
Analyzing the IoT landscape in the Nordics
Carl Magnus Bruhner, Jakob Sjöqvist

Linköping University
Email: {carbr307, jaksj829}@student.liu.se

Supervisor: Andrei Gurtov, andrei.gurtov@liu.se
Project Report for Information Security Course

Linköpings universitet, Sweden

Abstract—A fast-growing category of the internet is the In-
ternet of Things (IoT). As the number of IoT devices grows,
the payoff of finding vulnerabilities to exploit increases and
hence the area of research. The type of IoT devices and their
vendors can vary around the world as different service providers
either develop their own products or choose different hardware
providers. For this reason, the aim with this project is to identify
a vulnerable IoT device commonly used in the Nordics and
present how vulnerable devices can be identified through the
IoT search engine Shodan. Additionally, the most commonly used
unprotected network protocols for IoT devices are identified and
their use in the Nordics are quantified. Finally, recent research
is reviewed, and other similar vulnerabilities presented.

Index Terms—IoT, Shodan, MQTT, RTSP, UPnP, Zigbee,
vulnerabilities, network protocols, security

I. INTRODUCTION

Internet of Things (IoT) is an umbrella term for connected
devices which, by being able to communicate with other
devices in the same network or via the Internet, has created
many new opportunities. There are many different types of
devices that are included in the term IoT, but typical areas
of use are healthcare, smart home systems, industry and
production.

The IoT area has developed a lot in recent years and there
are many indications that this trend will continue. By enabling
communication between devices, many processes have been
improved and streamlined, but connecting more devices to
networks and the internet also renders some problems. A
common and significant problem is security. The security
problems are also difficult to isolate and remedy as both the
devices as such and the protocols they use to communicate
may be vulnerable.

To get maximum value from IoT, many devices are exposed
to the internet which imply that not only the administrator
or users can access the device but also anyone else with an
internet connection. Today, commercial tools are available and
can be used to identify vulnerable devices with just a few
clicks.

To investigate what the current status of IoT security in
the Nordics is, the purpose of this project is to answer the
following research questions:

• What IoT devices with known vulnerabilities are popular
in the Nordics?

• What kind of vulnerabilities do these IoT devices have,
and can vulnerable devices be identified?

• Are there any differences in usage of unprotected IoT
network protocols between the Nordic countries?

II. BACKGROUND

In this section, relevant background to the findings of the
project will be introduced. First, general concepts will be
presented, followed by common network protocols, services
and devices.

A. Internet of Things (IoT)

Internet of Things (IoT) are a term describing the phe-
nomena of the massive number of internet-connected devices
making up the ”next generation” of the internet [27]. Cost-
effectiveness, ease of use and the ability to use devices for
monitoring in many settings and environments are drivers for
the usefulness of IoT. However, privacy and security issues
are major shortcomings and thus naturally of interest for the
security research community [2, 3, 16].

B. Message Queuing Telemetry Transport (MQTT)

Message Queuing Telemetry Transport (MQTT) is a net-
work protocol designed to be lightweight and useful for low-
bandwidth networks, such as for Internet of Things (IoT).
It is standardized by the Organization for the Advancement
of Structured Information Standards (OASIS), with the latest
standard being v5.0 published in 2019 [7]. MQTT have
TCP/IP port 1883 and port 8883 registered with IANA for
non-TLS and TLS communication respectively.

MQTT has a publish-and-subscribe messaging support,
where clients can subscribe to different topics being published
to. It is also possible to subscribe to any number of subtopics
with the help of the wildcard character #.

C. Real Time Streaming Protocol (RTSP)

Real Time Streaming Protocol (RTSP) is a network protocol
for data with real-time properties such as audio and video [22].
It uses port 554 (primarily TCP, but UDP as well) by default.
RTSP has authentication implemented in the design, but it is
not used by default. Among other video streaming services,
RTSP is used by various web cameras that streams information
over the network [2].



D. Universal Plug and Play (UPnP)

Universal Plug and Play (UPnP) is a technology for seam-
less peer-to-peer inter-connectivity between different devices
in different environments [20]. It is platform independent
and support any network technology—including phone and
power line. The listed benefits of utilizing UPnP architecture
are allowing devices to use zero-configuration and automatic
discovery to join networks, announce its presence and get
to know the network with other devices automatically. UPnP
has a discovery protocol, Simple Service Discovery Protocol
(SSDP), that uses the IANA-reserved port 1900 [8]. Addition-
ally, port 7900 is used for multicast event messages.

E. Zigbee

Zigbee is a wireless protocol and standard that is widely
used by IoT devices. The Zigbee protocol is developed by the
Zigbee Alliance and was designed to be highly reliable, cost-
effective, low power consumption, secure and an open global
standard [9].

More in detail, Zigbee implements the IEEE 802.15.4 stan-
dard which is a wireless standard suited for wireless private
area networks (WPAN). Due to the requirement of low power
consumption, the transmission range and rate is limited in
Zigbee. When Zigbee communicates in the 2.4 GHz spectrum,
the maximum (theoretical) transmission rate is around 250
kbps. To improve the transmission range, Zigbee leverage
mesh technology; each individual device is not required to
be connected with the source device as messages can be
forwarded from the source device via intermediate devices to
reach the destination node [9].

In terms of security, Zigbee networks are secured by 128-bit
symmetric AES encryption [26].

Popular products that use the Zigbee protocol includes
Philips Hue smart home system [21]. As of 2020, more than
half a billion Zigbee chips has been sold [1].

F. Shodan

Shodan1 is a search engine for internet-connected devices,
including IoT [27]. It can identify over 100 000 consumer IoT
devices such as webcams. Beside the general search engine on
the website, Shodan offers capabilities such as an API, a map
interface, image crawls, vulnerability database and more. The
image crawl stream for instance displays images retrieved from
IP addresses with open access.

G. Network cameras

Network security cameras, wireless smart cameras and IP
cameras are all various forms or synonyms for cameras that
are connected to the internet [2]. Being forms of IoT devices,
network cameras too share the vulnerabilities known for IoT
in general. This would for instance open up the risk (or
opportunity) of gaining access to camera feeds due to poor or
non-existing access control. Even with access control, default
credentials are also a known issue allowing for ”authorized”
unauthorized access.

1https://www.shodan.io

Fig. 1. Home Assistant hardware [17]

H. Home Assistant

Home Assistant is an open-source software project that
aims to simplify home automation by connecting different
IoT systems. Having all IoT systems connected and controlled
from one application, the user can create scenes that involve
a range of protocols and devices from multiple manufacturers
[11]. One example of such a scene could be to turn on all
lights if the door is unlocked and it is dark outside.

To support multiple protocols and devices, Home Assistant
is built using a modular architecture and new modules can be
added as a new type of device or protocol is introduced [6].
As of the time of writing this report, Home Assistant has more
than 1700 integrations and the library grows continuously as
new integrations are developed and released by the community.

Home Assistant is privacy oriented and hence no hosted
application is offered. Instead, each user has to install and run
the application on their own hardware. Hardware with Home
Assistant installed by default is also sold from the official
Home Assistant website. In short, Home Assistant can be
delivered in three different formats [11]:

• Home Assistant Core (application to be deployed to any
modern operating system)

• Home Assistant OS (minimal Linux operating system with
pre-configured installation of Home Assistant Core)

• Hardware (delivered with Home Assistant OS)
Figure 1 shows the Home Assistant hardware, and Figure 2

show an example of a Home Assistant dashboard.

III. METHOD

The project was primarily based on quantitative methods
and the main tool used throughout the project was Shodan. As
a complement, qualitative methods will be used to perform a
more in-depth analysis of known vulnerabilities for identified
devices, protocols and applications.

The first phase was about identifying interesting and rel-
evant devices, protocols and software. For a device to be

https://www.shodan.io


Fig. 2. Example Home Assistant Dashboard [24]

considered as interesting and relevant it has to be widely
used. In order to identify widely used devices, applications and
protocols used in home automation or other IoT environments
as well as trends from online communities and forums were
analyzed, in conjunction with top lists from Shodan and
retailers as references.

The compiled list of popular devices was then subject for
further investigation by figuring out how these devices can
be found using Shodan. The results from Shodan were then
used to quantify the occurrence of IoT devices. In addition, all
devices were also grouped by their properties (e.g., protocols
used, device type, manufacturer) and each category was then
subject for a more in-depth analysis where known vulnerabil-
ities for the given category was inspected and analyzed.

A. Identifying vulnerabilities in Home Assistant
By making the assumption that many users want to be able

to connect to their home automation systems, it may also be
assumed that they may expose their Home Assistant installa-
tion to the internet to make it possible to access their system
via the internet. To identify these devices, a fingerprint was
required in order to find the devices via Shodan. By inspecting
the source code for the Home Assistant front-end, the HTML
title of the authorization page was found to be Home Assistant
[12]. With this title as the fingerprint, active Home Assistant
installations in the Nordic countries was found using the
Shodan search query http.title:"Home Assistant"
country:se,no,dk,fi,is, which returned more than
3800 results.

The acquired result contained the HTTP headers sent
from Home Assistant when it was crawled by Shodan. The
HTTP-header was found to contain version information about
httpaio which is the underlying web server software used
by Home Assistant [12]. As httpaio is a dependency of
Home Assistant, the version number was used to get an
indication of which version of Home Assistant being used
by analyzing the change log. The version of httpaio that
was found to be part of the last vulnerable version of Home
Assistant was httpaio version 3.7.3 [13]. In addition, for
a subset of all devices Shodan did also provide the raw
Home Assistant version. By combining these two techniques,
vulnerable installations could be identified using the Shodan
API.

Known vulnerabilities in Home Assistant was found by
searching the internet, and more in detail by searching in
common vulnerabilities and exposure (CVE) databases.

IV. RESULTS AND DISCUSSION

Based on the aforementioned method, the following results
have been compiled. They are presented grouped as vulnerable
devices, vulnerable protocols and regional data findings.

VULNERABLE DEVICES

In this section we will further explore the vulnerability of
Home Assistant and investigate how widespread it is in the
Nordic countries by using Shodan.



A. Home Assistant

One major known vulnerability was found for Home As-
sistant [19]. The vulnerability itself was not in the Home
Assistant core but in multiple custom integrations. The vul-
nerability allowed an unauthenticated attacker to perform
directory traversal and view all files accessible to the Home
Assistant process. Thus, it was possible for an attacker to steal
credentials used by other custom integration, such as API keys
used to control the home alarm system. One of the integrations
that contained this security issue was the Home Assistant
Community Store (HACS)2 which has more than 1700 stars on
GitHub and the latest version (1.12.3) has been downloaded
more than 18,000 times in eight days. HACS is an add-on
to Home Assistant that simplifies the process of installing
additional integrations that are developed by enthusiasts but
not released in the official integration repository.

Given the directory traversal vulnerability and the popularity
of HACS, it is clear that many systems and installations was
and still are vulnerable due to users not keeping their systems
updated.

To investigate the magnitude and severity of this vulner-
ability, the source code for the custom integration for the
home alarm providers Verisure3 (available via official inte-
gration repository) and Sector Alarm4 (available via HACS)
was analyzed. Both the integrations are wrappers for their
respective API and hence all actions that are initiated in Home
Assistant needs to be sent via the provider’s API service. To
communicate with the API, both APIs requires credentials.
As described in the documentation for Home Assistant, all
credentials and secrets are stored in a secrets.yaml file
[23].

Given the directory traversal vulnerability in Home Assis-
tant that allowed an unauthorized user to access the file system,
it is possible for an attacker to extract all system secrets—
including API keys used by Verisure or Sector Alarm—and
hence an attacker could control the alarm system.

Using the Shodan API, vulnerable devices were identified
in the Nordic countries. Active Home Assistant devices were
found by using the Shodan query http.title:"Home
Assistant" country:se,no,dk,fi,is and devices
running version 2021.1.5 of Home Assistant or version 3.7.3
of httpaio or older was considered vulnerable as described in
section III. The code used is available in Appendix A.

Table I presents the results, with both vulnerable and total
number of devices. Furthermore, the cities with the most
vulnerable devices are presented in Table II with vulnerable
and total number of devices.

The ports used by Home Assistant are primarily port 443
(1832 devices), port 8123 (1660 devices) and port 80 (106
devices). Among the vulnerable installations port 8123 (224
devices) followed by port 443 (131 devices) and port 80 (10

2https://github.com/hacs
3https://github.com/home-assistant/core/tree/dev/homeassistant/

components/verisure
4https://github.com/gjohansson-ST/sector

Country Vulnerable Total
Sweden 221 2019
Norway 73 785
Finland 50 403
Denmark 32 552
Iceland 7 51

TABLE I
HOME ASSISTANT DEVICES PER COUNTRY

City Vulnerable Total
Stockholm (Sweden) 59 508
Oslo (Norway) 73 214
Gothenburg (Sweden) 17 166

TABLE II
HOME ASSISTANT DEVICES PER CITY

devices) are the most used. The default port used by Home
Assistant is port 8123 [15].

UNPROTECTED PROTOCOLS

In this section we will present the result in terms of
which protocols we found to imply vulnerability due to the
connections being unprotected. The protocols we have found
to have issues of being unprotected and used in the context of
IoT spans across multiple categories.

B. MQTT

Even though MQTT is considered to be secure, it is not
invulnerable to bad security practices. A 2018 article by Martin
Hron of Avast [14] concludes that more than 49 000 MQTT
servers were publicly visible on the internet and indexed by
Shodan. Of these, 32 000 did not have any password protec-
tion. By finding unprotected MQTT servers and subscribing
to the top-most wildcard topic #, you can receive all messages
being published.

Searching for port 1883 data in the Nordics on Shodan gives
a result of 2443 hits. Of these, 1940 are results containing
MQTT in the response data and 900 of them can be verified to
be accepted connections (i.e., MQTT Connection Code:
0). No result at all was available on port 8883, the port used
for encrypted MQTT.

Separating the results between each of the Nordic countries,
Table III shows the number of endpoints that accepted the
MQTT connection (i.e., response code 0), alongside the total
number of responses containing MQTT.

Country Open Total
Sweden 397 923
Finland 289 604
Norway 132 242
Denmark 73 156
Iceland 9 15

TABLE III
ACCESSIBLE MQTT ENDPOINTS PER COUNTRY

Besides connection code 0 (Connection accepted), the fol-
lowing MQTT connection codes were observed on port 1883
in the Nordic countries:

https://github.com/hacs
https://github.com/home-assistant/core/tree/dev/homeassistant/components/verisure
https://github.com/home-assistant/core/tree/dev/homeassistant/components/verisure
https://github.com/gjohansson-ST/sector


• 1 (Connection Refused, unacceptable protocol version)
• 2 (Connection Refused, identifier rejected)
• 3 (Connection Refused, server unavailable)
• 4 (Connection Refused, bad user name or password)
• 5 (Connection Refused, not authorized)

C. RTSP
Like MQTT, RTSP can provide vulnerabilities in terms of

sharing unintended information through bad security practices.
For instance, scanning a network for the RTSP protocol (i.e.,
looking at port 554) allows for detecting RTSP video stream. If
these feeds are not requiring authentication, anyone that finds
the address and uses an RTSP client can access the stream—
potentially allowing for gaining access to security cameras,
home cameras or similar [2].

Searching for port 554 data in the Nordic countries on
Shodan gives a result of 16 160 hits. Of these, 15 544 are
valid RTSP responses and of those, 7453 are actual established
connections (i.e., 200 OK).

For each Nordic country, Table IV shows the number of
endpoints that were open to establish RTSP connections (i.e.,
RTSP/1.0 200 OK) through port 554, as well as the total
number of valid RTSP responses.

Country Open Total
Sweden 2860 4921
Denmark 2082 5911
Norway 1175 2361
Finland 1150 1907
Iceland 186 444

TABLE IV
ACCESSIBLE RTSP ENDPOINTS PER COUNTRY

Interestingly, Denmark seems to have around 1000 more
systems reachable through RTSP than Sweden, but in total
around 800 less systems which are open to establish connec-
tions (i.e., 200 OK).

Besides 200 OK, the following RTSP/1.0 status codes were
observed on port 554 in the Nordic countries:

• 400 Bad Request
• 401 Unauthorized
• 403 Forbidden
• 404 Not Found
• 405 Method Not Allowed
• 453 Not Enough Bandwidth
• 454 Session Not Found
• 503 Service Unavailable
• 551 Option Not Supported

D. UPnP
UPnP, with the defined port numbers 1900 and 7900, is also

suitable to explore with Shodan. Searching for port 1900 in
the Nordics gives 4990 results, of which 4957 includes UPnP
in the response. Interestingly, all (!) of these UPnP responses
is contained in HTTP/1.1 200 OK responses, confirming
the requests without errors. No responses were given on the
multicast event message port 7900. Table V shows the result
for each of the Nordic countries.

Country Open
Sweden 2491
Norway 1516
Denmark 779
Finland 136
Iceland 35

TABLE V
ACCESSIBLE UPNP ENDPOINTS PER COUNTRY

E. Zigbee

Due to Zigbee being a wireless network standard, it is
not possible to use Shodan to find information about Zigbee
devices and thus, it is outside the scope for this project to
quantify vulnerabilities related to Zigbee.

Even though the Zigbee protocol was designed with security
in mind a number of security related issues have been found
by various researchers. Wara and Yu [26] present one method
to perform a replay attack exploiting vulnerabilities in the
electronics manufacturer Philip’s implementation of the Zigbee
protocol for their Hue light bulbs. More in detail, the attack
proposed is about capturing on/off-events that are stored and
replayed later. As a countermeasure to replay attacks sequence
numbers are used but the authors find the sequence number to
be reset when the electrical power is lost (i.e., physical switch
for the light bulb is used) [26].

F. A note on IPv6 on Shodan

Looking at the difference between IPv4 and IPv6 in the
Nordic countries, we see that Shodan has indexed 4 779 369
hits on IPv4 and only 4321 hits on IPv6—many orders of
magnitude less in comparison. Table VI shows the available
devices through IPv4 and IPv6 divided per country.

Country IPv4 IPv6
Sweden 4 779 369 255
Finland 1 055 234 133
Norway 613 690 252
Denmark 570 097 3669
Iceland 64 750 12

TABLE VI
ACCESSIBLE ENDPOINTS THROUGH IPV6 PER COUNTRY

Denmark has a disproportionate large amount of IPv6 hits in
comparison with the other countries. Looking at global Shodan
data, we see that there are only a little over 1 million hits on
IPv6 (compared to 410 million on IPv4). Of these, Denmark
is placed at 5th place which seems unreasonable.

As of October 2015, Shodan was gathering millions of
results per month over IPv6 compared to hundreds of millions
of results over IPv4 [18]. The results of our search queries
suggests that Shodan still have not made much progress in
terms of indexing IPv6. None of the protocols that we searched
for (MQTT, RTSP and UPnP) had any reported results in the
Nordic countries. This is also the case for Home Assistant.



V. RELATED WORK

A case study of Intelligent Onvif YY HD IP cameras
showed that these cameras—which could be representative—
have many security vulnerabilities [2]. The study showed that
information about the camera could easily be retrieved; both
in terms of connectivity but also credentials such as email
address and the password as MD5 hash—or even plain text
from application information. It was also possible to retrieve
the RTSP links to gain access to the live video without any
authentication.

A recent study of UPnP-based IoT devices analyzed security
vulnerabilities of such devices and how they could be exploited
[16]. The study focuses on malicious use of the UPnP interac-
tions advertisement, discovery, action, event subscriptions and
control messages. Based on this, a solution to secure these
devices by combining a capability-based access control (Cap-
BAC) and attribute-based access control (ABAC) is presented
and compared in terms of detection and prevention of the
aforementioned vulnerabilities compared to other solutions.

An additional IoT security study aims at explaining attacks
such as Denial of Service (DoS), Man in The Middle (MiTM)
and Supervisory Control and Data Acquisition (SCADA) at-
tacks from an IoT perspective, and how they can be prevented
to strengthen IoT security [3]. The study is however limited to
a theoretical perspective and does not aim to give any practical
guiding until the recommendations have been implemented,
integrated and tested more thoroughly.

Narrowing the scope to the Nordics, a 2020 study looks at
IoT as well as ”Industrial IoT”, IIoT [5]. The paper presents
the state of the art in terms of IoT vulnerability scanning,
with a systematic literature review as foundation. With this
background, a study is conducted on the current situation of
IoT security in the Nordics concluding that additional work
needs to be done in terms of IoT security.

A study related to this project used Shodan to make vul-
nerability scanning of IoT devices in Jordan [4]. The primary
purpose was to warn the community about security issues and
how vulnerabilities could be exploited. The paper presents
scans of common unencrypted internet protocols such as
HTTP, FTP, RDP and SMB through their respective standard
ports. They also quantified how many IP cameras that could
be reached as well as some common industrial control systems
(ICS).

In the domain of internet-wide port scanning (IWPS), a
recent journal article explores the effect of these scans in terms
of congestion, especially for Wireless networks (WLAN) [10].
They present a novel scan rate optimization method to allow
for reaching as high scan rates as possible without imposing
congestion into the target network, concluding their method to
be more efficient than the conventional method. A recent (May
2021) journal article, sharing some of the authors, expanded
on these concepts but specifically for IPv6. They present an
optimization to provide security maximization while ensuring
quality of service (QoS), however concluding that more work
needs to be done in this area [25].

VI. CONCLUSION

In this paper we have investigated a set of devices, applica-
tions and protocol from a security perspective. Furthermore,
a number of applications and protocols have been subject to
analysis and known vulnerabilities described. One conclusion
that can be drawn is that all types of devices, applications and
protocols have vulnerabilities, but the severity varies greatly.
Another conclusion that can be drawn is the importance of
keeping systems patched and updated. Using a vulnerable
version of Home Assistant could pose a huge security risk
as an attacker potentially could steal API credentials. This, in
combination with the fact that Home Assistant aims to be the
system that glues the pieces together (implying that it may
hold a great number of credentials), suggests that the result of
being subject to an attack could be a disaster.

The quantification of vulnerable Home Assistant installa-
tions aligns with our expectations as it follows the population
relation. However, one interesting finding is that the most
popular port used among all Home Assistant installations and
vulnerable Home Assistant installations differ. For vulnerable
installation the default port, 8123, is the most popular in
contrast to port 443 being the most used port overall.

Future work could involve analyzing more devices available
in the Nordics, as well as some additional protocols. Also,
investigating what kind of data that is being exposed through
various protocols might be of interest as well.

REFERENCES

[1] 2020 and Beyond: A Record Year for Zigbee as the
Leading Networking Technology for Smart Home and
Building. Zigbee Alliance. URL: https://zigbeealliance.
org/news and articles/zigbee-momentum/.

[2] P A Abdalla and C Varol. “Testing IoT Security: The
Case Study of an IP Camera”. In: 2020 8th International
Symposium on Digital Forensics and Security (ISDFS).
2020, pp. 1–5. DOI: 10 . 1109 / ISDFS49300 . 2020 .
9116392.

[3] E Ahmed et al. “Internet of Things (IoT): Vulnera-
bilities, Security Concerns and Things to Consider”.
In: 2020 11th International Conference on Computing,
Communication and Networking Technologies (ICC-
CNT). 2020, pp. 1–6. DOI: 10 . 1109 / ICCCNT49239 .
2020.9225283.

[4] H Al-Alami, A Hadi, and H Al-Bahadili. “Vulnerability
scanning of IoT devices in Jordan using Shodan”. In:
2017 2nd International Conference on the Applications
of Information Technology in Developing Renewable
Energy Processes Systems (IT-DREPS). IEEE, Dec.
2017, pp. 1–6. DOI: 10.1109/IT-DREPS.2017.8277814.

[5] A Amro. “IoT Vulnerability Scanning: A State of the
Art”. In: Computer Security. Ed. by S Katsikas et al.
Cham: Springer International Publishing, 2020, pp. 84–
99. ISBN: 978-3-030-64330-0. DOI: 10 . 1007 / 978 - 3 -
030-64330-0 6.

https://zigbeealliance.org/news_and_articles/zigbee-momentum/
https://zigbeealliance.org/news_and_articles/zigbee-momentum/
https://doi.org/10.1109/ISDFS49300.2020.9116392
https://doi.org/10.1109/ISDFS49300.2020.9116392
https://doi.org/10.1109/ICCCNT49239.2020.9225283
https://doi.org/10.1109/ICCCNT49239.2020.9225283
https://doi.org/10.1109/IT-DREPS.2017.8277814
https://doi.org/10.1007/978-3-030-64330-0_6
https://doi.org/10.1007/978-3-030-64330-0_6


[6] Architecture — Home Assistant Developer Docs. Home
Assistant. URL: https: / /developers .home- assistant . io/
docs/architecture index/.

[7] A Banks et al., eds. MQTT Version 5.0. OASIS, 2019.
URL: https://docs.oasis- open.org/mqtt/mqtt/v5.0/os/
mqtt-v5.0-os.html.

[8] A Donoho et al. UPnP Device Architecture version 2.0.
Apr. 2020. URL: https : / / openconnectivity. org / upnp -
specs/UPnP-arch-DeviceArchitecture-v2.0-20200417.
pdf.

[9] D Gislason. Zigbee Wireless Networking. Newnes,
2008. ISBN: 9780750685979.

[10] H Hashida, Y Kawamoto, and N Kato. “Efficient Delay-
Based Internet-Wide Scanning Method for IoT Devices
in Wireless LAN”. In: IEEE Internet of Things Journal
7.2 (Feb. 2020), pp. 1364–1374. ISSN: 2327-4662. DOI:
10.1109/JIOT.2019.2954539.

[11] Home Assistant. Home Assistant. URL: https : / /www.
home-assistant.io/.

[12] home-assistant/core: Open source home automation
that puts local control and privacy first. Home Assis-
tant. URL: https://github.com/home-assistant/core.

[13] home-assistant/core/requirements.txt. Home Assistant.
2021. URL: https : / /github.com/home- assistant / core /
blob / e1427c45f2fd5dc777a55fe129e9f7ac0743a7cb /
requirements.txt.

[14] M Hron. Are smart homes vulnerable to hacking? Avast,
2018. URL: https://blog.avast.com/mqtt-vulnerabilities-
hacking-smart-homes.

[15] HTTP - Home Assistant. Home Assistant. URL: https:
//www.home-assistant.io/integrations/http/.

[16] G Kayas et al. “An Overview of UPnP-based IoT
Security: Threats, Vulnerabilities, and Prospective So-
lutions”. In: 2020 11th IEEE Annual Information Tech-
nology, Electronics and Mobile Communication Con-
ference (IEMCON). 2020, pp. 452–460. DOI: 10.1109/
IEMCON51383.2020.9284885.

[17] m punkt nu Sverige AB. ODROID-N2+ Home Assistant
Blue bundle Limited edition. URL: https : / / en . m . nu /
controllers - z - wave /odroid - n2 - home- assistant - blue -
bundle-limited-edition (visited on 05/15/2021).

[18] J Matherly. Complete Guide to Shodan. Leanpub, 2016.
[19] NVD - CVE-2021-3152. NIST - National Institute of

Standard and Technology. URL: https: / /nvd.nist .gov/
vuln/detail/CVE-2021-3152.

[20] Open Connectivity Foundation. About UPnP. URL:
https : / /openconnectivity.org /developer / specifications /
upnp-resources/upnp (visited on 04/09/2021).

[21] Philips hue Bridge V2 - Zigbee Alliance. Zigbee Al-
liance. URL: https://zigbeealliance.org/zigbee products/
philips-hue-bridge-v2-51/.

[22] A Rao, R Lanphier, and H Schulzrinne. Real Time
Streaming Protocol (RTSP). RFC 2326. Apr. 1998. DOI:
10 .17487/RFC2326. URL: https : / / rfc - editor.org / rfc /
rfc2326.txt.

[23] Storing secrets - Home Assistant. Home Assistant. URL:
https : / / www. home - assistant . io / docs / configuration /
secrets/.

[24] Ben Tomlin. home-assistant-config/ha-main.png at mas-
ter · benct/home-assistant-config. 2019. URL: https : / /
github.com/benct/home- assistant- config/blob/master/
screenshots/ha-main.png (visited on 05/15/2021).

[25] S Verma, Y Kawamoto, and N Kato. “A Network-Aware
Internet-Wide Scan for Security Maximization of IPv6-
Enabled WLAN IoT Devices”. In: IEEE Internet of
Things Journal 8.10 (May 2021), pp. 8411–8422. ISSN:
2327-4662. DOI: 10.1109/JIOT.2020.3045733.

[26] M S Wara and Q Yu. “New Replay Attacks on Zig-
Bee Devices for Internet-of-Things (IoT) Applications”.
In: 2020 IEEE International Conference on Embedded
Software and Systems (ICESS). 2020, pp. 1–6. DOI: 10.
1109/ICESS49830.2020.9301593.

[27] R Williams et al. “Identifying vulnerabilities of con-
sumer Internet of Things (IoT) devices: A scalable
approach”. In: 2017 IEEE International Conference
on Intelligence and Security Informatics (ISI). 2017,
pp. 179–181. DOI: 10.1109/ISI.2017.8004904.

https://developers.home-assistant.io/docs/architecture_index/
https://developers.home-assistant.io/docs/architecture_index/
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://openconnectivity.org/upnp-specs/UPnP-arch-DeviceArchitecture-v2.0-20200417.pdf
https://openconnectivity.org/upnp-specs/UPnP-arch-DeviceArchitecture-v2.0-20200417.pdf
https://openconnectivity.org/upnp-specs/UPnP-arch-DeviceArchitecture-v2.0-20200417.pdf
https://doi.org/10.1109/JIOT.2019.2954539
https://www.home-assistant.io/
https://www.home-assistant.io/
https://github.com/home-assistant/core
https://github.com/home-assistant/core/blob/e1427c45f2fd5dc777a55fe129e9f7ac0743a7cb/requirements.txt
https://github.com/home-assistant/core/blob/e1427c45f2fd5dc777a55fe129e9f7ac0743a7cb/requirements.txt
https://github.com/home-assistant/core/blob/e1427c45f2fd5dc777a55fe129e9f7ac0743a7cb/requirements.txt
https://blog.avast.com/mqtt-vulnerabilities-hacking-smart-homes
https://blog.avast.com/mqtt-vulnerabilities-hacking-smart-homes
https://www.home-assistant.io/integrations/http/
https://www.home-assistant.io/integrations/http/
https://doi.org/10.1109/IEMCON51383.2020.9284885
https://doi.org/10.1109/IEMCON51383.2020.9284885
https://en.m.nu/controllers-z-wave/odroid-n2-home-assistant-blue-bundle-limited-edition
https://en.m.nu/controllers-z-wave/odroid-n2-home-assistant-blue-bundle-limited-edition
https://en.m.nu/controllers-z-wave/odroid-n2-home-assistant-blue-bundle-limited-edition
https://nvd.nist.gov/vuln/detail/CVE-2021-3152
https://nvd.nist.gov/vuln/detail/CVE-2021-3152
https://openconnectivity.org/developer/specifications/upnp-resources/upnp
https://openconnectivity.org/developer/specifications/upnp-resources/upnp
https://zigbeealliance.org/zigbee_products/philips-hue-bridge-v2-51/
https://zigbeealliance.org/zigbee_products/philips-hue-bridge-v2-51/
https://doi.org/10.17487/RFC2326
https://rfc-editor.org/rfc/rfc2326.txt
https://rfc-editor.org/rfc/rfc2326.txt
https://www.home-assistant.io/docs/configuration/secrets/
https://www.home-assistant.io/docs/configuration/secrets/
https://github.com/benct/home-assistant-config/blob/master/screenshots/ha-main.png
https://github.com/benct/home-assistant-config/blob/master/screenshots/ha-main.png
https://github.com/benct/home-assistant-config/blob/master/screenshots/ha-main.png
https://doi.org/10.1109/JIOT.2020.3045733
https://doi.org/10.1109/ICESS49830.2020.9301593
https://doi.org/10.1109/ICESS49830.2020.9301593
https://doi.org/10.1109/ISI.2017.8004904


APPENDIX A
CODE FOR VULNERABILITY SEARCHES ON SHODAN

The following Python code was created to help identify vulnerable Home Assistant devices:
find-vulnerable.py

 import json
 import os
 import re
 import time

 from shodan import Shodan


 def is_vulnerable(shodan_result):

 if 'home_assistant' in shodan_result and 'version' in shodan_result['home_assistant']:
 # Match on Home Assistant version
 match = re.search(r'(\d|\.)*', shodan_result['home_assistant']['version'])
 reference_version = 202115 # HA version 2021.1.5
 else:
 # Match on httpaio version
 match = re.search(r'(?<=aiohttp/)((\d|\.)*)', shodan_result['data'])
 reference_version = 373 # httpaio version 3.7.3

 if match:
 version = match.group(0)
 version = version.replace('.', '')
 version = int(version)
 if version < reference_version:
 return True
 return False


 def vulnerable_devices_per_country(countries):
 result = {
 'sweden': 0,
 'norway': 0,
 'denmark': 0,
 'finland': 0,
 'iceland': 0
 }
 for country in countries.keys():
 for city in countries[country].keys():
 result[country] = result[country] + countries[country][city]

 return result


 def fetch_and_store_shodan_result():
 try:
 api = Shodan(os.environ.get('SHODAN_API_KEY'))
 query = 'http.title:"Home Assistant" country:se,no,dk,fi,is'
 current_page = 0
 total_pages = 39 # Derived from Shodan website (total matches / 100)

 while current_page <= total_pages:
 print('Current page: ' + str(current_page))
 results = api.search(query, page=current_page)

 f = open('nordic-' + str(current_page) + '.json', "w")
 f.write(json.dumps(results['matches'], sort_keys=True, indent=4))
 current_page = current_page + 1

 time.sleep(10) # Wait to not overwhelm Shodan API
 except Exception as e:
 print('Error: ', e)





 if __name__ == '__main__':
 fetch_and_store_shodan_result()

 countries = {
 'sweden': {},
 'norway': {},
 'denmark': {},
 'finland': {},
 'iceland': {}
 }
 ports = {}
 ip_version = {
 'v4': 0,
 'v6': 0
 }
 for i in range(0, 34):
 f = open('./nordic-' + str(i) + '.json')
 results = json.load(f)

 for result in results:
 try:
 if is_vulnerable(result):
 country = result['location']['country_name'].lower()
 city = result['location']['city']
 port = result['port']

 if city in countries[country]:
 countries[country][city] = countries[country][city] + 1
 else:
 countries[country][city] = 1

 if port in ports:
 ports[port] = ports[port] + 1
 else:
 ports[port] = 1

 if re.search(r'ˆ\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\$',

 result['ip_str']):
 # IPv4
 ip_version['v4'] = ip_version['v4'] + 1
 else:
 # IPv6
 ip_version['v6'] = ip_version['v6'] + 1
 except Exception as e:
 print('Error', e)
 per_country = vulnerable_devices_per_country(countries)

 summary = {'per_country': per_country, 'ip_version': ip_version, 'port': ports,
 'countries': countries}

 f = open('result.json', "w")
 f.write(json.dumps(summary, sort_keys=True, indent=4))


	Introduction
	Background
	Internet of Things (IoT)
	Message Queuing Telemetry Transport (MQTT)
	Real Time Streaming Protocol (RTSP)
	Universal Plug and Play (UPnP)
	Zigbee
	Shodan
	Network cameras
	Home Assistant

	Method
	Identifying vulnerabilities in Home Assistant

	Results and Discussion
	Home Assistant
	MQTT
	RTSP
	UPnP
	Zigbee
	A note on IPv6 on Shodan

	Related Work
	Conclusion
	Appendix A: Code for vulnerability searches on Shodan

