
Practical Mobile Forensics
Otto Heino

Linköping university
Linköping, Sweden

Adam Halim
Linköping university
Linköping, Sweden

Abstract—With the increasing number of software applications
and systems being released, the need for developers to protect
their source code from others is increasing as well. The get access
to the source code or the direct functionality of the source code,
the application has to be reversed engineered. With an exposed
source code, vulnerabilities are more likely to be detected as well
as code stealing. This can be countered by using anti-reverse
engineering techniques when building the application. The most
common anti-reverse engineering techniques are root detection
and obfuscation. In this paper, the focus has been on using
reverse engineering techniques to bypass security mechanisms.
This was done through several challenges called unCrackable
from OWASPs Mobile Security Testing Guide. The techniques
used to bypass the anti-reverse engineering were both static
and dynamic analysis. For static analysis, JADX and Ghidra
were used to decompile the applications for an analysis of the
source code. For one part of the dynamic analysis, the decompiled
programs were tampered with to remove root detection, which
made it possible to debug the application and reveal further
information compared to just analyzing the source code. Another
dynamic analysis method was to use Frida to insert code when
the program was running to extract information from functions
in the program code. Out of these, Frida was to most powerful
tool for analysis, but JADX and Ghidra were the simplest and
most user-friendly. The anti-reverse engineering technique that
was most succesful in preventing our analysis was obfuscation.
Concidering unobfuscated code can already be difficult enough
to understand, trying to comprehend obfuscated code can be a
nightmare.

I. INTRODUCTION

When writing software, it can sometimes be necessary to
hinder others from stealing your code (or at least make it
more difficult to do so). Protecting source code can be seen as
a crucial objective for companies that don’t want competitors
to reap the benefits of the hard work of their employees and
money invested. To combat this issue, techniques that make it
more difficult to extract meaningful source code (i.e. reverse-
engineering) have been developed.

These techniques are called anti-reverse-engineering tech-
niques and are measures meant to make it difficult to ex-
trapolate what the original source code could have looked
like. Unfortunately, these techniques can be used by malicious
entities as well, such as creators of malware. By using anti-
reverse-engineering techniques when writing malware, it can
be difficult to differentiate the malware from a safe appli-
cation. As such, by using anti-reverse-engineering techniques,
malware can bypass anti-malware detection systems and make
its way onto trusted platforms, such as Google Play.

The goal of this paper is to investigate some of the common
anti-reverse engineering techniques are, and which methods

and tools are used to bypass them. The investigation is based
on OWASP Crackmes as a basis and will be used to test and
demonstrate different techniques. [1]

II. BACKGROUND

A. APK

Applications for Android come packaged in an Android
package (APK), which is a file that contains everything that
is needed to install and run the application. The package file
has the file extension .apk [2].

B. Reverse Engineering

Reverse engineering from a software perspective is the
concept of accessing the high-level program code behind
a functional application. When a program is compiled, the
compiled file for the program is unreadable by the human
eye as it is just binary bits; ones and zeros. The environment
where this program is created is (often) written in a high-
level program language such as Javascript, Java, Python, or
C++. To get a better understanding and to analyze all aspects
of a program or system, it is required to have access to the
decompiled program code, meaning an interpretation of how
the source code could have originally looked. When a program
is decompiled, the program source code is extracted from the
compiled binary file.

C. Debugging

Debugging is a technique that is used to find bugs in a
program. There are many debugging tools for lots of pro-
gramming languages and platforms. Android Studio, which is
used to develop Android applications, comes with a debugger
that enables an analysis of the program while the program is
running. The code can be stepped through and it gives detailed
information about the current function and variables1.

D. Anti Reverse Engineering

Anti-reverse engineering is the art of interfering with known
reverse engineering techniques. It increases the difficulty to
analyze applications and systems. There are a lot of different
anti-reverse engineering techniques and some of the most
common will be listed below.

1https://developer.android.com/studio/debug/



1) Obfuscation: The goal of obfuscation is to prevent
static analysis, which is done by making the program code
unreadable by human eyes, as well as software developed by
humans. The obfuscation process can be done in a number
of different ways and the most basic obfuscation is done
manually. Examples of manual obfuscation are purposefully
renaming classes, variable names, and functions to make them
look like they are doing something else than they are designed
to do. In those cases, the program is designed in a way to
makes it difficult to understand, both by humans and by other
software. With this approach, it is harder to continue develop-
ing a program as regular source code should be as simple as
possible to understand. A more common approach is to have
an obfuscation algorithm that scrambles and ”rewrites” the
code before compiling. In this way, continuous development
is easier and it is a more stable approach to development. [3]

2) Anti-root detection: Having root access to a device
gives the user more freedom to use their device however
they want. For example, one could allow apps that require
root privileges to run, which is not possible without a rooted
device. While this may be a valid reason to enable root
access on a device, this comes with some downsides. One
such downside is that it opens up for malware to be run in a
privileged mode as well, which can have catastrophic results.
Therefore, some applications today come shipped with root
detection mechanisms, which are supposed to detect if the
application has root privileges. The point of this is to combat
the security risks involved with rooting a device. A common
way of rooting a device is simply installing an su binary
which any application on the device can execute to grant root
privileges. [4]

A common root detection mechanism is checking if there
is an su binary file somewhere on the device. Look-
ing in common places, such as /system/xbin/su or
/system/app/Superuser.apk, or by running the com-
mand which su to find where the file is, in a way of
detecting if the device is rooted. Another mechanism is
by checking the BUILD tag of the application. By default,
Android applications downloaded from Google Play are built
with a ”release-keys” tag. If the tag ”test-keys” is present, it
means that the application is not an official build and can be
indicative of malicious software. [4] Furthermore, by checking
the directory permissions of certain folders, one can look if
a folder that isn’t supposed to be readable is readable. This
is because some root installs have to make certain folders
readable.

Detecting these root detection mechanisms is commonly
done utilizing static analysis. If the app is heavily obfuscated,
or if the root detection is done in a native library instead of in
Java/Kotlin code, dynamic analysis can be employed instead.

In a study conducted by Sun, Cuadros, and Beznosov where
182 Android applications were studied for root detection and
their effectiveness, they found that all root detection methods
they encountered were discovered and could be evaded. [4]
They also found that the most effective way of detecting if a
device is rooted is by checking for directory permissions. This

worked for 69% of applications tested. [4]

E. UnCrackable

The UnCrackable challenges are a set of mobile security
challenges which are developed and maintained by the Open
Web Application Security Project (OWASP). They have made
a Mobile Security Testing Guide which the UnCrackable
mobile challenges are a part. The challenges are developed
specifically to further enhance the understanding of mobile
security. [1]

III. METHODOLOGY

The methodology section will cover how information was
gathered regarding common reverse-engineering and anti-
reverse engineering techniques.

A. Jadx

The first thing we looked into was how to decompile the
APK file into Java code. Looking at papers relating to Android
reverse engineering and Android decompiling, several tools
were mentioned as being popular for decompiling. Some of
the tools mentioned are CFR2, Jadx3, JD Project4, dex2jar5,
Soot6 [2], [5]–[8]. A tool named dare (formerly ded) was
also mentioned frequently, but the website for it is no longer
available.

Using popular search engines with queries like ”best APK
decompiler” and ”popular APK decompilers”, we found sev-
eral blogs listing Jadx as number one789. It was also easy to
find tutorials for Jadx, and it seemed simple enough to use
without much effort. It was therefore decided that Jadx would
be the tool used to decompile the APK.

Jadx is a free open source program whose primary focus is
to decompile Android DEX and APK files into Java source
code. The code generated from the decompiler is not 100%
correct so a bit of manual patching is needed. This is especially
true if the code is obfuscated. [9]

B. Frida

Frida is an open-source dynamic instrumentation toolkit that
is commonly used for reverse engineering. It allows injecting
and hooking onto functions in a program, which allows you
to inspect, or override a function when it is called. Frida
scripts are written in Javascript and are supported by most
major platforms and in our case, running it with Android is
supported. [10] The project is very popular and has over 9000
stars on GitHub10.

2https://www.benf.org/other/cfr/
3https://github.com/skylot/jadx
4https://java-decompiler.github.io/
5https://github.com/pxb1988/dex2jar
6https://github.com/soot-oss/soot
7https://www.slant.co/topics/3101/∼best-apk-decompilation-tools
8https://ssiddique.info/apk-decompilers.html
9https://www.edopedia.com/blog/best-apk-decompilers/
10https://github.com/frida/frida



C. Ghidra

Ghidra is a software for reverse engineering which is
developed and maintained by the National Security Agency
(NSA) in the United States of America (USA). Ghidra is
mainly used for static analysis of malicious code and to find
possible weaknesses in networks and systems. [11]

Other popular alternatives we found for reverse engieering
and decompiling are IDA Pro11 and Radare212. Since IDA Pro
requires a paid license, the choice was between Radare2 and
Ghidra. Both of them are quite popular on GitHub, having
16000 and 32000 stars respectively. Furthermore, searches on
Google Scholar gave a similar amount of results (∼ 500 vs
∼ 600). It was therefore decided that Ghidra would be used,
simply due to its increased popularity.

D. Android Debug Bridge

Android Debug Bridge (adb) is a tool that is used to
communicate with an Android device. It allows a client to
send several commands to another Android device, such as
adb push to transfer files, and adb shell to get access
to the device’s shell. [12]

E. CrackMe challenges

In the first two levels of challenges, there is a string is hid-
den somewhere inside the application. To beat the challenges,
one has to find this secret string and type it into an input box.
If the correct string is entered, a success prompt is displayed.

1) First challenge: In the first challenge, the string is saved
in the code but is encoded and encrypted, making it difficult
to use the hard-coded value directly. To make out what the
string is, we have to figure out how it is encoded and how to
decrypt it.

2) Second challenge: The second challenge is much like
the first one except that the string comparison, as well as the
hidden string, are inside a native library which is imported into
the application. The level of obfuscation has also drastically
increased compared to the first challenge.

F. Procedure

The first challenge presented was solved by using two
approaches. The first approach was to use static analysis
combined with using a debugger. The second approach was
using dynamic analysis with Frida. The second challenge was
solved by using means of static analysis with the help of
Ghidra, which was used to reverse engineer a shared library.

In the GitHub repository for the crackme challenges, sev-
eral solutions are listed. Among these solutions, the tools
and approaches used are also listed. Some of these tools,
beyond the ones already mentioned earlier in this paper, are
Xposed13, RMS14, QBDI15 and SCAMarvels (Jean Grey)16.

11https://www.hex-rays.com/ida-pro/
12https://github.com/radareorg/radare2
13https://github.com/rovo89/XposedBridge
14https://github.com/m0bilesecurity/RMS-Runtime-Mobile-Security
15https://github.com/QBDI/QBDI
16\url{https://github.com/SideChannelMarvels/JeanGrey}

Xposed seems to be used in a fashion similar to how Frida
works; by hooking onto functions to modify the flow of
execution, and to read directly from the memory. RMS is
a web interface that uses Frida in the background and is
essentially a frontend for Frida. QBDI is also, similarly to
Frida, a dynamic binary instrumentation tool. In the context
of the crackme challenges, it is used to trace function calls
which then is taken advantage of using Frida. SCAMarvels
(Jean Grey) is a tool that can perform differential fault analysis
attacks and is used to break encryption. In the challenges, it
is used to retrieve an encryption key.

When deciding which tools to use, the popularity and
perceived ease of use were of utmost importance. This led
to the approaches using static analysis with Ghidra, and the
dynamic approach with Frida.

G. Limitations

Due to a limited time frame, the focus of the project was on
testing the most common analysis techniques. This was done
by focusing on the first two crackme challenges and applying
different techniques to them. The difficult technical nature of
Frida and our inability to fully understand the tool, combined
with the restrained time frame of the project resulted in limited
results for the dynamic analysis of the second challenge. If
more time or previous knowledge of the analysis method was
present, the second challenge would most likely be solved
with a dynamic approach as well as the finished static analysis
presented above in the paper.

IV. RESULTS

A. First challenge

The string hidden within the first application was extracted
both with a combined static and dynamic approach as well as
a fully dynamic approach.

1) First approach: First the APK was downloaded from
the OWASP Crackmes GitHub page17. The APK was loaded
into Android Studio to be run on an Android virtual machine.
This was done in order to observe how the application behaved
when run in a native environment. When the application ran, it
stated that it was running as root which was prohibited, which
can be seen in fig. 1. The application then shut down itself.

When it was deducted that the application forbade to be run
as root, static analysis of the code began. In the bytecode of
the APK, two hard-coded strings were identified, seen in fig. 2.
As it was known from the challenge description that it was a
string that was sought after, it was likely that these two strings
were significant. The string in their raw format however did
not provide any answer on their own, as they seemed to be
encoded and/or encrypted.

In the next step of the analysis, the APK was loaded
into the APK decompiler Jadx. Jadx provided Java source
code written for the application. As it was known that the
correct string had to be provided to complete the challenge,
the correct string had to be hidden somewhere in the code

17https://github.com/OWASP/owasp-mstg/tree/master/Crackmes



Fig. 1. Root detection mechanism

Fig. 2. Encoded secret string in bytecode.

where a comparison between the user input and the string
was conducted. Since the application was obfuscated, it was
not intuitive what variables represented or what the goal of a
specific function was. To identify where the comparison was
made, we looked in the class MainActivity and found a
method called verify(). It seemed like this was the method
where the comparison was initiated. The method reads the
input from the user, and then calls a method a.a() and passes
the user’s input. If the input is correct, the string ”This is the
correct secret.” is displayed. Otherwise, ”That’s not it. Try
again.” is displayed. The method can be seen in fig. 3.

Fig. 3. String comparison method a.a(obj).

Since the actual comparison takes place in the method
a.a(), we took a look at the aforementioned method. The
contents of the method can be seen in fig. 4. It was in this
method that the actual hard-coded string was present.

Fig. 4. Encoded secret string inside the app.

The obfuscation made it difficult to identify what the correct
string was as it was declared encoded and encrypted which
made it look like random gibberish.

To analyze the string in the comparison moment, it would
be beneficial to debug the application so that the text could

be read at runtime. To be able to do this, the original Java
code had to be tampered with, since without tampering, the
program simply exits instantly. From Jadx, the source code
was exported as a Gradle project, which could then be loaded
into Android Studio. The code which checks for root detection
could then be commented out, which would disable the root
detection. To be able to debug the program, the code that
checks if the program is being debugged was also commented
out, as seen in fig. 5.

Fig. 5. Bypassing root detection mechanism.

A breakpoint was then set in the method a.a() and the
program was then run in debug mode. At the moment when
comparing the strings, the string was read as a sequence of
bits. These were presumably ASCII encoded characters. Using
an online ASCII decoder, it was revealed that the secret string
was ”I want to believe”.

2) Second approach: The first step was to get Frida run-
ning. This required the Android VM to run frida-server,
and the client to run frida.

To upload frida-server to the Android VM, the
frida-server binary was first downloaded from GitHub18.
Then, adb push was used to upload the file to the VM. With
the sever on the VM, the server was run as root by first running
adb root, and then by running adb shell to get a shell
into the VM, and then running the frida-server binary.

With the server running on the VM, we could now
inject our Javascript code to run when the uncrack-
able app was run. This was done by running the
command frida -U -f owasp.mstg.uncrackable1
-l level1Script.js.

The first challenge was to bypass the root and de-
bug detection. Since the application closed by running
System.exit(0), we could simply hook onto the method
and override its function. Instead of exiting, we could simply
return nothing. The second challenge was to read the contents
of bArr (as seen in fig. 4). Since Frida does not allow direct
access to variables of a method, we had to imitate what was
done in the method and print the contents of the string before

18https://github.com/frida/frida/releases/tag/15.1.17



returning. By doing this, we could read out the string as ”I
want to believe”. The code used can be seen in fig. 6.

setImmediate(() => {
Java.perform(() => {

let system = Java.use(’java.lang.System’);
system.exit.overload(’int’).implementation = () => {

console.log(’[+] Evaded system exit\n’);
}

let a = Java.use(’sg.vantagepoint.uncrackable1.a’)
let aa = Java.use(’sg.vantagepoint.a.a’);
let Base64 = Java.use(’android.util.Base64’)

a.a.implementation = () => {
const bArr = aa.a(a.b("8d127684cbc37c17616d806cf50473cc"),

Base64.decode("5UJiFctbmgbDoLXmpL12mkno8HT4Lv8dlat8FxR2GOc=", 0))
for (let i = 0; i < bArr.length; i++) {

console.log(String.fromCharCode(parseInt(bArr[i])))
}
return true

}
})

})

Fig. 6. level1Script.js, used to solve the first challenge.

B. Second challenge

The second challenge was solved purely with static analysis
which was done with decompiling and an analysis of the
program code. Jadx was used to decompile the APK into
readable Java code and Ghidra was used to decompile a native
library into readable C code. From the decompiled code it was
manageable to extract the hidden string.

There was an attempt to solve the challenge using Frida, like
the second approach in the first challenge but unfortunately,
we did not succeed.

1) First approach: The second challenge initially began
in the same premise as the first one, and the APK was
downloaded from the OWASP uncrackable website. It behaved
similarly when run through Android Studio which led to
that initially, the same procedure for defeating root detection
was used for this challenge. However when the APK was
decompiled, the application was significantly larger than the
first one, and the level of obfuscation had also increased. When
the decompiled code was put into Android Studio, a significant
number of errors were reported. This made it impossible to
compile and run the Java code. The number of errors where
so many that it would be inefficient to find and fix them all

Therefore a more straightforward static analysis approach
was adopted, as just like in the first challenge some kind
of comparison had to be made in order to validate the
string provided by the user. From looking in the code, this
comparison method was located in the class CodeCheck
and was called a(). This method in turn returned a native
method called bar(), which was imported from a library
called libfoo. Neither Android Studio nor Jadx was able to
provide any information that was readable for a human eye
from libfoo.

To decompile the native library, the decompiler Ghidra was
used. This provided several exported C functions. Browsing
the symbol tree in Ghidra, we could see a function called

Java_sg_vantagepoint_uncrackable2_Code-
Check_bar

as seen in fig. 7.

Fig. 7. Ghidra Symbol Tree, listing exported functions.

In this file, a C string comparison function is called,
(strncmp), taking three arguments:

strncmp(const char *str1,
const char *str2, size_t n).

The function compares two strings, by at most n bytes,
and returns a non-zero value if the strings are not equal. The
first argument, str1, is the user’s input in the application
text field, and the second argument, str2, is the hardcoded
secret string. Luckily, this hardcoded string was also part of
the exported function and had to be the string that was sought
after.

The string values were stored as hexadecimal numbers,
which here ASCII encoded characters. This can be seen in
fig. 8. The characters were stored in reverse order, meaning
the least significant bits were at the beginning of the string.
Taking this into account when translating the numbers using
an ASCII translator, we got the following string: ”Thanks for
all the fish”.

Fig. 8. Contents of the exported function bar(), including the secret string.

2) Second approach: There were difficulties solving this
challenge with Frida. The approach was to hook onto the
native function bar() and try to read the contents of the
string by reading the correct location in memory, or by simply
doing a hexdump and trying to find the string from the output.



It was identified that the function strncmp was loaded,
and its memory address was also recorded. By attaching to
the function and reading the function, the goal was to read
the first argument (recall that the first argument to strncmp
is the hard-coded string, as seen in fig. 8) and read at that
memory address and 23 bytes forward, giving us the entire
string. Unfortunately, this did not work, and the output was
pure gibberish. The code can be seen in fig. 9

setImmediate(() => {
console.log(’[+] Starting our hook’);
Java.perform(() => {

let system = Java.use(’java.lang.System’);
system.exit.overload(’int’).implementation = () => {

console.log(’[+] Evaded system exit\n’);
}
var strncmp = undefined;
let imports = Module.enumerateImportsSync("libfoo.so");
for(let i = 0; i < imports.length; i++) {
if(imports[i].name == "strncmp") {

strncmp = imports[i].address;
break;

}
}
console.log(’strncmp address: ’, strncmp)
let memAddr = ptr(0xecb35960)
let strncmpcall = new NativeFunction(memAddr, ’pointer’, [’int’])
Interceptor.attach(strncmpcall, {
onEnter: function (args) {
console.log(’args[0]: ’,args[0],’args[1]:’,args[1],’args[2]: ’,args[2])

},
onLeave: function (retval) {
return retval

}
})

})
})

Fig. 9. Attempt at using Frida to solve level 2.

V. DISCUSSION

The approach that successfully extracted the hidden string
in both challenges was conveniently also the least complicated
method of the three which were tested. This was the pure static
analysis approach and it was the least complicated as both Jadx
and Ghidra had great documentation and were user-friendly.
The opportunities which presented themselves when access to
the program code was presented were nearly limitless. Being
able to freely search the source code for a string comparison
made the task less complicated as the hidden string had to
pass through comparison and once this was found, it was
often a matter of understanding the comparison function to
extract the string. In experience of working with the crackme
challenges, obfuscation was the biggest obstacle in the way
of analysis when it comes to decompiling. Program code is
already hard to read and truly understand with documentation
and well-documented code and as neither of these exists when
decompiling, adding a layer of obfuscation on top of that
makes it frustratingly hard to understand what’s going on
in the program code. A great obfuscation can also make an
application uncompileable when decompiled as the decompiler
program does not understand the compiled program fully,
which in turn makes it difficult to turn the static analysis into
a semi-dynamic analysis which also further complicates the
analysis process.

When the initial APK is downloaded and run through
Android Studio, it shutdown thanks to root detection. The root
detection made debugging as an analysis tool worthless in that
particular aspect. But as mentioned above, this anti-analysis

technique only works if the APK is obfuscated to a degree
that a decompiled version could not compile again. This is
because it prohibits the analyst to remove the root detection
from the program code.

The root detection can also be bypassed dynamically with-
out decompiling the code by hijacking a function in the code
to run self-written code. This code can analyze what is going
on in the application without triggering the root detection. This
can be done using Frida. If an application is obfuscated to a
degree that makes static analysis difficult, and a decompiled
APK is uncompilabe, a dynamic approach with Frida might
be one of the few remaining alternatives for analysis.

If there was not a limited time window for the research, a
deeper understanding of Frida would have made it possible to
crack the second challenge with a fully dynamic method. A
deeper understanding of Frida would be the main focus if the
project would start over or if the next challenges would be
attempted.

VI. CONCLUSION

In this paper, a study was conducted where we looked
at common anti-analysis methods, and tools used to bypass
them. We found that bypassing most anti-analysis methods is
possible by using a combination of static analysis and dy-
namic instrumentation tools, allowing for reverse-engineering
of applications.

REFERENCES

[1] c. c. muellerberndt, sushi2k, “Uncrackable mobile apps,” https://github.
com/owasp-mstg/Crackmes, 2022.

[2] “Application fundamentals,” Nov 2021. [Online]. Available: https:
//developer.android.com/guide/components/fundamentals

[3] A. Balakrishnan and C. Schulze, “Code obfuscation literature survey,”
CS701 Construction of compilers, vol. 19, 2005.

[4] S.-T. Sun, A. Cuadros, and K. Beznosov, “Android rooting: Methods,
detection, and evasion,” in Proceedings of the 5th Annual ACM
CCS Workshop on Security and Privacy in Smartphones and
Mobile Devices, ser. SPSM ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 3–14. [Online]. Available:
https://doi.org/10.1145/2808117.2808126

[5] H. Jang, B. Jin, S. Hyun, and H. Kim, “Kerberoid: A practical
android app decompilation system with multiple decompilers,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 2557–2559. [Online].
Available: https://doi.org/10.1145/3319535.3363255

[6] A. Desnos and G. Gueguen, “Android: From reversing to decompilation,”
Proc. of Black Hat Abu Dhabi, vol. 1, p. 1, 2011.

[7] N. Mauthe, U. Kargén, and N. Shahmehri, “A large-scale empirical study
of android app decompilation,” in 2021 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER), 2021, pp.
400–410.

[8] W. Enck, D. Octeau, P. D. McDaniel, and S. Chaudhuri, “A study of
android application security.” in USENIX security symposium, vol. 2,
no. 2, 2011.

[9] skylot, “jadx,” https://github.com/skylot/jadx, 2022.
[10] [Online]. Available: https://frida.re/
[11] c. n. dragonmacher, ghidra1, “ghidra,” https://github.com/

NationalSecurityAgency/ghidra, 2022.
[12] “Android debug bridge (adb) nbsp;— nbsp; android developers,”

Mar 2022. [Online]. Available: https://developer.android.com/studio/
command-line/adb


