only 1.22. Row 3
shows that the data loss increase from going
from 2 to 6 quasi identifiers including Q1
increases dataloss by a factor of 1.88. In Row
4, it shows that the corresponding magnitude
when using Q2 is 3.76.

4.3 Implementing a Python program to
verify k-anonymity

In this subsection, the results from experiment 3
are presented.

Verifying k-anonymity

An attempt was made at implementing both the
k-anonymity algorithms presented in chapter
3.3. None of them were successful for different
reasons. The first algorithm was very time
inefficient, and not viable for any real world
applications. It is also not certain that it worked,
as it was never tested due to time- and
computation limitations.

The second algorithm was also implemented.
Unlike the first algorithm, this algorithm was
able to terminate within a reasonable timeframe.
The problem with this algorithm was that it was
unable to be tested, due to problems with the
generalization- and suppression algorithm.
Because of this, development of the second
algorithm for verifying k-anonymity had to be
dropped due to time limitations.

Implementing generalization and suppression
At the start of the project, the idea for the
generalization- and suppression algorithm was
to create a crude version that suppressed every
value in a sensitive column for the entire
dataset. This was implemented through a
higher-order function and a lambda function that
simply replaced all values in a column with a
chosen value. This worked, but it was not very
practical or compatible with the k-anonymity

algorithms, which would have worked by
finding sensitive records. It also caused massive
data loss, so this idea was quickly abandoned.

The idea behind the second version of this
algorithm was for it to query the dataset for the
sensitive records and alter the values of the
quasi identifiers. This proved to be a difficult
task, as Dask does not provide a simple way of
editing a single cell in a dataframe object. A
large amount of time was spent trying to find a
time efficient way of doing this, however no
practical way was found. For this reason, the
experiment had to be abandoned and this
seemingly trivial operation proved to be the
single most important point of failure in the
experiment.

5. Analysis

This chapter aims to analyze the different
experiments that have been conducted for this
project.

5.1 Generalization & data loss for
differently sized datasets

The idea of experiment 1 was to observe to
which degree the different datasets were
generalized. This can be interpreted in many
ways. One way to interpret this is to observe a
trend that points toward how as the dataset
increases, the level of which the quasi identifiers
are generalized decreases.

At first glance, an assumption one might make
regarding this is that as the number of the
dataset increases, the ratio of data loss from
generalization and suppression would be
skewed towards more data being lost to
suppression rather than generalization, as
generalization as previously mentioned
decreased when the dataset was increased in
size.

This assumption is however not true, as one can
see in table 11 where this ratio is calculated.
This metric shows that for the 1k subset,
95.88% of the data from the initial dataset is lost
due to suppressed values. This means that only
the remaining 4.12% of the initial data loss is
from generalization, as of course the total data
loss is caused by the amount of data lost from
suppression in addition to generalization. As the
size of the dataset increases, suppression
accounts for only 65.33% and 15.11% of data
loss for the 10k and 1000k datasets respectively.

These observations instead imply that although
the level to which the quasi identifiers have to
be generalized as the number of records in a
dataset increases, the proportion of data loss
caused by generalization also increases.
Intuitively these findings make sense when in
the case, like in this experiment, the k-parameter
of k-anonymity stays constant as the data set
records increase. For a smaller data set, there are
simply too few records that are close enough to
other records to be generalized to be
indistinguishable. For these smaller datasets,
these outliers instead have to be suppressed
completely.

For a larger dataset however, there are more
records which can be made indistinguishable to
other records through generalization, resulting
in fewer outliers having to be suppressed in
order to maintain the property of k-anonymity
of the produced dataset. In this case, as more
records are generalized, more of the remaining
entries will be less accurate than they were
before the generalization, and as such a larger
proportion of the total data loss will be caused
by generalization.

5.2 Impact of unique quasi identifier values

The idea of this experiment was to observe the
impact of two different quasi identifiers, first in
conjunction with one auxiliary quasi identifier,
and again with five auxiliary quasi identifiers.
The quasi identifier Q1 contains significantly
more unique values than Q2. This makes the
anonymization process more complicated, as
this implies that there will be fewer entries that
are indistinguishable from each other.

In A1, one can observe that no suppression has
to be made. This is partly due to the fact that the
dataset has a wide array of unique entries that
are fairly evenly distributed. With an even
distribution, this large amount of unique values
can be put into a higher amount of smaller spans
compared to what an identifier with a smaller
amount of unique entries would without losing
as much data in the process. This can be
observed in the fact that Q1 is only generalized
once in the optimal solution in A1, which has a
total of 49 unique values.

Contrary to this, a quasi identifier with very few
identical values cannot be generalized in many
ways without suffering a bigger loss. This can
be intuitively explained by assuming a dataset
with 1000 unique entries for a quasi identifier. If
this identifier is generalized once into 100 new
generalized values, some data is lost.
Generalizing these values into 10 broader
groups will make them more indistinguishable,
but once again most likely result in more data
lost. This is the case of experiment B1. For this
experiment, generalizing Q1 will result in too
much data loss, so the optimal solution is
obtained by suppressing the values that prevent
the dataset from maintaining 100-anonymity.

Another interesting observation to make from
this experiment is by looking at the data loss
caused by the switching of quasi identifiers Q1

and Q2 when multiple auxiliary quasi identifiers
are added rather than just the one in A1 and B1.
By comparing the loss from A1 and B1, the loss
in Al is 2.43 greater than the data loss in B1.
However in A2 and B2, this factor is only 1.22.
This data can together show that although the
impact of a quasi identifier that is hard to
anonymize can be fairly substantial when only a
few quasi identifiers are used, its impact will be
comparatively smaller as additional quasi
identifiers are added.

5.3 Implementing a Python program to
verify k-anonymity

Difficulties and why the implementation
failed

In the end, the attempts at creating an algorithm
to achieve k-anonymity for a dataset were
unsuccessful. This was at least partly because a
suppression algorithm could not be completed
within the timeframe for this project. Instead of
using the results from this algorithm as was
originally planned, this analysis will instead
focus on how it could be implemented and how
it could be tested.

While Dask is a generally flexible and very
useful framework, it was likely not the best
solution for this implementation. It is not a very
mature framework, so a lot of extra work had to
be put in to work around missing functionality.
In the end, it was the seemingly trivial task of
changing a single cell in the dataframe that
proved to be the final nail in the coffin for this
implementation. This is a feature that exists in
Dask according to its documentation, however
for some reason the developers were not able to
solve the error that occured when trying to do
SO.

Alternative solutions

An alternative approach to this implementation
would have been to use Python library Sglite3.
Sqlite3 is a native library for integrated database
support, and is optimized for Python. While a
database would be a less flexible solution than
Dask, Sqlite3 is a more mature library and
carries all features that a SQLite database does.
It is also possible to read a csv-file and save it as
a database, so not much would change in that
aspect. It is also very fast, so execution time is
unlikely to be affected negatively by using it
over Dask.

Testing a functional solution

Testing an algorithm where a part of the task is
to test something else, in this case testing for
k-anonymity, is very difficult, as if the algorithm
has been constructed incorrectly it is likely that
the algorithm does not work but will still
terminate correctly. It is then difficult to say
whether the algorithm worked or not.

If a working k-anonymity verifier and
anonymizer had been achieved, it would be
possible to manually set up different scenarios
where the tester knows beforehand what
operations the algorithm should make on a
carefully constructed test data set. The tester can
then observe and compare the resulting dataset
with the expected output and see if the
algorithm has been implemented correctly. The
problem with this approach is that it would be
very time consuming to construct these tests,
and it would be highly impractical or impossible
to gain confidence that it works for large
datasets in this way.

The obvious and easiest way of testing a
functional algorithm would be to run its output
through another program that is already known
to work, such as ARX. This has the obvious
drawback of being dependent on another tool
that does the same thing as the tool that is being
implemented, and is as such not considered to

be a good solution in the general case. If the
purpose of developing an implementation is to
implement custom, additional metrics of any
kind, this could be a useful way of testing it.

6. Conclusions

In this chapter, the conclusions for each
experiment will be stated.

6.1 Generalization & data loss for
differently sized datasets

When comparing three datasets of different
sizes with the same set of quasi identifiers and
anonymized to obtain the same 5-anonymity, the
trend shows that the bigger the data set is, the
smaller the proportional data loss is. As the data
set increased, it was also observed that a
proportionally lower amount of data loss was
the result of suppressed values. This also
implied that as a dataset increased in size, a
proportionally higher amount of data loss was
the result of generalization.

6.2 Impact of unique quasi identifier values

When comparing two different quasi identifiers
and their impact along with an auxiliary quasi
identifier, it was observed that a quasi identifier
with significantly fewer unique values could
obtain 100-anonymity with much less data loss
than its counterpart with more unique values.
When comparing the same two quasi identifiers
with five auxiliary quasi identifiers, the
proportional difference in data loss was
substantially lower between the two.

6.3 Implementing a Python program to
verify k-anonymity

While the implementation of such an algorithm
for this project was not successful, some
conclusions can still be drawn from this
experiment.

First of all, k-anonymity is not a simple topic,
and testing an implementation of an
anonymization tool is not a simple matter. It is
possible that the implementation of the
k-anonymity for this project was correct, but it
was very difficult to test it due to the
dysfunctional generalization- and suppression
algorithm, as that meant there was no output
from the verification program.

It can also be noted that because querying and
changing single rows or cells in large datasets is
an expensive operation, any algorithm to ensure
k-anonymity is likely to be slow unless carefully
constructed and optimized. It is necessary to
reduce the amount of single row queries and
alters as much as possible in order for the
algorithm to run as quickly as possible.

References

1. Josep Domingo Ferrer, 2005, Ordinal,
Continuous and Heterogeneous k-Anonymity
Through Microaggregation, accessed 5/11/2022
https:/link.springer.com/article/10.1007/s10618-
005-0007-5

2. ARX - Data anonymization tool - Privacy
models, accessed 5/11/2022
https://arx.deidentifier.org/overview/privacy-crit
eria/

3. Google cloud - Computing k-anonymity for a
dataset, accessed 5/11/2022
https://cloud.google.com/dlp/docs/compute-k-an

nvmi

4. Google cloud - Computing d-presence for a
dataset, accessed 5/11/2022
https://cloud.google.com/dlp/docs/compute-d-pre

sence

https://link.springer.com/article/10.1007/s10618-005-0007-5
https://link.springer.com/article/10.1007/s10618-005-0007-5
https://arx.deidentifier.org/overview/privacy-criteria/
https://arx.deidentifier.org/overview/privacy-criteria/
https://cloud.google.com/dlp/docs/compute-k-anonymity
https://cloud.google.com/dlp/docs/compute-k-anonymity
https://cloud.google.com/dlp/docs/compute-d-presence
https://cloud.google.com/dlp/docs/compute-d-presence

5. Hyukki Lee et al., Utility-preserving https://data.england.nh ataset/a-e-synthetic-

anonymization for health data publishing, data

accessed 5/11/2022 8. ARX - Data anonymization tool - Data quality

https://www.ncbi.nlm.nih mc/articles/PM models,, accessed 5/11/2022

5504813/ https://arx.deidentifier.or: rview/metrics-for-i
6. Dask.org, accessed 5/11/2022 nformation-loss

https://dask.or:

7. Data Catalogue England, accessed 5/11/2022

Appendix A
In this appendix, the full solution spaces from experiment 1 and 2 are shown.

Experiment 1

3,001040

Complete transformation space of the 1k dataset in experiment 1

3,001,030

Complete transformation space of the 10k dataset in experiment 1

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504813/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504813/
https://dask.org/
https://data.england.nhs.uk/dataset/a-e-synthetic-data
https://data.england.nhs.uk/dataset/a-e-synthetic-data
https://arx.deidentifier.org/overview/metrics-for-information-loss
https://arx.deidentifier.org/overview/metrics-for-information-loss

1.0,0,1,020

Complete transformation space of the 1000k dataset in experiment 1

Experiment 2

Complete transformation space of Al in experiment 2

002030

Complete transformation space of A2 in experiment 2

0,0

Complete transformation space of Bl in experiment 2

Complete transformation space of B2 in experiment 2

