
The application of reverse engineering tools and
analysis of common anti-analysis techniques

Maximilian Vorbrodt
Linköping university
Linköping, Sweden

maxvo113@student.liu.se

Felicia Posluk
Linköping university
Linköping, Sweden

felpo253@student.liu.se

Abstract—The purpose of this study was to investigate anti-
analysis techniques used in Android applications and how reverse
engineering may be used to combat these. The ultimate goal of
this was to determine common anti-analysis techniques, tools that
can circumvent them, as well as determining user friendliness of
the tools. A mixed methodology approach was used, combining
a literature study with practical experiments where OWASP
crackme applications were solved to get a hands-on experience
of how anti-analysis techniques are actually applied in Android
applications. Contributions of this paper included what are the
most common anti-analysis techniques and what makes them
popular, tools that can be used to solve common anti-analysis
techniques as well as an analysis of how easy they are to use and
apply.

I. INTRODUCTION

Malicious programs are everywhere and may infringe on
user’s privacy, generate financial losses, restrict access to
resources and much more. To hinder malware from executing,
malware analysis is used to provide defensive and protective
procedures, it is also used for the development of other counter
measurements of malware.

To combat malware analysis, attackers use anti-analysis
techniques in order to prevent or increase the work it takes
to detect, reverse engineer and analyze their malware. There
exists a lot of different anti-analysis techniques, but the main
idea of all of them is to make the program harder to read
or make it appear as something it is not, so it will pass the
necessary malware analysis checks and reach the end user.

To understand how these anti-analysis techniques are used
and how to counter them, it is important to have a practical
understanding of how they work and what tools can be used to
reverse engineer applications containing malicious programs.

This is why the OWASP (The Open Web Application
Security Project) has released a number of crackmes for
the Android operating system, which are basically hacking
challenges to help developers and programmers gain a better
understanding of how anti-analysis techniques may be used
and countered. These crackmes will be the focus of this paper.

Furthermore, several tools will be tested on the crackmes
such as decompiler, debugger, static and dynamic tools for
analyzing. This will create a solid foundation of what are
effective ways different tools can contribute to hinder anti-
analysis techniques.

A. Questions
In this paper the following questions are will be addressed:
• What are the most common anti-analysis techniques used

today and why are they used?
• What tools are commonly used to circumvent anti-

analysis techniques?
• What reverse engineering tools are considered user

friendly?

B. Methodology
To answer the set questions that this paper aims to in-

vestigate, a mixed approach was used. The mixed approach
consisted of reviewing peer reviewed papers and other trusted
sources, as well as a more hands-on approach, where we
solved numerous OWASP crackmes to gain a better a better
understanding of how anti-analysis techniques are utilized and
how common reverse engineering tools works.

II. BACKGROUND

This section provides a wider understanding of Android,
OWASP foundation, reverse engineering tools and anti-
analysis techniques.

A. Android Architecture
Android is a mobile operating system with an open-source

platform, based on Linux and developed by Google. The
architecture of the system is composed of different layers,
where each layer defines specific services and interfaces. [25]

As the operating system is based on Linux, the lowest
level of the system is a variation of Linux Kernel, which
deals with memory, processes, power management, allows key
security features and more. On top of the Linux Kernel is
the Hardware Abstraction Layer (HAL), which provides an
interface between the higher-level Java API framework and the
hardware capabilities. Above HAL we got Android Runtime
(ART). Each application runs in its own process and has an
instance of ART by itself. ART includes for example just-in-
time (JIT) and Ahead-of-time (AOT) compilation. Above HAL
we also got native C/C++ libraries, which are required by ART,
HAL and other components/services. The higher-level Java
API framework includes the building blocks needed to create
Android apps. At the highest level we got system apps, which
includes apps for users and key capabilities which developers
can access from within the apps themselves. [4]



B. Application Signing

Android requires that all applications are digitally signed
with a certificate before they can be installed on a device or
updated. [15]

This is the first step in creating a sandbox for each and
every application in the Android system. A signed application
certificate helps determine what application is associated with
what user ID, where different applications will run with
different user IDs. This ensures that the application cannot
access other applications, except through well-defined IPC
(inter-process communication). [14]

C. Android Manifest

Every Android app has a AndroidManifest.xml file, which
contains code in binary XML format and is located in the root
directory of the app’s Android Package Kit (APK) file. The
manifest file contains information about the app’s components,
general app metadata, request permissions and more. [25]

In this case request permissions means both the permissions
the app needs to access protected apps or sensitive parts of
the system as well as any permissions other apps must have if
they want to access data from the app itself. Each permission
is identified by a unique label. [19]

D. OWASP crackmes

The OWASP nonprofit foundation is an abbreviation for
Open Web Application Security Project. Several open-source
software projects are developed by OWASP. These projects are
used as educational tools and techniques to secure the web and
mobile applications.[26]

One of these projects is OWASP crackmes, a mobile testing
guide developed to inform and educate about mobile applica-
tion security. The project contains different levels of reverse
engineering challenges. Developers are encouraged to solve
these challenges with different tools and techniques in order
to create a deeper understanding of different utilities that are
accessible when reverse engineering malicious applications.
[5]

E. UnCrackable App for Android Level 1

The objective of the first level in the OWASP crackmes
project is to find a secret string that is hidden within the ap-
plication. To complete the level the string should be extracted
by the developer. [5]

F. UnCrackable App for Android Level 2

The objective of the second level in the OWASP crackmes
project is to find a secret string that is hidden within the appli-
cation. However, there is an added difficulty when compared
to the first level. In this challenge there are added traces of
native code. The level is completed when the string has been
successfully extracted.[5]

G. Analysis techniques

Malware behave differently depending on their programmed
objective. Therefore, many tools and techniques have been
developed to identify their malicious nature. Consequently,
revers engineering is a necessary foundation for malware
analysis. Furthermore, the process of selecting analysis tools
with relevant functionalities is additionally important.

Knowledge about tools with static and dynamic analysis
properties, are one of the necessary requirements for successful
malware analysis. The main difference between the properties
is that static analysis examines the malicious sample without
executing the code, whereas dynamic analysis executes the
malicious code in an controlled environment. Thorough de-
scriptions about their individual advantages and disadvantages
will be stated below. [1]

1) Static analysis: Static analysis is beneficial for deter-
mining the signature of binary files. This refers to identifying
the origin of the malicious sample. The origin often leads to
insight about the behaviour of the malicious code, which is
the objective of malware analysis. Static analysis can be a
straight forward process of acquiring information as no further
analysis of the malware is necessary. However, this renders
the analysis technique ineffective against sophisticated and
advanced attacks. [1]

2) Dynamic analysis: Dynamic analysis techniques analyze
the behaviour of the malicious code in a safe environment in
comparison with the signature based analysis mentioned ear-
lier. This involves a more thorough analysis where behaviours
of the malware are executed in the sandbox environment. The
analysis system must be a closed and isolated for the technique
to work. [1]

Compared to static analysis there is a single tool used in
the technique and that is the sandbox environment. There are
different commercial tools that could be used, however, they
all have the same basic function of creating a safe place to
execute the malware. [1]

H. Anti-analysis techniques

There are plenty of anti-analysis techniques. Below are
some of the most common, which this paper focused on
identifying when conducting the study.

1) Obfuscation: Obfuscation is the process of writing or
modifying the code and data in a way which makes it more
difficult to comprehend, and is fundamental part of most
software protection schemes. An important key concept when
talking about obfuscation is that it is not something that can
be turned off and on, but instead its an integral part of the
program or system it is involved in.[24]

When analyzing an obfuscated app, a common approach
is to first decompile the bytecode (if possible), disassemble
included libraries and try to dissect and understand them.
During this process there are some common factors that should
be kept in mind, such as: meaningful identifiers (method
names, class names, variable names) may have been discarded
and string resources might have been encrypted. Also, code
may be concealed through a combination of encryption and



packing (compressing), that is the code of the original file is
unreadable until it has been unpacked and decrypted. [24]

2) Root Detection: Root detection in the context of anti-
analysis techniques, is the process of making it more difficult
to run an application on a rooted device. Thus, it hinders
some of the techniques and tools used for reverse engineering,
making it harder to analyze the code. On it’s own however,
root detection is not very useful, but when combined with
multiple other root checks located at different places in the
application it may increase the effectiveness of the technique.
[24]

The following criteria can be used to identify applications
containing root detection:

• root detection mechanisms operate on multiple API layers
(e.g. Java APIs, Assembler calls, native library functions)

• Detection methods are implemented throughout the app
at different locations and not grouped together at one spot

• Mechanisms are somewhat unique and not simply copy
pasted from the internet).

Root detection may also be implemented through the use of
libraries, RootBeer is an example of such a library. [24]

3) Anti-Debugging Detection: Debugging is a tool used to
analyze application behaviour during runtime. This process
allows the code to be step through, stopped and inspected and
a lot more. The behaviour of how the application modifies the
memory and how the variable states are altered can also be
inspected with a debugging tool. [24]

Anti-debuggers are preventive or reactive tools used to hin-
der the processes of debugging. A preventative anti-debugger
would identify the a debugging process is being initialized
while the reactive part would shut down the application as a
way to hinder the debugging process. There are many different
ways that the anti-debugger can prevent or react, another
example would be to trigger hidden behaviours to mislead the
debugging. [24]

The process of debugging on Android application occurs on
two different layers, on the Java API framework but also on the
Native layer containing C and C++ libraries. A sophisticated
anti-debugger would therefore operate on both levels. [24]

There is no general way of bypassing an anti-debugger
and is highly dependable on which defences have been im-
plemented by the anti-debugger. There are however, three
common approaches that can be applied during these circum-
stances. [24]

• The first approach is to patch the anti-debugging func-
tionality with the help of NOP instructions. This is a ma-
chine control instruction that stands for "No Operation".
The instruction insures that the application does nothing
during execution.

• The second approach consists of using dynamic tools
that can hook onto API’s on the Java and native layers.
This technique will alter the values of functions used to
detect the debugging process. Allowing the debugging to
commence.

• The third approach is to alter the Android environment.
This is possible because Android is an open environment.

4) Reverse Engineering Tools Detection: Reverse engineer-
ing tools detection is a method used to detect a reverse engi-
neering "attack". The application identifies the presence of a
reverse engineering application. There are different identifiers,
one is that reverse engineering applications usually run on root
level. Another identifier is that the tool forces the application
into debugging mode. When the reverse engineering attack
is detected, the application may respond in different ways to
hinder the process, for example the application may terminate
itself. [24]

One method that identifies applications using this anti-
analysis technique, is to look at what reverse engineering tools
an application uses. Additionally, the formation of packages,
files, processes, and other modifiable data. [24]

I. Tools for reverse engineering

These were the tools used in the study for dynamic and
static analysis of the applications.

1) Decompiler: APK Decompilers are used to extract na-
tive data and code components from Android applications,
enabling decoding of the applications code. It does this by
taking in a class file as input and then produces the source
code as output, where the decompilation is the exact reverse
process of compilation. [20]

There are plenty of decompilers which are used for the pur-
pose of reverse engineering Android applications. According
to [6], some of the more well-known are:

• JADX [27]
• Bytecode Viewer [21]
• Apktool [10]
2) Debugger: Debuggers are commonly used to test and

locate bugs, errors or inconsistencies in programs. Android
Studio for example, comes with a built-in easy to use debugger
tool which allows developers to set breakpoints in the code,
examine variables, evaluate expressions at runtime and more.
[13]

3) Disassemblers: Disassemblers are a static analysis tool
used when overviewing a malware’s binary code. Disassem-
bles convert the machine code into assembly language, it
can therefore be used to analyze native-code components of
applications. If the malware is primitive, then this tool can be
an efficient alternative for reverse engineering. [16]

III. EXPERIMENTS

This section will focus on the process of solving crackme
level 1 and level 2. The levels objective are described i section
II-E and II-F. Level 1 will be solved through two different
methods and level 2 will be solved with one method.

A. Choice of tools

The OWASP foundations guides to, how to solve the differ-
ent levels, was a starting point when it came to deciding what
tools we should work with. We had no experience within the
field of reverse engineering, therefore, it was difficult to know
what tools were widely known and used within the field. We
also wanted to use tools of both a static and dynamic nature.



There were 8 guides in the OWASP git repository [5] for
solving level 1 crackme and 3 of them used Frida as a dynamic
tool. Therefore, we chose the tool Frida as it seemed to have
guides to support us during the reverse engineering process.
In addition, the guides presented all the other tools they used
during the process which introduced us to the tools adb,
Ghidra, Apktook and jdb. The tool JADX was suggested by our
supervisor and Android Studio was a familiar program from an
earlier course about Android applications. Our motivation of
choosing our tools have therefore been familiarity, accessibility
to information, guidance and recommendations.

B. Solving UnCrackable App for Android Level 1
The goal of the crackme level 1 is to enter a secret string into

the application provided by crackme. When the application
has been installed on an Android emulator and is first started
the user is greeted with a screen displaying a text saying
"Root Detected!", see figure 1. If the user presses "OK" the
application will close, and it is not possible to press outside
of the popup to close the it.

Fig. 1. UnCrackable App for Android Level 1 starting screen

There are several ways that one can continue from this to
solve the application. In this experiment two approaches were
used, both utilizing dynamic analysis to solve the crackme.

1) Solving crackme level 1 using the java debugger: To
solve the UnCrackable App for Android Level 1 the following
tools were used: adb, Apktool, JADX, jdb (the Java debugger)
and the Android emulator installed through Android Studio.

The basic idea to solve it is to first make the application
debuggable, analyze the code, then use a debugger to find

a way around the alert(s) and finally get to the point where
the user input is compared to the secret string, so it can be
extracted.

Apktool was used to first make the application debuggable,
through adding android:debuggable="true" to the Manifest
file of the application.

After the application was made debuggable, it was not
signed and had to be signed before it could be installed on
the emulator. To sign the application the user must use their
keystore, or create a new one, and then sign the application
with the use of it.

Once the application was installed and started, the user was
greeted with a starting screen similar to the first one, but
now with a message displaying the text "App is debuggable!".
However, like before it is not possible to close the popup
without closing the application as well.

The next step was to start looking at the source code. Here
JADX gui was used to look at the source code. Through
looking at the code it was possible to determine the spot, where
the application uses a variable to check if the alert-popup can
be cancelled by pressing outside of it. Through using jdb, we
were able to set a breakpoint at this point and change the value
of the variable to true during run-time, which allowed us to
press outside of the alert-popups to cancel them.

The source code became legible with the help of the
decompiler JADX. However, as a part of the obfuscation
process, the names of variables and functions were difficult
to interpert.

The last step left was then to figure out what the secret
string was. To do this, the source code was investigated again
where it could be determined where the user string and secret
string are compared. Everything left at this point was to set
an appropriate breakpoint using jdb and enter a dummy text
to trigger the comparison event between the strings. Through
investigating the locals variables in the debugger during the
string comparison it could be determined that the secret string
was "I want to believe", which then could be entered to trigger
the success popup event.

2) Solving crackme level 1 using Frida: The following tools
were used for obtaining the solution: Frida, Android studio,
adb and JADX.

There are multiple ways of bypassing the root and debug-
gable detection, because there are several functions that could
be hooked. Through the process of hooking, Frida is able to
add additional functionality to the application and override
processes in the source code. [17] The chosen solution was to
hook the java.lang.System class and change the implementa-
tion of a function called exit(). [11] By hooking to the exit()
function the application would print out a string to the console,
instead of exiting the application. Frida hooked on to the exit()
function and overwrote the function by running script code.
Script code is self-created Java code, in this case it was a
print function. When the script had been loaded instead of the
original code the application became accessible. The search
bar accepted different inputs, however, to find the correct one
the original code needed to be inspected again.



There were two functions within the applications java code
that were of interest. The function verify() and the function
a(). verify() checked if the input was correct and this was
achieved with the help of function a(). During further analysis
it was shown that the function a() contains a hard coded
encrypted string that was used to verify the correct input.
Thereafter, the script was further refined to contain decrypting
functionality.[11] With the new script implementation the
decrypted string would be printed out on the console when the
verify button submitted an input. Frida was used once again to
hook onto the applications functionality. The incorrect string
test was used as an input and the console returned the string
I want to belive. The decrypted string was entered into the
application and the level 1 crackme was thus solved.

C. UnCrackable App for Android Level 2

The following tools were used for solving crackme level 2:
Frida, JADX, Android Studio, adb and Ghidra. Ghidra was the
new addition to the previous used tools and had the purpose
of analysing the native code.

The Java code of the application was obtained with the
decompiler JADX. The application consisted of the same
debugging and root detection code as level 1. Therefore, the
same script as mentioned in the solution for level 1 was used
to bypass the first challenge. [11] Thereafter, Ghidra was used
to gain access and read the native code. The native code in
a file called MainActivity_init consisted of a if-satement that
returned true if the variable is a string of length 23. This piece
of code seemed promising, therefore, Frida was used to hook
on to it. The Script used during the hook would try to send in
an incorrect string that had a length of 23 characters. When
the application compared the incorrect string with the correct
one, the script will print out the correct string into the Frida
console. [8] The incorrect string used was "I want your secret
asap" and the printed string was "Thanks for all the fish". The
secret string had been found and level 2 was completed.

IV. RESULT

The following section provides information about results
related to the research questions.

A. Anti-analysis techniques found in OWASP crackmes

As mentioned earlier we chose to focus mainly on four
anti-analysis techniques. During the experiments of solving
the crackmes level 1 and 2, several of these anti-analysis
techniques were discovered.

When the application is opened there is an alert a that
activates the pop-up "Root detected!", which is the anti-
analysis technique called root detection. This anti-analysis
technique hinders the use of reverse engineering tools.

After having made the application debuggable an alert is
displayed showing the text "App is debuggable", which means
the anti-analysis technique called anti-debugging detection is
utilized in the application to prevent tampering and debugging.

Finally, when looking at the Java source code with a tool
like JADX for example, we saw that the files and functions

had nonsensical names like a, b and c, which is a type of
obfuscation meant to make it harder for a developer to interpret
what is going on.

However, one thing we did not find was reverse engineering
tools detection. We used several tools for reverse engineering,
for example Frida, but non of the applications reacted to the
use of the tools in any way.

B. Popularity of anti-analysis techniques and their effective-
ness

According to [2] Android the primary anti-analysis tech-
niques can be divided into three categories: trivial APK
techniques, code obfuscation and preventive techniques.

The survey by [2] shows that the yearly numbers of pub-
lications related to the keywords "Android + Obfuscation" is
steadily increasing from close to zero year 2011 and around 50
year 2020. It is also mentioned by [2] that code obfuscations is
considered an effective and popular technique to make reverse
engineering applications harder.

However, it should also be noted that the overall publica-
tions related the keywords "Android + Security" has increase
from about 75 year 2011 to 500 year 2020 implying that the
overall interest in the field is increasing. [2]

Trivial APK techniques are for example manifest file mod-
ification, repackaging or anything that require significantly
less technical skills and which do not require code-level
modifications but more simple operations. Previous studies
have shown that over 86% of 1200 malware families used
repacking to introduce malicious code into applications. [2]

Due to Trivial APK techniques incurring low overhead
and being less complex have made them popular amongst
developers and malware authors, however machine learning
approaches are likely on the rise and will yield these kinds of
techniques less successful as they are not as complex to solve
as for example obfuscation. [2]

Preventive techniques prevents the application from execut-
ing in a test environment, making it difficult to analyze the ap-
plication. Some examples are: root detection, anti-debugging,
anti-emulator. These kind of techniques may make it more
difficult to for example solve obfuscation through dynamic
analysis of the application and therefore they certainly have a
place amongst anti-analysis techniques. [2]

In [2] it is shown that preventative techniques are mod-
erately touched upon in a comparative analysis of modern
Android malware anti-analysis approaches, but it is noteworthy
to mention that obfuscation seems to be much more of a hot
topic within the Android security literature.

The exact effectiveness of these anti-analysis techniques is
still uncertain as there is a lack of standard methodology and
benchmark to evaluate their effectiveness and efficiency. [2]

OWASP crackmes aims to highlight and educate developers
on important aspects of the anti-analysis techniques. In their
level 1 and level 2 crackme they partly made use of root-
detection, anti-debugging and obfuscation which may be an
indication of what OWASP considers to be the most important
for the community to know about currently.



C. What tools are commonly used to circumvent anti-analysis
techniques?

The OWASP foundation has a page dedicated to mobile
security techniques and tools. There are a total of 36 different
testing tools listed on the page that are used either for
Android or all platforms. Within these 36 alternative, the tools
Frida, Ghidra, Adb, Android Studio, Apktool and JADX were
mentioned. However, none of these tools were described as
common or popular. Nevertheless, the tool radare2 is described
by OWASP as being popular. [23]

In addition, OWASP provided solutions to the crackme
levels and Frida was one of the tools most commonly used in
level 1 and level 2. Other tools that were often metioned in the
solutions were Adb, Apktool and Ghidra. JADX and Android
Studio were only mentioned twice out of the 14 provided
solutions. Furthermore, certain solutions mentioned that the
user could use any emulator or decompiler of choice. [5]

In a survey made on malware detection and analysis tools,
a selection of tools were presented as helpful for researches
and security engineers. Apktool was one out of the four tools
mentioned for mobile malware analysis. However, nothing
about the tools popularity was mentioned. The survey men-
tions that the tools listed are a guide that can assist researches
in choosing appropriate tools for their malware analysis. [3]

Lastly, Apktool is referenced as the most prominent tool
used for unpacking and decoding apk files in an article that
overviews Android obfuscation techniques and relevant tools
and techniques. [22]

D. What reverse engineering tools are considered user
friendly?

The tool JADX is provided with installation and usage
documentation as well as answers to typical questions that
the user may have. The information can be found in the
git repository of the tool. [28] The tool can be used in the
computer terminal or through a graphical user interface. The
OWASP foundation has JADX listed in their tool list with a
link to the installation guide on the git repository. [23] Lastly,
JADX is mentioned as an application that is easy to install
according to an article by Albakri et al. [7]

Apktool has documentation for both installation and usage
on its homepage. [10] According to the earlier mentioned
article, Apktool is considered user-friendly because of its
ability rebuild code into readable Java code. [7] The OWASP
foundation has provided documentation of the different files
that are provided after the installation process and how to
manage them. However, the installation process is not provided
or referenced to. [23]

The homepage for Frida contains an installation and a
usage guide on its homepage. Frida is solely used inside the
command prompt and requires the user to be familiar with
JavaScript. The tool injects user written JavaScript code into
the application during debugging. [17] The OWASP founda-
tion has provided documentation and a separate installation
guide on their homepage. [23]

Ghidra’s homepage provides an installation and usage guide
in both written and video format. Ghidra is utilized solely
through the graphical user interface. [18] The OWASP foun-
dation has provided general documentation, a cheat sheet and
a separate installation guide on their homepage.[23]

The installation guide, general documentation and usage
guide for Android Studio is accessible through their popular
webpage for Android developers. [12] Android Studio’s graph-
ical user interface is easy to interact with, understand and it
also has a fairly large community online, which makes it easier
to solve errors and problems. [9] The OWASP foundation
gives no additional information about Android Studio besides
a hyperlink that redirects the user to the official website. [23]
The tool adb, in addition to others, are installed during the
installation of Android Studio SDK. [9]

E. Limitations

The topic of Android security is enormous, as well are the
number of possible anti-analysis techniques. Therefore, when
solving the OWASP crackmes the scope of this paper was to
mainly focus on four commonly used anti-analysis techniques
and see if they could be identified. The outcome of what
was learnt by solving the crackmes was partly limited by the
number of applications that were tested, had more applications
been tested it might have changed the final outcome.

Another limitation surrounding determining tools for reverse
engineering Android applications and their user friendliness is
that only a few tools were tested. To gain a better understand-
ing of how user friendly different reverse engineering tools are
it is recommended that more tools are tested and compared in
the future.

There are little to no benchmarks, standard methodology
and literature on how to determine what are the most effective
and/or popular anti-analysis techniques, as well as Android
reverse engineering tools, which means it is hard to make an
exact prediction. Therefore, a qualified guess based on our
own experiences combined with the little literature that exists
on the topic, results in the best possible prediction that can be
made at this point.

V. DISCUSSION

In this section the connections between the practical experi-
ment and trusted sources, will be made to answer the questions
that this paper aims to investigate.

A. Common anti-analysis techniques and why are they used?

The most common anti-analysis techniques can roughly be
divided into three categories: trivial APK techniques, code
obfuscation and preventive techniques.

Trivial APK techniques, such as Mainfest file modification
and repackaging, are very common as anti-analysis techniques,
as they are easy to apply while still adding some complexity
when it comes to reverse engineering. Trivial APK techniques
requires significantly less complexity then other kinds of anti-
analysis techniques making them easier to crack. This could
potentially affect their effectiveness negatively. As machine



learning approaches are likely to increase, it could potentially
lessen the popularity of trivial APK techniques in the future,
as they tend to require less complexity to solve.

Code obfuscation is also very popular amongst applications
containing malware, to make reverse engineering more dif-
ficult. Based on the result from of the survey conducted by
[2] the yearly publications related to obfuscation of Android
applications have increase from close to none 2011 to around
50 year 2022, meaning the topic of obfuscation has become
significantly more popular. This implies that utilizing obfus-
cation as an anti-analysis technique in Android applications
may also be on the rise. As stated in [2] code obfuscation
techniques are already considered to be very effective and
popular, and as the complexity can be made high it may result
in that they will continue to be widely adopted in the feature.

Preventive techniques, such as Anti-debugging and Anti-
rooting, have their place amongst anti-analysis techniques as
they can help prevent cracking of other anti-analysis tech-
niques through dynamic analysis for example. According to
[2] preventive techniques are popular, but it doesn’t seem to
be as "trendy" as obfuscation. It is unknown if this is because
they are already so widely adopted and effective, or because
there simply is not much left to develop further within the field
of preventive techniques. However, as preventive techniques
have unique functionalities in hindering reverse engineering
it is quite likely that they will continue to be applied in the
future as well.

The fact that all these three categories are exemplified in
the OWASP crackmes Android applications level 1 and 2, may
contribute to the thesis that all of the three categories are in
fact commonly used and effective as anti-analysis techniques.

B. What tools are commonly used to circumvent anti-analysis
techniques?

There were no surveys or research articles that provided a
straightforward or relevant answer to this question. At best
the articles recommended certain tools as a starting point or
the tools were mentioned as an example of how to combat
certain anti-analysis techniques. In addition, there were no
motivation provided on why the tools were selected to be
in the articles. [7] [3] [22] In the research article [22] it is
stated that Apktool is the most prominent tool for decoding and
unpacking apk files. However, there are no references referring
to this statement, therefore, it is unknown where the article
obtained the information.

The lack of research can be an indicator for that there is
more that can be done within the field of software security
and anti-analysis techniques. However, the lack of research
can also be an indicator that the tools used are less important
and that it is the understanding of how to use the tool in the
correct circumstances that is more relevant. The articles picked
out certain tools as an example of what to use when combating
anti-analysis techniques. This does not necessarily mean that
there are no better alternatives on the market.

The OWASP foundation has a list of 36 tools with different
user and installation guides. Many of these tools have an

overlap in functionality and application. In addition, the list of
tools is not ordered in any special way. [23] The foundation
does state that radare2 is a popular tool, however, similarly
to the articles, no additional information about how this
conclusion was made is provided.[23] The OWASP foundation
is, among other things, a source of security education for
developers. [26] Therefore, the list of tools can be interpreted
as a overview of possible resources for developers, especially
when the tools have no particular priority. Furthermore, the
understanding of anti-analysis techniques becomes more of
significant than the choosing of the most conventional tool.

The OWASP foundations guides to, how to solve the dif-
ferent levels, was a starting point when it came to deciding
what tools we should work with. We had no experience within
the field of reverse engineering, therefore, it was difficult to
know what tools were widely known and used within the field.
We also wanted to use tools of both a static and dynamic
nature. There were 8 guides in the OWASP git repository
for solving level 1 crackme and 3 of them used Frida as a
dynamic tool. Therefore, we chose the tool Frida as it seemed
to have guides to support us during the reverse engineering
process. In addition, the guides presented all the other tools
they used during the process which introduced us to the
tools adb, Apktool, Ghidra and jdb. The tool JADX was
suggested by our supervisor and Android Studio was a familiar
program from an earlier course about Android applications.
Our motivation of choosing our tools have therefore been
familiarity, recommendations, accessibility to information and
guidance.

C. What reverse engineering tools are considered user
friendly?

Considering that the previous question concluded that it is
undetermined what tools are commonly used to circumvent
anti-analysis techniques, the report will limit the discussion to
the tools used in section III.

Similarly to the previous project question, there are no clear
answers to how user friendly common reverse engineering
tools are. This question is subjective and requires a surveys on
large sample groups to be able to draw any useful conclusions.
It was stated in [7] that JADX is easy to install and Apktool is
considered user friendly, however no reference was supplied
or further information about how this conclusion was made.

There are many aspects to consider when concluding if a
tool is user friendly. All tools had aspects that made them more
or less user friendly. The different tools had a mix of user
interfaces, easy download and installation alternatives, guides
and application. Additionally, the perception of what is user
friendly is a personal preference. Due to the small sample size
of studies within this topic, it is difficult to draw any kind of
definite conclusion from only a literature study.

Nevertheless, there were different factors that shaped our
opinion on the reverse engineering tools user friendly attribute.
The first factor was the accessibility to different guides for
installation and tool application. If there was minimal infor-
mation online, the installation and application process became



significantly more difficult. The installation of Apktool was
difficult as there were not many guides. In addition, many
guides contained the same information about the installation
and application process. This resulted in very low variety in
information which was not beneficial if the guide did not work.
This occurred when trying to connect with the Frida server.
An additional factor was the accessibility to information about
solving error occurrences. This issue prolonged the reverse
engineering process significantly and could result in a demor-
alizing feeling. This was a more general issue with all of the
applications. JADX was easy to install and through the built in
graphical user interface, it was straight forward of how it could
be used. Therefore, we felt that the user friendliness of JADX
was high. The Java Debugger (jdb) was fairly difficult to deal
with, specifically it was hard to connect to the application and
set the correct breakpoints, but due to a large community and
many tutorials and guides surrounding it, it was possible to
solve most of the problems that we ran into. Due, to this it is
our opinion that the user friendliness of jdb is somewhat low
on its own, but with a large supportive community around it
becomes more accessible and user friendly.

VI. CONCLUSION

The concluded answers obtained from section V is provided
below. Each research question is answered individually.

A. What are the most common anti-analysis techniques used
today and why are they used?

The three groups of anti-analysis techniques that can be
considered the most common today is: Trivial APK tech-
niques, obfuscation and preventive techniques. Trivial APK
techniques, such as such as Mainfest file modification and
repackaging, are commonly used due to the relatively little
complexity that is necessary to implement them. However,
their simplicity might become their downfall in the future,
as more machine learning techniques may be implemented to
identify malware according to [2].

Anti-analysis techniques implementing obfuscation are pop-
ular due to them being effective, as well as for allowing a
variation of complexity. That is, they can add a lot or little
complexity depending on how they are implemented.

Preventive techniques, such as anti-debugging and root-
detection, have a unique places within anti-analysis techniques
as they may work like a first line defense in hindering reverse
engineering of the application.

B. What tools are commonly used to circumvent anti-analysis
techniques?

There is no supporting research for any particular tool being
more commonly used than their counterpart when used for
circumventing anti-analysis techniques.

C. What reverse engineering tools are considered user
friendly?

The answer is inconclusive as there is an inadequate amount
of studies made on the topic.

REFERENCES

[1] Michael Sikorski and Andrew Honig. Practical Mal-
ware Analysis - The Hands-On Guide to Dissecting Ma-
licious Software. 2012. URL: http://dtors.net/Hacking/
Practical % 20Malware % 20Analysis . pdf (visited on
04/25/2022).

[2] Pradeep Singh Vikas Sihag Manu Vardhan. A survey
of android application and malware hardening. 2019.
URL: https://www.sciencedirect.com/science/article/pii/
S1574013721000058 (visited on 04/25/2022).

[3] Sajedul Talukder and Zahidur Talukder. “A Survey on
Malware Detection and Analysis Tools”. In: Interna-
tional Journal of Network Security Its Applications 12
(Mar. 2020). DOI: 10.5121/ijnsa.2020.12203.

[4] Google. Platform Architecture. 2021. URL: https : / /
developer . android . com / guide / platform (visited on
03/06/2022).

[5] Bernhard Mueller. UnCrackable Mobile Apps. 2021.
URL: https : / / github. com / OWASP / owasp - mstg / tree /
master/Crackmes (visited on 03/07/2022).

[6] Abdul Raffay. 32 Best APK Decompilers. 2021. URL:
https://ssiddique.info/apk-decompilers.html (visited on
04/25/2022).

[7] Ashwag Albakri et al. “Survey on Reverse-Engineering
Tools for Android Mobile Devices”. In: Mathematical
Problems in Engineering 2022 (Jan. 2022). DOI: 10 .
1155/2022/4908134.

[8] Android Anti-Reversing Defenses. 2022. URL: https :
/ / 1337 . dcodx . com / mobile - security / owasp - mstg -
crackme-2-writeup-android (visited on 04/28/2022).

[9] Android studio. 2022. URL: https://developer.android.
com/studio (visited on 04/27/2022).

[10] Apktool. Apktool. 2022. URL: https : / / ibotpeaches .
github.io/Apktool/ (visited on 04/26/2022).

[11] Chandrapal Badshah. Solving OWASP MSTG Android
CrackMe using Frida (Level 01). 2022. URL: https: / /
www.youtube.com/watch?v=OyoLM0zU1wY&t=620s
(visited on 04/28/2022).

[12] Android Developers. Android Studio. 2022. URL: https:
//developer.android.com/studio (visited on 05/10/2022).

[13] Android Developers. Debug your app. 2022. URL: https:
/ / developer . android . com / studio / debug (visited on
04/25/2022).

[14] Android developers. Application Signing. 2022. URL:
https://source.android.com/security/apksigning (visited
on 05/10/2022).

[15] Android developers. Sign you app. 2022. URL: https:
/ / developer. android . com / studio / publish / app - signing
(visited on 05/10/2022).

[16] Disassembling and Decompiling. 2022. URL: https :
/ / mobile - security . gitbook . io / mobile - security -
testing - guide / android - testing - guide / 0x05c - reverse -
engineering - and - tampering # disassembling - and -
decompiling (visited on 04/28/2022).



[17] Frida. 2022. URL: https : / / frida . re/ (visited on
04/27/2022).

[18] Ghidra. 2022. URL: https://ghidra-sre.org/ (visited on
04/27/2022).

[19] Google. App Manifest Overview. 2022. URL: https : / /
developer.android.com/guide/topics/manifest/manifest-
intro (visited on 03/06/2022).

[20] Javatpoint. Java Decompiler. 2022. URL: https : / /
www . javatpoint . com / java - decompiler (visited on
04/25/2022).

[21] Konloch. Bytecode Viewer. 2022. URL: https://github.
com/Konloch/bytecode-viewer (visited on 05/10/2022).

[22] Sanjay Madan, Sanjeev Sofat, and Divya Bansal. “Tools
and Techniques for Collection and Analysis of Internet-
of-Things malware: A systematic state-of-art review”.
In: Journal of King Saud University - Computer and
Information Sciences (2022). ISSN: 1319-1578. DOI:
https : / /doi .org /10 .1016/ j . jksuci .2021 .12 .016. URL:
https : / / www. sciencedirect . com / science / article / pii /
S1319157821003621.

[23] Bernhard Mueller. UnCrackable Mobile Apps. 2022.
URL: https : / / mobile - security . gitbook . io / mobile -
security - testing - guide / appendix / 0x08 - testing - tools
(visited on 04/26/2022).

[24] OWASP. Android Anti-Reversing Defenses. 2022. URL:
https : / / mobile - security. gitbook . io / mobile - security -
testing - guide / android - testing - guide / 0x05j - testing -
resiliency - against - reverse - engineering # testing - anti -
debugging - detection - mstg - resilience - 2 (visited on
04/25/2022).

[25] OWASP. Android Architecture. 2022. URL: https : / /
mobile - security. gitbook . io / mobile - security - testing -
guide/android- testing-guide/0x05a-platform-overview
(visited on 03/06/2022).

[26] OWASP. Who is the OWASP Foundation? 2022. URL:
https://owasp.org/ (visited on 03/07/2022).

[27] skylot. JADX. 2022. URL: https://github.com/skylot/jadx
(visited on 05/10/2022).

[28] skylot. JADX. 2022. URL: https://github.com/skylot/jadx
(visited on 04/26/2022).


