
Performance comparisons of post-quantum cryptography

algorithms on low-power devices

Josef Olsson Isak Stenström

Email: {josol381,isast379}@student.liu.se

Supervisor: Niklas Carlsson, {niklas.carlsson@liu.se}

Project Report for Information Security Course

Linköping University, Sweden

Abstract

New cryptographic algorithms are being developed that

are resistant to quantum computers. For the new

algorithms to be useable they need to have sufficient

performance, even on low-power devices.

This report discusses three different algorithms that are

part of the standardization effort. It performs performance

tests on the algorithms and compares their performance

and resource usage on different platforms.

1. Introduction

Quantum computers are posing a problem to current

cryptographic algorithms which is why research is being

conducted to create new algorithms that will not be

affected by quantum computers. For an algorithm to be a

candidate for wide use it needs, amongst other criteria, to

have satisfactory performance, even on low-power

systems such as IoT-devices.

This report evaluates a sample of new, potentially

quantum safe cryptographic algorithms (commonly

referred to as Post-Quantum Cryptography, PQC) to

analyze their suitability for use on low-power devices.

This report aims to answer the questions:

• How does the relative performance between the

algorithms differ between low- and high-power

devices?

• What is the resource usage for the algorithms and

how do they compare for low-power devices?

The tested algorithms are:

• Falcon-512

• Rainbow-Ia

• RedGeMSS128

These are evaluated using a Raspberry Pi and a x86

desktop computer.

2. Background

Most of the commonly used cryptographic algorithms

are broken by Shor's algorithm [1] and the use of quantum

computers. Fortunately, quantum computers do not yet

have the capacity to break algorithms with large keys.

New algorithms are being standardized that are

resistant to quantum computers [2]. These are called post-

quantum algorithms and build on problems that quantum

computers cannot solve in polynomial time.

The work in this report is based on the report

“Retrofitting Post-Quantum Cryptography in Internet

Protocols: A Case Study of DNSSEC” [3]. It explores the

possibility of using the new algorithms that are being

proposed for standardization in DNSSEC. It finds that

there are three algorithms that are suitable for use in

DNSSEC. Part of their research was developing test

scripts that compared the performance of the algorithms.

These scripts are open source and were used to generate

the data for this report.

Recently, the security of Rainbow-Ia has been called

into question [4]. A regular laptop can break the

encryption in a relatively short time. This is indeed quite

bad but another version of the algorithm or another

algorithm based on the same scheme could perhaps be

developed that is not prone to this attack. Therefore, this

report will include Rainbow-Ia in the study since it could

still yield valuable insights for the standardization

process.

3. Methods

The algorithms were evaluated on two different

systems, one being a Raspberry Pi Model B+ rev 1.2,

which has a BCM2835 ARM processor and runs Raspbian

11, and the other a desktop computer with an Intel i7

4770k x86 processor which runs Ubuntu 21.10.

Before evaluating the algorithms, they need to be able

to run on the different platforms. This involves installing

the algorithms and all their dependencies. The test scripts

come with installation instructions, and since they were

developed for x86 hardware it should then be trivial to get

the algorithms working on it. Getting the algorithms

working on the Raspberry Pi could be more challenging.

We gathered four different measurements:

• Number of signs per second

• Number of verifies per second

• Memory usage

• Power consumption

The first two measure the number of operations that

each algorithm can perform on the given hardware. This

data comes directly from the test scripts provided in the

paper [3].

The memory usage was measured using the GNU Time

command [5]. This measured the maximum resident set

size of the test script.

Figure 1: Setup for measuring the current

Figure 2: Setup for measuring the voltage

The power consumption was only calculated for the

Raspberry Pi, not the desktop computer due to lacking

suitable equipment for such a task. It was calculated from

two measurements, current and voltage and they were

measured using a multimeter. Both were measured by

cutting the power cable and measuring from the

conductors within. The current was measured but placing

the multimeter in series with the power lead, and the

voltage by measuring between the positive and ground.

During the consumption tests, only the power cable and a

keyboard was connected to the device. The setup is shown

in the two figures above.

4. Result

This section presents the data gathered by the method

described in the previous section.

4.1 Installation of algorithms

Getting all algorithms to run on the PC was difficult

but possible. Both Falcon-512 and Rainbow-Ia worked

with the instruction from their test scripts. RedGeMSS128

depended on the library XKCP [6], including a function in

the library that was no longer a part of the library, it was

removed or renamed in a reorganization in a prior version.

By using a two year old version of XKCP the algorithm

ran without problems.

The same steps worked on the Raspberry Pi with the

exception that the old version of XKCP did not support

ARM processors. ARM support was added in later

versions of XKCP, but there were no versions that both

supported the Raspberry Pi and had the function needed

for the algorithm. There was an attempt to modify the

algorithm to use the new version of the library but it

proved unsuccessful.

Since RedGeMSS128 does not run on both devices it

was not a part of the measurements.

4.2 Performance measurements

The performance measurements were repeated ten

times and the data is shown in Appendix 1: Measurement

data. The data was compiled into Table 1 which shows the

mean of the measurements, the 95% confidence interval,

and the coefficient of variation, for each algorithm and

device. The current and the voltage have no confidence

interval since the available precision of the measurements

was insufficient to capture any differences, and therefore

those measurements were only performed for three tests

in each series.

Table 2 shows the relative performance of the PC

compared to the Raspberry Pi for the different operations

and algorithms. This means that the PC performed 34.6

times more signs per second than the Raspberry Pi with

the Falcon-512 algorithm.

Table 1: Measurement averages

 Raspberry Pi PC

 Idle Falcon-512 Rainbow-Ia Falcon-512 Rainbow-Ia

Current (mA) 195 225 225 - -

Voltage (V) 5.06 5.06 5.06 - -

Mean signs per second - 126.6 280.3 4372.9 7058.1

95% confidence interval - 126 - 127 264 - 296 4335 - 4411 7007 - 7110

Coefficient of variation - 0.7% 9.3% 1.4% 1.2%

Mean verifies per second - 931.1 317.6 26233.7 7688.7

95% confidence interval - 930 - 933 317 - 318 26169 - 26299 7640 - 7737

Coefficient of variation - 0.3% 0.2% 0.4% 1.0%

Mean memory usage (KiB) - 2688.8 2526.4 3667.2 3342.8

95% confidence interval - 2652 - 2726 2496 - 2557 3638 - 3697 3284 - 3402

Coefficient of variation - 2.2% 2.0% 1.3% 2.8%

Table 2: Performance multiples of the
measurement averages for the PC compared to

the Raspberry Pi

 Falcon-512 Rainbow-Ia

Signing multiple 34.6 25.2

Verify multiple 28.2 24.2

Memory usage multiple 1.4 1.3

4.3 Observations

For all data series, the coefficient of variation is

relatively small. This shows that the raw data values vary

minimally and thus the confidence interval is also quite

narrow. The exception is signing with Rainbow-Ia on the

Raspberry Pi, which has a much higher coefficient of

variation than the others.

4.3.1 Memory usage

It is important to note that the measured memory usage

not only measures the memory usage of the algorithms,

but also includes the memory usage of the test script. It

might therefore not be an accurate representation of the

resource usage of the algorithm.

The only major variation in the memory usage is

between the Raspberry Pi and PC, not between the

algorithms. Therefore, any major factor seems device

specific, such as hardware or the operating system.

4.3.2 Performance multiples

The performance multiples shows that the performance

gap on Falcon-512 between the two devices is smaller for

verifies than it is for signs, so the Raspberry Pi is better at

verifies than signs, compared to the PC. For Rainbow-Ia

there is no significant difference.

The performance multiples show a 40% increase in

memory usage on the PC. As discussed in section 4.3.1,

this has little meaning.

4.3.3 Power consumption

The voltage measured on the Raspberry Pi was

constant both during the testing and while idling, so the

power consumption is entirely proportional to the current

consumption. During execution of the test scripts, the

Raspberry Pi used all its processing power regardless of

the algorithm evaluated. Due to this, it is irrelevant to

compare the performance per Watt of the different

algorithms since it will come to the same conclusion as

just comparing the performance.

5. Discussion

This section will discuss the results of the previous

section.

5.1 Possible installation of RedGeMSS128

It might be possible to modify a more recent version of

XKCP to both work with RedGeMSS128 and on the

Raspberry Pi. Analysis of the changes in the library has

shown that the functionality required by RedGeMSS128

still seems to be present, so with more time and knowledge

of XKCP it seems probable that RedGeMSS128 could

work on the Raspberry Pi.

5.2 Choice of devices

The selection of the devices used was primarily based

on what was available. Both devices are more than eight

years old but are of approximately the same age and thus

comparing them is reasonable. It would have been a better

comparison if there were more devices in the data, but

there was no access to such devices.

Newer hardware could have more optimizations and

new instructions that increase the performance of these

algorithms on top of the normal performance increase of

newer processors. Due to this, a comparison of the

performance on newer and more relevant hardware could

lead to other conclusions if the hardware features different

optimizations that affect the performance differently.

5.3 Number of devices

To make any good and well-founded conclusions about

the algorithms’ performance, more than one low- and

high-power device is needed.

The comparison in this report is intended to be between

low- and high-power devices, but since the sample size of

both are one, it becomes merely a comparison between

two completely different devices. There are a host of

different variables that could influence the results that are

not necessarily inherent to the type of device. Thus, one

should be careful when drawing conclusions from this

data. More devices of both types should be used to get

more confidence in the conclusion.

5.4 Alternative research approach

This report has compared the performance of a single

low-power device to a single PC. A more interesting

comparison would be multiple low-power devices

compared to a set performance requirement that the device

needs to meet to be a candidate for a specific use case,

such as the analysis in the original paper [3]. Further, more

specialized, research could build on this idea and develop

a performance requirement and build its analysis on it.

6. Conclusion

There are a vast number of applications that will use

the algorithm chosen for standardization, all of which

have different priorities. Some of the applications will rely

heavily on signing, while others will mostly verify.

Therefore, it is difficult to say that one of the algorithms

is better suited for the general use case, since they cater to

different needs. For IoT sensors that would

overwhelmingly send data rather than receive, Falcon-512

would be the best choice. For a logging server that would

mostly receive data, Rainbow-Ia would instead be the best

choice, of course assuming that the vulnerability is fixed

and the algorithm performs equivalently to the tests.

The results show that the memory usage is lower on

low-power devices and that the relative performance of

low-power devices compared to high-power devices is

higher for Rainbow-Ia than for Falcon-512. Since these

results are produced with a sample size of one for each of

the device categories, more tests are needed to get a

definitive result.

References

[1] P. W. Shor, "Polynomial-Time Algorithms for Prime

Factorization and Discrete Logarithms on a Quantum

Computer," SIAM Journal on Computing, vol. 26,

no. 5, pp. 1484-1509, 1997.

[2] National Institute of Standards and Technology,

"Announcing Request for Nominations for Public-

Key Post-Quantum Cryptographic Algorithms," 20

December 2016. [Online]. Available:

https://csrc.nist.gov/news/2016/public-key-post-

quantum-cryptographic-algorithms. [Accessed 28

April 2022].

[3] M. Müller, J. de Jong, M. van Heesch, B. Overeinder

and R. van Rijswijk-Deij, "Retrofitting Post-

Quantum Cryptography in Internet Protocols: A Case

Study of DNSSEC," SIGCOMM Comput. Commun.

Rev., vol. 50, no. 40, p. 49–57, October 2020.

[4] W. Beullens, "Breaking Rainbow Takes a Weekend

on a Laptop," Cryptology ePrint Archive, Report

2022/214, https://ia.cr/2022/214, 2022.

[5] "GNU Time," [Online]. Available:

https://www.gnu.org/software/time/. [Accessed 21

April 2022].

[6] G. Bertoni, J. Daemen, S. Hoffert, M. Peeters, G.

Van Assche and R. Van Keer, "XKCP/XKCP:

eXtended Keccak Code Package," [Online].

Available: https://github.com/XKCP/XKCP.

[Accessed 27 April 2022].

Appendix 1: Measurement data

Measurement data for the Raspberry Pi

The values for the current is a range between which the current fluctuated during the measurements. Note that only the

first three tests for each algorithm have data for voltage and current.

 Current (mA) Voltage (V) Signs per second Verifies per second Memory usage (KiB)

Idle 180-210 5.06 0 0 -

Falcon-512

210-240 5.06 127.1 927.1 2664

210-240 5.06 127.5 931.9 2604

210-240 5.06 127.6 931.1 2656

 126.2 930.5 2768

 125.5 934.2 2596

 126.1 932.0 2732

 124.8 926.4 2756

 127.1 931.8 2732

 126.0 933.4 2732

 127.6 932.5 2648

Rainbow-Ia

210-240 5.06 292.9 318.8 2524

210-240 5.06 292.5 318.1 2528

210-240 5.06 296.1 317.8 2612

 225.6 317.3 2616

 293.9 317.5 2524

 294.8 317.2 2476

 294.1 317.4 2468

 231.5 316.9 2520

 291.0 317.7 2468

 290.8 317.2 2528

Measurement data for the PC

 Signs per second Verifies per second Memory usage (KiB)

Idle 0 0 -

Falcon-512

4274.2 26191.3 3608

4290.4 26034.1 3756

4320.2 26385.2 3708

4387.4 26235.7 3604

4421.1 26159.6 3604

4442.0 26219.3 3680

4409.1 26192.7 3664

4318.2 26239.3 3696

4427.8 26428.1 3692

4438.3 26251.2 3660

Rainbow-Ia

6926.8 7570.4 3280

6922.3 7570.6 3452

6951.8 7571.0 3300

7108.3 7749.7 3448

7149.9 7746.1 3404

7095.6 7734.4 3256

7100.8 7705.7 3256

7098.5 7742.8 3176

7111.8 7746.2 3448

7114.8 7750.3 3408

