Systematic analysis of phishing websites

Michelle Krejci, mickr592
Linkopings Universitet
mickr592 @student.liu.se

Abstract—Social engineering, more specifically phishing is not
always easy to detect. The techniques and methods for this are
always developing - but so is the phishing. The aim of this project
is to extract data one from on form of phishing, namely phishing
websites, and briefly analyse the collected data. This is done
semi-manually through the help of a script that collects verified
phishing websites though the PhishTank API and then asks the
user several questions about the website.

I. INTRODUCTION

Phishing websites are a specific form of phishing, they try to
impersonate another real website to make the user interact with
it in a specific way that allows the site to collect information
on the user [1]. Phishing websites are always evolving, just
like phishing filters improve to be able to catch more phishing
websites the websites in turn update how they work to avoid
the filters. To be able to keep up with these changes data must
be collected on active phishing websites. Then the data can be
analysed for similarities and patterns. But to be able to do that
in a efficient way one needs a way to identify active phishing
websites and a method to extract information about what that
websites requests as well as what website it pretends to be -
if any. This is the goal of the project. To summarize it can be
defined by three questions.

o How can active phishing websites be identified?

o How can data from the phishing websites be extracted

efficiently?

« Additionally, what does the collected data say about the

phishing websites?

To answer the questions a script will be created that collects
active phishing websites through the PhishTank API and then
collects data about the websites semi-manually by asking the
user several questions about the website. The hope is that this
script makes it easier to collect information on these websites
and thus makes it easier to keep up with changes and protect
users from being tricked.

II. BACKGROUND
A. Phishing

To understand what this report and project is about we first
need to know what phishing is. Phishing is a form of social
engineering attack that focuses on extracting some important
information from the user. This can be done in many different
ways such as emails containing malicious links or website that
masquerade as another (legit) website and ask you to login.
A real world example could be a text message that appears to

Erik Mattfolk, erima882
Linkopings Universitet
erima882 @student.liu.se

be coming from the bank telling the person in question that
they need to verify their account by clicking on the link in the
message and signing in [2] [3].

Today attackers have started exploiting CAPTCHA features
to carry out their attacks. This is a form of human verification
where the user is expected to identify some obfuscated letters
in pictures. It is considered to be effective in protecting against
bots, but it also seems to be able to protect phishing websites
from being identified by anti-phishing websites [4]. A study
done in 2020 on this topic submitted 35 URLs of phishing
websites using Google reCAPTCHA to anti-phishing websites
and none of these were detected as malicious [5].

In the Anti-Phishing Working Groups (APWG) 3rd quar-
terly trend report from 2021 they reported that the number of
phishing attacks had doubled from early 2020. Most phishing
attacks were towards the software-as-a-service and webmail
sector that made up 29.1% of the attacks. Attacks towards
financial institutions and payment providers made up 24% of
the attacks and the crypto market made up 5.5% of the attacks

[6].

B. PhishTank

PhishTank is a community site for submitting, verifying,
tracking and sharing phishing data. Users submit suspected
phishes and others users can vote on if it is an actual phishing
website or not. Voting is based on the actual people voting,
less people are necessary to verify a website if those people
have had a high success rate before [7].

III. METHOD

This section of the report goes over the theoretical and
practical methods used during the project.

A. Theoretical Methods

This project consists of mainly practical work. The only
theoretical method that was used was reading several scientific
papers on the subject of phishing and phishing blacklists. This
was done to gain a basic understanding of what the goal of a
phishing website is and what typically characterizes a phishing
website.

Some research was also done to find a good anti-phishing
website to use. There are three big ones out there: PhishTank,
Google Safe Browsing and OpenPhish. For this project Phish-
Tank was chosen because it is freely and easily available.

B. Practical Methods

The first practical step of the project was to look at several
phishing websites and determine what they had in common.
From this several yes-or-no questions were created.

1) Is the site still accessible or has it been blocked?
2) Is the site a duplicate of one you have analysed before?
3) Does the site look like:

« Bank, Post service, Rewards site, Cryptocurrencies,
Stock trading, University, Other

4) Does the site contain a form? If yes, what information
does the form ask for?

e Name, ID-number, Bank information, E-mail, Pass-
word, Other

5) Does the site want you to sign in using some sort of
personal identification such as BankID?
6) Other

The second step was to create a script that used the
PhishTank API and the questions to identify websites and
extract information from them. The script was to function as
such: The script collects a large number of verified phishing
websites through the PhishTank API in an array. The website
at index zero is then selected first and opened in a web browser
and the the user is asked the questions above. For questions 1,
2 and 5 the user is prompted to answer “yes” by pressing “y”
then “Enter” or “no” by only pressing “Enter”. For questions
3 and 4 the user can select answers from a pre-made list by
typing the list index and pressing “Enter”, or by typing in a
description and pressing “Enter”. Question 6 is answered by
optionally typing in something and pressing “Enter”.

Time spent analyzing is recorded from when it is a known
valid page (after the second question) until the final question
about the page is answered. The results from the questions is
saved locally and if the website is accessible - i.e not blocked
by Google or such - a copy of the website is saved locally
as well. When the script is exited it parses the information
collected and outputs the statistics, for example how many
websites contained forms or were pretending to be banks. The
answers to all questions asked are stored and parsed.

The third and final step was to, with the help of the script,
extract information from a large number of websites and do a
preliminary analysis on the resulting data. The script can be
seen as a whole in appendix A.

IV. RESULTS AND ANALYSIS

As can be seen from figure 1 there were a lot of inacces-
sible pages, 141 of the 248 pages were actually inaccessible.
Another 49 were duplicates of already processed pages. In
the end only 58 of the processed pages were viable. Out of
the viable pages 48 had a form on the website and 46 had
a known appearance. The most asked information is these
forms was email and password as can be seen in figure 3.
Name and crypto wallet information also occurred on around
ten websites. From figure 2 it can be deduced that the most
popular appearances that the websites tried to mimic were
cryptocurrencies, banks and social media. A total of 1214

Statistic | Amount
Total pages 248
Total valid pages 58
Total duplicate pages 49
Total inaccessible pages 141
Total pages with forms 48
Total pages with known appearance 46
Total time analyzing pages 1214s

Fig. 1. Statistics

seconds was spent analyzing and recording data for the 58
valid pages. A visual representation of the distribution of the
results can be found in appendix B.

I / Bank: 9
'\ Cryptocurrencies: 14

Microsoft: 1 \

Hosting site: 1 //—\

Chat: 1

Rewards site: 2

Post service: 3

Telecom: 3

Tax agency: 3 """’V

Social Media: 9

I Bank M Cryptocurrencies Social Media B Tax agency Telecom
Post service Rewards site Chat M Hosting site [l Microsoft
meta-chart.com
Fig. 2. The frequency of known appearances
State: 1
\/ﬁ Email: 23
Card: 2) /
Pin: 2
Address: 2
Bank information: 2 |
Download program: 3
Birthday: 3
SSN:3
Zip:4
Password: 22
Id number: 6
Phone number: 8 p
Crypto wallet: 10 7
Name: 13
B Email I Password Name B Crypto wallet Phone number
Id number Zip ssN [l sirthday Ml Download program
I Bank information Ml Address [l Pin Card WM City [l state

meta-chart.com

Fig. 3. Form statistics

From the results it can be concluded that a majority of the
viable websites included a form that in most cases asked for
a e-mail and a password. This seems logical since the goal
of phishing is to get some information out of the user. For
example their login to an website. As mentioned before it
can also be seen that out of the valid websites with a known

appearance the most popular appearance was some sort of
cryptocurrency website. Gaining access to a crypto wallet is
currently not very difficult—only the secret key is needed—
and thus it makes sense that this appearance is popular.

V. DISCUSSION

This section deals with analyzing the results in the previous
section. The efficiency and possible improvements of the script
will also be discussed.

It should be stated that the collected statistics does not in-
dicate phishing sites in general. For example, once a phishing
site ends up in the PhishTank database, the hosting site for
the phishing site may shut it down (likely due to monitoring
of the PhishTank API). This leads to a inflated number of
inaccessible pages and possibly a larger proportion of self-
hosted phishing sites among the valid pages recorded.

Still, many pages can be processed using the script in
a timely manner. On average the time spent analyzing a
valid page was 20.9 seconds. These 20.9 seconds does not
include loading the page in a browser, clicking through various
warnings displayed in the browser, answering whether the
site is accessible or a duplicate and downloading the page
afterwards. This number should not be confused with the time
it takes to find and process a valid page, as that time may be
up to an order of magnitude larger.

Even though phishing websites were analyzed beforehand,
there were some missing and unused alternatives when it came
to answering questions three and four. Some notable miss-
ing alternatives were social media and telecom for question
three and crypto wallet and phone number for question four.
Question three had two unused alternatives: stock trading and
university. The clarity of these options can also be discussed
as their meaning is ambiguous in some cases. For instance,
when the phishing site asks for a zip code, is it an address or
only a zip? Similarly, if the phishing site has the appearance of
Facebook, should it be recorded as “Facebook™ or just “social
media”? It is for the user of the script to decide, which leads to
increased complexity merging answers from different people
as they may differ. This also affects the scalability of using
the script.

The script could be improved by gathering data from a
larger number of anti-phishing websites to possibly increase
the number of still accessible sites. Another aspect that could
be further improved is the categorization of questions three
and four to increase clarity and reduce the effect of human
bias on the results. This bias cannot be removed completely
since the parsing of the phishing websites is done by a human.
Greater objectivity could be achieved by decreasing the human
interaction needed with the script. This could be done by
parsing the html structure of the websites and extracting form-
and input-tags from it.

VI. RELATED WORK

A paper published in 2019 looked at detecting phishing
websites trough the use of deep convectional neural networks.
This method could automatically detect phishing websites
during the earlier stage and had a accuracy of 99% [8].

Another approach proposed in a paper released in 2021
looked at using Fuzzy logic in order to detect phishing
websites. It suggests the use of smooth logic and machine
learning algorithms to define several factors of the phishing
websites. According to the paper there are a total of 30
attributes of phishing websites that can be used for phishing
detection with a high success rate [9].

VII. CONCLUSIONS

Active phishing websites can be identified by gathering
websites from anti-phishing websites that have already iden-
tified them trough their filters, such as PhishTank.

Data from these websites can then be efficiently extracted
trough the creation of a semi-manual script that opens phish-
ing pages automatically for the user and asks them several
questions. There are still improvements to be made on the
scripts formulation, such as drawing data from more sources
to gather a larger information pool since websites that are
registered by PhishTank and tagged as phishing attempts are
quickly shut down, or are duplicates of each other. Refining
the categorization of the websites would also be advised to
reduce human bias.

From the analysed websites the conclusion can be drawn
that forms are common amongst phishing websites. Most
common are forms that require the users e-mail and password.
In addition a large amount of the websites were copies of
legitimate websites. The most popular appearances that the
websites tried to mimic were cryptocurrencies, banks and
social media.

REFERENCES

[1] Oluwatobi Ayodeji Akanbi, Iraj Sadegh Amiri, and Elahe Fazeldehkordi.
Chapter 1.2 - problem background. In Oluwatobi Ayodeji Akanbi,
Iraj Sadegh Amiri, and Elahe Fazeldehkordi, editors, A Machine-Learning

Approach to Phishing Detection and Defense, pages 1-8. Syngress,

Boston, 2015.

Imperva. Learning Center. What is phishing: Attack techniques & scam

examples, June 2021.

Athulya A.A. and Praveen K. Towards the detection of phishing attacks.

In 2020 4th International Conference on Trends in Electronics and

Informatics (ICOEI)(48184), pages 337-343, 2020.

Waqas. Threat actors using captcha to evade phishing, malware detection.

Hackred, August 2021.

Andrzej Duda Sourena Maroofi, Maciej Korczynski. Are you human?

resilience of phishing detection to evasion techniques based on human

verification. ACM digital library, October 2020.

[6] Greg Aaron. Apwg phishing activity trends report, 3rd quarter 2021.
APWG, November 2021.

[7] PhishTank. Frequently asked questions.

[8] K. M. Zubair Hasan, Md Zahid Hasan, and Nusrat Zahan. Automated pre-
diction of phishing websites using deep convolutional neural network. In
2019 International Conference on Computer, Communication, Chemical,
Materials and Electronic Engineering (IC4ME2), pages 1-4, 2019.

[9] M.D. Bhagwat, P. H. Patil, and T. S. Vishawanath. A methodical overview
on detection, identification and proactive prevention of phishing websites.
In 2021 Third International Conference on Intelligent Communication
Technologies and Virtual Mobile Networks (ICICV), pages 1505-1508,
2021.

[2

—

3

—_

[4

=

[5

—_

APPENDIX A
CODE FOR GATHERING DATA FROM PHISHING WEBSITES

import os
import Jjson
import signal

from time import time

def read_processed():
try:
with open ("processed", "r") as f:
processed = json.load(f)
except:
print ("No processed pages")
processed = {}
return processed

def write_processed(processed) :
with open ("processed", "w") as f:
processed_pages = Jjson.dump (processed, f)

def default_form() :

Form

{

"accessible": bool,

"duplicate": bool,

"appearance": str,

"form": list([str],

"personal_identification": bool,
"other": str,

}

return {

"accessible": False,

"duplicate": False,

"time": -999999.0,

"appearance": "",

"form": [],
"personal_identification": False,
"other" . n ",

processed_pages = read_processed()

with open("verified_online.json", "r") as f:
to_process = json.load(f)

def interrupt_handler (_signum, _stackframe):

valid_pages = list(

filter (

lambda p: p["accessible"] and not p["duplicate"], processed_pages.values ()

)
)
duplicate_pages = list(filter (lambda p: p["duplicate"], processed_pages.values()))
inaccessible_pages = list(

filter(lambda p: not p["accessible"], processed_pages.values())

)

pages_with_forms = list(filter (lambda p: p["form"] != [], processed_pages.values()))

pages_with_personal_identification = list (
filter(lambda p: pl["personal_identification”], processed_pages.values())

)

total_time = sum(p["time"] for p in valid_pages)

form_statistics = {}
for p in pages_with_forms:
for £ in p["form"]:
if £ not in form_statistics:
form_statistics[f] = 0
form_statistics[f] += 1

appearance_statistics = {}
for p in valid_pages:
f = p["appearance"]
if f == nn .
continue

if £ not in appearance_statistics:
appearance_statistics[f] = 0
appearance_statistics[f] += 1

Appearence counts

Form counts

Personal identification counts
Other comments

print ()

print (f"====== Statistics ======")

print (f"Total pages: {len(processed_pages)}")

print (f"Total valid pages: {len(valid_pages)}")

print (f"Total duplicate pages: {len(duplicate_pages)}")

print (f"Total inaccessible pages: {len(inaccessible_pages)}")
print (f"Total pages with forms: {len(pages_with_forms)}")
print (

f"Total pages with personal identification: {len(pages_with_personal_identification)}"

)
print (f"Total time analyzing pages: {int (total_time)} sec")
print (f"Form statistics:")

for field, count in sorted(form_statistics.items (), key=lambda i: -i[1]):

print (f"{field}: {count}")
print (f"Appearance statistics:")

for field, count in sorted(appearance_statistics.items (), key=lambda i:

print (f"{field}: {count}")
exit (0)

signal.signal (signal.SIGINT, interrupt_handler)

print (f"{len (processed_pages)} pages have been processed")

print (f"{len (to_process) - len(processed_pages)} pages to process")
print ()

print ("Starting site processing")

for page in to_process:

phish_id = page["phish_id"]
url = page["url"]

if phish_id in processed_pages:
continue

os.system (f"brave {url} &> /dev/null")
form = default_form()

print ()
form["accessible"] = input ("Is the site accessible? y/N\n> ") in ["y

if not form["accessible"]:

"
4

-i[1]):

"Y"]

processed_pages[phish_id] = form
write_processed (processed_pages)
continue

print ()
form["duplicate"] = input (

"Is the site a duplicate of one you have analyzed before? y/N\n> "
) in [lly", IIYII]

if form["duplicate"]:

processed_pages[phish_id] = form
write_processed (processed_pages)
continue

start_time = time ()

print ()

print ("Does the site look like:")

print ("1. Bank")

print ("2. Post service")

print ("3. Rewards site")

print ("4. Cryptocurrencies")

print ("5. Stock trading")

print ("6. University")

print ("If other, write a short description or leave blank")

appearance = input ("> ")
form["appearance"] = {
'llll: "bank",
"2": "post service",
"3": "rewards site",
"4" . "cryptocurrencies",
"5": "stock trading",
"6": "university",

} .get (appearance, appearance.lower())

print ()

print ("Is there any form fields that matches the following?")

print ("1. Name")

print ("2. ID-number")

print ("3. Bank information")

print ("4. E-mail")

print ("5. Password")

print ("If other, write a short description. Leave blank when done")

while (field := input ("> ")) != "":
form["form"] .append (

{

"l" . llname n
. 14
"2": "id number",
"3": "bank information",
"4". "email"
. ’
ll5ll. llpassword",

}.get (field, field.lower())
)

print ()
form["personal_ identification"] = input (
"Does the site want you to sign in using some sort of personal indentification such as
BankID? y/N\n> "
) in ["y"] IIYII]

print ()
form["other"] = input ("Other relevant info about the site\n> ")

end_time = time ()

form["time"] = end_time - start_time

processed_pages[phish_id] = form
write_processed (processed_pages)

print (f"Dowloading the site to folder {phish_id}")
os.system (f"mkdir {phish_id}")
os.system(
f"cd {phish_id}; wget --recursive -np -nc -nH --cut-dirs=4 --timeout=1 --random-wait
--wait 1 -e robots=off {url}"

APPENDIX B
VISUALISATION OF RESULTS

0.5

0.4

Fig. 4. The frequency of requested information in the identified forms

Fig. 5. The frequency of known appearances

