
Blockchain Security for IoT
Sean Zhong & Richard Johansson
Email: {seazh870,ricjo462}@student.liu.se

Supervisor: Andrei Gurtov, andrei.gurtov@liu.se
Project Report for Information Security Course

Linköping University, Sweden

ABSTRACT
Unmanned Aircraft (UA), such as drones, are becoming in-
creasingly popular in society and need to be securely identi-
fiable, and Drone Remote Identification Protocol (DRIP) with
the Hyperlegder Iroha blockchain as registry could solve the
problem. In this study, a small example network is set up and
the security aspects are evaluated and it’s concluded that
location updates of UA:s can be securely stored and accessed
in a blockchain, such as the Hyperledger Iroha blockchain.

1 INTRODUCTION
Internet of Things (IoT) devices, such as drones, are becom-
ing increasingly popular, both in business and for personal
use. This leads to many possible security vulnerabilities, such
as malicious actors fetching sensitive data or even taking
control of the devices. These vulnerabilities are exceptionally
important to mitigate when using IoT devices in environ-
ments such as the medical, military, and other critical fields.
Drone Remote Identification Protocol (DRIP) is a newly

proposed protocol that aims to securely identify Unmanned
Aircrafts (UA) such as drones [1]. DRIP also enables trustful
messages between UAs and other actors. DRIP introduces a
way for observers, such as the military, to gather informa-
tion about the presence of UAs in their airspace. Within the
DRIP protocol, confidential information must be restricted to
authorized personnel. The DRIP protocol is meant to be ap-
plied to all entities in an Unmanned Aircraft Systems (UAS)
network and all communication between them.
The DRIP protocol has not yet determined the exact im-

plementation of the registries and Network Remote Identi-
fication (Network RID) methods, i.e., how to identify a UA
through the network. A solution to this problem is proposed
by Y. Hashem, E. Zildzic, and A. Gurtov by using the Hy-
perlegder Iroha blockchain [2]. In their study, they present
a proof-of-concept (POC) that Hyperlegder Iroha can be
used as a permission-based blockchain network that both
has good performance and scalability as registry in DRIP.
The use of blockchain technology to secure drones and their
networks is also covered in [3].

This project continues their study and a test environment
based on DRIP and Hyperleger Iroha were created, where
Raspberry Pi:s worked as UA devices and was connected to

the network. The test environment was updated to the lat-
est version of Hyperledger Iroha. Furthermore, the security
aspects of the protocol were evaluated, and attacks, such
as adding fake nodes, changing information of a node, and
dropping nodes were tested and evaluated.

The paper is focused on answering the following questions:
in a network of UAs connected with the DRIP protocol using
Hyperledger Iroha as registry, can a malicious actor...

• change the information on a UA?
• remove other UAs from the network?
• add UAs to the registry?
• get details about other UAs on the network?

The rest of the paper is structured as follows, section 2
presents some background and theory needed to understand
the study, section 3 consists of the methodology used to
conduct the study, section 4 presents the results and section 5
discusses the results. A security analysis is conducted in
section 6 and a performance evaluation is made in section 7.
All of this is then concluded by the end of the paper in
section 8.

2 BACKGROUND
This section presents the relevant background and theory
needed to understand the study. Presented parts are the DRIP
protocol, blockchains in general, and the Hyperledger Iroha
blockchain.

2.1 Drone Remote Identification Protocol
Drone Remote Identification Protocol (DRIP) is a protocol
published in 2022 that defines solutions to the problem of
Unmanned Aircraft System Remote Identification and Track-
ing (UAS RID) [1]. The protocol is focused on security and
safety and uses already existing Internet resources to verify
that the information stored and sent is trustworthy, both
online and offline.

DRIP states small UA such as drones to be "low observable"
since they are small and highly maneuverable, quiet and
typically fly at low altitudes. However, they can act as threats
by carrying weapons, such as sensors and cyber weapons,
and themselves can be used as weapons by flying into targets.

There are a set of requirements that apply to DRIP, which
are separated into four subsets: general, identifier, privacy,



Sean Zhong & Richard Johansson

Figure 1: Event stream for each transaction made in Hyperledger Iroha [4].

and registries. There is no registry information model deter-
mined for DRIP, a part from choosing the UAS ID as a unique
key, and since this study focuses on DRIP with Hyperledger
Iroha as the register, the registries part is the most impor-
tant. There are four normative requirements for a registry
in DRIP:

• REG-1: Public lookup - Given a UAS ID, the register
must give the public information regarding the UAS,
regardless of the identity or role of the submitter.

• REG-2: Private lookup - Given a UAS ID, the register
must give the private information regarding the UAS,
if the submitter has the right to see such information
in regards to their identity or role.

• REG-3: Provisioning - The registry must give static
information about the UAS and its operator, as well
as dynamic information about its current operation
and the UAS Service Supplier (USS).

• REG-4: AAA Policy - Attestation, Authentication, Au-
thorization, Access Control, Accounting, Attribution,
Audit, or any subset thereof (AAA) must be specifi-
able by policies, accessible in the register and admin-
istration of such must be protected by AAA.

2.2 Blockchain
A blockchain is an example of a distributed ledger and con-
sists of a sequence of transaction blocks, which together
create a complete history of transactions in the system[5].
Each block store the hash of its "parent block" in its header
and has one, and only one, parent block. The first block in
the blockchain is called "genesis block" and has no parent
block.
Each block consists of a block header and a body. The

header stores information such as the hash of its parent block,
the hash of every transaction in the block and a timestamp.
The body includes a transaction counter and transactions,
which are authenticated with an asymmetric cryptography
mechanism, i.e., a key pair of a private and a public key.
The blockchain technology has some key characteristics

that enforce security, these are the following:

• Anonymity - Users can interact anonymously with
the blockchain using a different, generated, address,
that does not reveal their real identity.

• Auditability - Every transaction has to some previ-
ous transaction, therefore each transaction is easy to
verify and track.

• Persistency - Since all transactions are easy to verify,
invalid transactions would not be admitted and it
is very hard to delete already included transactions.
Blocks containing invalid transactions could be dis-
covered immediately.

• Decentralisation - Consensus algorithms are used to
remove the need of third party validation of transac-
tions and are responsible for data consistency.

2.3 Hyperledger Iroha
Hyperledger Iroha is an open-source Distributed Ledger Soft-
ware framework that allows for a decentralized way of stor-
ing data and communicating between devices. A Distributed
ledger is also known as a blockchain.
Iroha has a robust permission-based command system

that allows permission-based access for joining networks,
executing commands, and making queries. Iroha uses built-
in commands instead of smart contracts to make it easier to
do common tasks such as creating digital assets, registering
accounts, and transferring assets between accounts.
Iroha uses transaction status codes to tell the user if a

transaction was successful or not [4]. These are part of a
stream of events for each transaction and can be seen in
Figure 1. The transaction statuses used in this project are:

• STATELESS_VALIDATION_SUCCESS: The transaction
passed the stateless validation step successfully.

• STATELESS_VALIDATION_FAILED: The transaction
contained fields that violated some stateless valida-
tion constraints, hence failing.

• STATEFUL_VALIDATION_SUCCESS: The transaction
successfully passed the stateful validation.



Blockchain Security for IoT

Docker container

Blockchain

Timestamp Transactions

Signatures

Rejected
transactions’
hashes

Previous block
hash

Number of
transactions

Height

Hash of previous block
is being calculated

Timestamp Transactions

Signatures

Rejected
transactions’
hashes

Previous block
hash

Number of
transactions

Height

Hash of previous block
is being calculated

Timestamp Transactions

Signatures

Rejected
transactions’
hashes

Previous block
hash

Number of
transactions

Height

Hash of previous block
is being calculated

Location updateLocation update

IP address: 127.0.0.3
Port: 50053
Account ID: drone_two_hid@test

IP address: 127.0.0.2
Port: 50052
Account ID: drone_one_hid@test

Figure 2: Network used in the test cases.

• STATEFUL_VALIDATION_FAILED: The transaction
violates some rules checking the state of the chain,
e.g., account permission.

Hyperledger Iroha fulfills the four requirements on a reg-
istry in the DRIP protocol, these requirements can be seen
in subsection 2.1.

2.3.1 REG-1 & REG-2. Since the accounts in Hyperledger
Iroha are created on domains, the same account name can
be used in multiple domains. This leads to these accounts
being treated as different, separate accounts, although they
can use the same UAS ID. This leads to the possibility to
create two accounts for each user, where one contains private
information and one contains public information. Access to
view the account details could then be restricted to certain
accounts.

2.3.2 REG-3 & REG-4. The location updates are set using a
key/value pair set in the account information of the corre-
sponding UA. These key/value pairs cannot be removed or
modified by another account than the one setting it in the
first place. Furthermore, for every update of the value’s infor-
mation, the previous information is stored on the blockchain.
This supports non-repudiation, traceability as well as trust
in the UA:s own data. One drawback, however, is that Hyper-
ledger Iroha does not store logs of who has access to what
data, nor the purpose. To achieve this, the queries would

have to work as transactions themselves and therefore be
stored on the blockchain.

3 METHODOLOGY
The goal of this study was to analyze security risks with
Hyperledger Iroha as a registry in the DRIP protocol. To
conducts the analysis, a test network was set up using two
Raspberry Pi:s and a host device, in this case, a laptop. A
Hyperledger Iroha blockchain was set up on the host and
all devices were connected to the same LAN using a mobile
hotspot. A network schema can be seen in Figure 2.
The Raspberry PI:s worked as simulated UA:s and were

given a set IP-address and port number in the LAN to make
sure the transactions from the Hyperledger Iroha blockchain
were sent to the right places. Drone #1 got IP 127.0.0.2 and
port50052 and Drone #2 got IP address 127.0.0.3 and port
50053. The host device also got a static IP address and port,
127.0.0.1 and 50051 respectively.

Accounts were set up for both the drones and the host.
The host got an admin account with more rights than the
accounts connected to the drones. The admin account got
the ID "admin@test", Drone #1 got "drone_one_hid@test"
and drone #2 got "drone_two_hid@test".

A Docker container was set up to create a virtual environ-
ment where Hyperledger Iroha could be used safely without
being affected by other programs on the system. In the con-
tainer, a standard distribution of Iroha was installed, instead



Sean Zhong & Richard Johansson

of building a customized version. Since no customization
was done to the genesis block or the nodes, an environment
file was created to overwrite the initial peers linked to the
genesis block.
A separate Docker container with PostgreSQL was set

up using Irohas default configuration provided in the doc-
umentation. PostgreSQL was then used as a database for
Iroha.

A persistent Docker volume called Blockstore was also cre-
ated in order to store the blockchain persistently between ses-
sions on the host computer. Creating blockstore as a Docker
volume enabled persistent storage between different ses-
sions. Without a Docker volume, the stored data would be
lost between sessions.

Two Raspberry Pi:s were installed with Raspberry Pi OS, a
Debian-based Linux distribution designed for the Raspberry
Pi. Python 3 and the Iroha Python library were then installed.
The Pi:s were set up as Iroha peers in order to enable commu-
nication over the network between the host and Raspberry
Pi:s, using Python scripts that created accounts for the peers
and connected them to the Iroha blockchain.
Key pairs were created for each account, consisting of a

private key and a public key, generated according to the SHA-
3 cryptography algorithm. The algorithm used was included
in the IrohaCrypto library, which first randomly creates a
private key and then derives a public key from the already
created private key.
The IP addresses of the Raspberry Pi:s and the host ma-

chine were saved in the environment file with the key pairs
created earlier, as well as the different account names and
domain ID. The exact values used can be seen in Figure 3.
The environment file also allowed for adding initial peers
to the Iroha network which was needed for communication
between devices.

3.1 Sending transactions
Python scripts were written to send transactions between the
peers and the host computer. These python scripts utilized
Iroha’s Python library to make transactions between the host
and the Raspberry Pi. Several cases were tested and they are
listed below, firstly as the account holder of Drone #1:

(1) Initialize location of Drone #1
(2) Change location of Drone #1

and then as the (malicious) account holder of Drone #2:
(1) Change location of Drone #1
(2) Remove Drone #1 from the network
(3) Add Drone #3 with stolen credentials from Drone #1.
The Iroha blockchain has several status codes that were

printed to the terminal and analyzed to get assured about
the success or failure of an operation. These status codes
were the results of several stages and operations in Iroha.

These stages were executed in a set order step by step and
the results of those steps were output as the status codes.

4 RESULTS
Here, the result of each test case is presented.

4.1 Initialize location of Drone #1
The account holder of Drone #1 set the location of Drone #1 to
some initial values in the format of "latitude:longitude:altitude",
with the Iroha Python transaction command SetAccountDe-
tail. Since the account holder himself set their own account
details, no extra permission was needed and this returned
the status code STATEFUL_VALIDATION_SUCCESS.

4.2 Change location of Drone #1
The account holder of Drone #1 updated the location of
Drone #1 to the values "111:111:111" with the Iroha Python
transaction command SetAccountDetail, which overwrites
old values stored. As in the previous test, the account holder
set their own account details, so no extra permission was
needed and this returned the status code
STATEFUL_VALIDATION_SUCCESS.

4.3 Change location of Drone #1 as
malicious user

The account holder of Drone #2 updated the location of
Drone #1 to the values "222:222:222", with the Iroha Python
transaction command SetAccountDetail. The transaction
was signed with the private key of Drone #2 and since no per-
mission was granted to Drone #2 in beforehand, the transac-
tion failed with status code STATEFUL_VALIDATION_FAILED.

4.4 Remove Drone #1 from the network as
malicious user

The account holder of Drone #2 sent a transaction to re-
move the peer Drone #1 with the transaction command
RemovePeer and the public key of Drone #1 as value. The
transaction was signed with the private key of Drone #2 and
the transaction failed with status code STATEFUL_VALIDATI-
ON_FAILED, with the additional information No such permi-
ssions.

4.5 Add Drone #3 with stolen credentials
from Drone #1

The account holder of Drone #2 sent a query to get the
location of Drone #1 with the query GetAccountDetail, to
later be used in the creation of Drone #3. The transaction
was successful and the location "111:111:111" was returned.



Blockchain Security for IoT

Figure 3: The environment file used to configure the Iroha blockchain.

The next step was to create a new peer with the public
key from Drone #1, this was done with the transaction com-
mand Peer, with the public key and an IP address as fields.
However, this failed with status code No such permissions.

5 DISCUSSION
Here, the results of each test case are discussed, as well as
the project itself.

5.1 Initialize and update location of Drone
#1

The account holder of Drone #1 has the right to set the
location of their own drone, which is crucial for the location
updates to work properly. In a real environment, the location
data would come from GPS modules on the drone and then
be forwarded to the blockchain via the user’s account. The
permission to update the location could also be given to
another user, such as an admin, to do the initialization when
an account is set up.

5.2 Change location of Drone #1 as
malicious user

The Iroha transaction command SetAccountDetail needs
to be signed with a valid private key, and the permissions of
the user connected to the private key are checked before the
request is sent, which is crucial to enforce the integrity of
the system.

5.3 Remove Drone #1 from the network as
malicious user and Add Drone #3 with
stolen credentials from Drone #1

Logged in as the account holder of Drone #2, there was no
way to remove the peer Drone #1 or add new drones to
the network. This is a feature needed to make the system
secure and ensured via the secure SHA-3 cryptography key
exchange since the private key is needed to sign a transaction
and is verified via the blockchain with the corresponding
public key.

5.4 Methodology discussion
During the project, many problems occurred and this section
will cover them and discuss the methodology in general.
One major problem was to get the Iroha blockchain running,
although Hyperledger Iroha has very good documentation,
there were many small parts in the project setup that did not
work.

The initial plan was to edit the source code of Hyperledger
Iroha to fit the needs of the DRIP protocol, by changing the
regex requirements for the peer ID to match a Drone HID
needed by Iroha. This was not possible due to a lack of time
and machine power needed to build the modified version
of Hyperledger Iroha. During the build process, multiple
packets were downloaded and unpacked, which took more
than a day on the laptop used, hence the process was aborted.
Instead, a precompiled version of Hyperledger Iroha was
used, although this had some restrictions, such as the HID



Sean Zhong & Richard Johansson

needing to be in the format "hid@domain", instead of just
"hid". This precompiled version was a ready-made Docker
image. This image had some limitations such as a predefined
genesis block or the first initial block of the blockchain. This
problem was solved by providing the Iroha node with some
environment variables. The environment variables enabled
the node to use variables from the environment variables
instead of reading them from the genesis block that was not
modifiable.

Another problem that occurred was the creation and stor-
age of the key pairs. These were created on the host machine
and both keys were stored in the environment file, which
was pushed to a remote repository and accessible by all users
in the network. This is of course not safe and something that
needs to be done individually on each peer to ensure that
the private key is kept private. However, since the network
that was built as part of this project was a proof of concept
and due to time constraints, this issue was left unsolved.

In general, the setup used in the project worked very well
for the intended purpose. The intended purpose being to
set up a proof of concept Iroha network and to be able to
run some simple tests. Docker is highly recommended when
setting up similar networks. An ARM64-based MacBook was
used as the host computer for the project. The MacBook
posed some compatibility issues with some of Irohas’ depen-
dencies due to it being an ARM64-based computer. However,
running the environment in docker and using Apples built-in
AMD64 to ARM64 conversion layer worked fine.

6 SECURITY ANALYSIS
Here, a high level security analysis of Iroha is conducted and
discussed. A systematic examination of security risks asso-
ciated with blockchain systems were conducted by Li et al.
[6], and several attacks on blockchain systems are presented.
Another systematic review were done by Deirmentzoglou
et al. [7] as a literature review on long-range attacks on
blockchains.

6.1 Potential Point of Failure Weakness in
Iroha

The Iroha registry needs to be able to register new accounts
and perform different operations and queries. Since Iroha is
permission-based, there is always at least one administrator
account that has all permissions. Those permissions could be
the ability to create new accounts, change accounts, add new
nodes, etc. Having only one single administrator account
would introduce a single-point-of-failure to the whole sys-
tem. A compromised admin account would compromise the
rest of the system and enable adversaries to gain full control
of the blockchain network.

This potential risk can be mitigated by using the concept
of multi-signature transactions. Multi-signature transactions
in this case would require several admin accounts to sign
a transaction or query. Not only the admin account that
created the transaction or query. For every operation in the
blockchain network, a portion of the admin accounts would
be required to sign the operation. By using this mitigation
technique, an adversary would have to compromise multiple
admin accounts in order to compromise the whole system
which in turn greatly increases the difficulty of the attack
and decreases the likelihood of its occurrence.
It is not recommended to require all admin accounts to

sign every operation since that would enable an adversary
to block all operations on a network by compromising only
one admin account.

6.2 Man-in-the-middle Attacks
Iroha does not encrypt the actual contents of the data when
it is being transmitted between actors in the network. This
enables Man-in-the-middle attacks since the contents of the
data are sent in plaintext and therefore can then be read.
However, Hyperledger Iroha supports the use of Transport
Layer Security (TLS), which can be used to mitigate man-
in-the-middle attacks. TLS would encrypt and secure all
communication taking place in the blockchain network, and
encryption should be mandatory if there is a risk that the
data being sent could give access to and compromise a node.
This type of data could for example create node requests sent
from an admin account. TLS is sufficient for blocking and
mitigating most man-in-the-middle attacks.

6.3 Replay attacks
A replay attack is done by a malicious actor getting hold of
data sent via a Man-in-the-middle attack. This could work
out even if the malicious user e.g., gets hold of an encrypted
password, they could replay it later when asked for authen-
tication. This message would seem to be legit since it was an
authentic message that was sent by a legitimate user and en-
crypted in the correct way. This sort of attack is mitigated in
Iroha since all packets have a timestamp and all transaction
hashes are stored in the block store, even if the transaction
was rejected.

6.4 Logging
An important part of any critical system is to log actions
taken by its users. Logs that are of interest are all actions
taken by administrator accounts, as well as updates and
changes to the peers. The logs need to be encrypted and
stored in a secure place, with an authentication mechanism
to prevent malicious actors from accessing and submitting
logs.



Blockchain Security for IoT

0

2

4

6

8

Configuration A Configuration B Configuration C

Iroha nodes, each instance on separate VM Number of CPUs Iroha memory, GB

Test Configurations

Figure 4: Configurations used in performance evaluation

6.5 Storage of private keys
Since an asymmetric cryptography algorithm is used, it is
very critical to store the private key in a secure way to mini-
mize the risk of it being compromised. Anyone having access
to the private key could potentially create, sign and verify
transactions in the name of the entity to which the private
key belongs to. This is especially important for UA:s operat-
ing in public spaces where anyone could get a physical hold
of the device and access the hardware. If a malicious actor
gets hold of an admin private key, it would be catastrophic
for the security of the whole network. The problem could be
mitigated with hardware encryption on the UA where the
private key is stored to make it harder for a malicious actor
to access it.

7 PERFORMANCE EVALUATION
The Hyperledger Wiki provides a performance test compar-
ing the performance between using Hyperledger Iroha with
PostgreSQL and RocksDB. The performance test was made
using Iroha 1.3.0 and featured a number of different config-
urations. All data points used in the performance test were
gathered from the Wiki [8].
All tests were performed with similar Hyperledger Iroha

configurations that were set in a configuration file, which can
be seen in Figure 6. The maximum proposal size was 1000,
this is the maximum amount of transactions that can be in

one proposal. An increase of this parameter increases the per-
formance up to a point where a degradation is present. The
proposal delaywas set to 1000. Vote delaywas 500, this effects
how much time is spent before sending a vote to the next
peer, more nodes requires longer vote delay. Multi-signature
transaction network transport was enabled (mst_enable was
set to true). The time period before a not fully signed trans-
action is considered expired (mst_expiration_time) was set
to the default 1440 minutes. The maximum delay between
two consensus rounds (mst_expiration_time) was set to 500
milliseconds, lower idle period is more resource consuming,
but requires less waiting time. Lastly, the maximum rounds
to keep an open status stream while no status update is re-
ported (stale_stream_max_rounds) was set to 5, an increase
of this value leads to less reconnections to track a transaction
that is updated with new rounds.
There are three different configurations in the perfor-

mance evaluation, these can be seen in Figure 4. Config-
uration A has 7 Iroha nodes, 3 CPUs, 2GB RAM and 8GB
SSD storage per node. Configuration B has 4 Iroha nodes, 4
CPUs, 2GB RAM and 17GB SSD storage per node. Configura-
tion C has 4 Iroha nodes, 8 CPUs, 5GB RAM and 218GB SSD
storage per node. The SSD storage of every test configura-
tion is not present in Figure 4 since it would skew the graph
and make it less legible, however, the amount of Iroha nodes,
CPUs and Iroha memory for each configuration is shown.



Sean Zhong & Richard Johansson

0

250

500

750

1000

Configuration A Configuration B Configuration C

RocksDB, Average transactions/second PostgreSQL, Average transactions/second

RocksDB, Average transactions/second and PostgreSQL, Average 
transactions/second

Figure 5: Performance evaluation comparing PostgreSQL and RocksDB

Figure 6: Configuration file used in performance eval-
uation.

Figure 5 shows the average transactions per second for
each of the three configurations, using PostgreSQL and Rocks-
DB. Only already commited transactions were counted as
transactions. The total duration of the tests were 2 hours
for each configuration. The average value was taken in the
middle of the test over a period of 30 minutes. Throughout
the tests RocksDB performs better than PostgreSQL across
all three configurations. There was a significant difference

in performance between RocksDB and PostgreSQL in con-
figuration C as seen in Figure 5.

8 CONCLUSION
Although the Hyperledger Iroha blockchain is both time and
resource-consuming to configure, deploy and maintain, the
security aspects of using a blockchain as a registry in DRIP
are very relevant.

IoT devices are increasing in popularity and UA:s such as
drones pose new challenges. One of those new challenges is
the remote identification of drones, where reliable, fast and
secure drone identification is vital. DRIP is a protocol that
was built with secure drone remote identification in mind,
but DRIP needs a secure way of storing and sending data
between different actors on a drone network.

Using a permission based blockchain such as Hyperledger
Iroha to store and send data enables many advantages but
also some disadvantages. In this paper Hyperledger Iroha
was used as aDRIP registry. One big advantage of blockchains
is that previous blocks are very difficult to modify, this prop-
erty makes storing certain data such as identification tags
inherently more secure compared to traditional databases.
Another advantage is that blockchains are decentralized,
making it harder to compromise all the data stored by sim-
ply compromising a critical part of the system. Furthermore,



Blockchain Security for IoT

making sure identifiers of drones are not modified by adver-
saries is critical to the security of the system. Iroha enables
storage of drone identifiers on the blockchain, which is very
advantageous.
Iroha’s permission based structure is very useful for dif-

ferentiating and allowing privileges between different actors
on the network. This allows for good privilege separation
and clear roles in the drone network.
Some challenges and disadvantages of using Iroha and

blockchains in general is that they introduce higher compu-
tation requirements to the network. All decentralized ledgers
or blockchains needs some sort of consensus algorithm in
order to synchronize and agree upon data between all of
the different nodes of the blockchain. When compared to
a regular database that can simply be queried and updated,
blockchains need more computational power to complete
the same tasks.

Permission-based blockchains, such as Hyperledger Iroha,
can be used as DRIP registries and provide many advanta-
geous features. However there are still some disadvantages,
mostly regarding performance, that needs to be considered
for large drone networks.

The contributions made in this paper can be summarized
by a thorough security analysis of Iroha when used as a
DRIP registry, backed up by concrete tests. The findings
can be used by future implementers of drone networks and
can assist in creating a safer network. Different aspects of
using Iroha specifically and also using blockchains with IoT
devices in general is discussed. Those discussions can aid in
the thought process behind choosing different technologies
when building a security focused drone network.

REFERENCES
[1] S. W. Card, A. Wiethuechter, R. Moskowitz, and A. Gurtov,

“Drone Remote Identification Protocol (DRIP) Requirements and
Terminology,” RFC 9153, Feb. 2022. [Online]. Available: https:
//www.rfc-editor.org/info/rfc9153

[2] Y. Hashem, E. Zildzic, and A. Gurtov, Secure Drone Identification with
Hyperledger Iroha. New York, NY, USA: Association for Computing
Machinery, 2021, p. 11–18, (Alicante, Spain). [Online]. Available:
https://doi.org/10.1145/3479243.3487305

[3] A. Ossamah, “Blockchain as a solution to drone cybersecurity,” in 2020
IEEE 6th World Forum on Internet of Things (WF-IoT), 2020, pp. 1–9.

[4] L. Soramitsu Co. Hyperledger iroha documentation. (accessed: 2022-
04-14). [Online]. Available: https://iroha.readthedocs.io/en/main/index.
html

[5] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of
blockchain technology: Architecture, consensus, and future trends,” in
2017 IEEE International Congress on Big Data (BigData Congress), 2017,
pp. 557–564.

[6] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, “A survey on
the security of blockchain systems,” Future Generation Computer
Systems, vol. 107, pp. 841–853, 2020. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0167739X17318332

[7] E. Deirmentzoglou, G. Papakyriakopoulos, and C. Patsakis, “A survey
on long-range attacks for proof of stake protocols,” IEEE Access, vol. 7,
pp. 28 712–28 725, 2019.

[8] S. Lavrentev. (2021) Release 1.3.0. (accessed: 2022-05-05). [Online].
Available: https://wiki.hyperledger.org/display/iroha/Release+1.3.0

https://www.rfc-editor.org/info/rfc9153
https://www.rfc-editor.org/info/rfc9153
https://doi.org/10.1145/3479243.3487305
https://iroha.readthedocs.io/en/main/index.html
https://iroha.readthedocs.io/en/main/index.html
https://www.sciencedirect.com/science/article/pii/S0167739X17318332
https://www.sciencedirect.com/science/article/pii/S0167739X17318332
https://wiki.hyperledger.org/display/iroha/Release+1.3.0

	Abstract
	1 Introduction
	2 Background
	2.1 Drone Remote Identification Protocol
	2.2 Blockchain
	2.3 Hyperledger Iroha

	3 Methodology
	3.1 Sending transactions

	4 Results
	4.1 Initialize location of Drone #1
	4.2 Change location of Drone #1
	4.3 Change location of Drone #1 as malicious user
	4.4 Remove Drone #1 from the network as malicious user
	4.5 Add Drone #3 with stolen credentials from Drone #1

	5 Discussion
	5.1 Initialize and update location of Drone #1
	5.2 Change location of Drone #1 as malicious user
	5.3 Remove Drone #1 from the network as malicious user and Add Drone #3 with stolen credentials from Drone #1
	5.4 Methodology discussion

	6 Security analysis
	6.1 Potential Point of Failure Weakness in Iroha
	6.2 Man-in-the-middle Attacks
	6.3 Replay attacks
	6.4 Logging
	6.5 Storage of private keys

	7 Performance evaluation
	8 Conclusion
	References

