
Nixu Challenges

Adrian Byström
adrby928

Martin Ryba
marry564

Supervisor: Andrei Gurtov, andrei.gurtov@liu.se
Project report for Information Security course

Linköpings universitet, Sweden
May 24, 2021

Abstract

In the rapidly changing world of information secu-
rity the need to hone ones skill is always needed. To
do this one can partake in Capture-the-flag chal-
lenges. These challenges range in topic and are
either hosted by a third party or directly by com-
panies. This report is a write-up of a collection of
challenges from the company Nixu and the lessons
drawn from trying to solve these.

1 Introduction

The world of information security is constantly
changing. In the beginning, it was simple worms,
made for the amusement of the author and the ad-
miration of said authors peers. To now where infor-
mation security is becoming more and more impor-
tant as more of society is taking place online, and
more and more devices are being connected to the
Internet. However, the need to show one’s prowess
within the field is still prevalent to this day. This
is done through different challenges posted online,
called Capture-the-flag challenges (often shorted to
CTF challenges). These challenges range wildly in
the scope and difficulty and tackle subjects from
Cross-site-scripting and SQL injections to reverse
engineering of executables and image steganogra-
phy. The challenges are often posted by profession-
als within the industry. Not only are these chal-
lenges coupled with bragging rights by, it also hones
the challenger’s skills within the field of Informa-
tion security, having to act as an ”bad actor” or
”black hat” instead of being on the side that pro-
tects from attacks. Using this type of challenges
to learn is a form of gamification and is a known
pedagogical tool for teaching.[1]

There are currently many websites hosting CTFs
across all the sub-fields of security. One of such
websites is Nixu challenges, with a broad array of
challenges ranging from reversing to web security.
Each year, a new set of tasks is published for the
participants to solve. The creator of these chal-
lenges is the company Nixu1, a security firm started
in Finland but with offices around Europe, with an
office in Linköping as well.

The aim of this project is to solve as many of
these challenges as possible and explain the solu-
tions in this report. To narrow the scope of the
project six (6) challenges were chosen (three (3)
from 2021, and three (3) from 2021). These chal-
lenges are, in order of difficulty: numb3rs, magic,
PEasy, Stegböögö, parasite, and PEybass.

These challenges could then be grouped into
different subjects of Information Security. The
”numb3rs” challenge is a challenge focused on
scripting and sending packets to a server, whilst
”magic”, ”PEasy”, and ”PEybass” are focused on
reverse engineering. ”Stegoböögö” is an image
steganography challenge and ”parasite” is an anal-
ysis of network data. Not a lot of information is
given about these challenges, often not more than
a paragraph of flavor-text describing the task in
quite a vague sense, and some sort of zip-archive
or a hostname and port to a system. It is up to
the solver to figure it how to solve the challenge at
hand.

2 Challenges

The following sections will describe each challenge
as well as the proposed solutions to them with req-
uisite analysis done for said challenge.

1https://www.nixu.com/

1



2.1 Numb3rs

The ”numb3rs” challenge deals with scripting a
TCP-connection to the server

numb3rs.thenixuchallenge.com

at port 1337. The challenge text reads as follows
Hello, friend. You don’t know me, but I know
you. I want to play a game. There is only one
combination of numbers that gives you the answer.
Know what to do. You better hurry up. Make your
choice.. When connected to the server using for
example netcat an ascii-image of a clown character
and the text

l375 pl4y 4 64m3

pl5 61v3 numb3r

is printed, the text being ”Lets play a game” and
”pls give number” in leet-speak. Leet-speak (some-
times stylised as 1337-speak or 31337-speak) is a
style of writing that emerged in the early days of
the internet, where letters where changed to num-
bers that on a computer-screen looked similar to
each other. It was a soft way of obfuscating text
and passing through automatic text analysers as
well as keeping people not part of said this sub-
culture out. [2] The attacker then has to provide
the correct number to proceed. Is the wrong input
(wrong number or wrong input entirely) the con-
nection closes, but not before printing the correct
number to the screen.

2.1.1 Analysis and solution

The challenge does not require that in-depth anal-
ysis to solve. Given that the ”correct” input is pro-
vided when ”failing” the solution is quite straight-
forward.

By creating a python script that connects to the
challenge-server and records every correct number
when failing an array of the correct input is gath-
ered. The script will then exit when the flag is re-
turned. Since the flag is formatted as NIXU... it is
quite simple to catch. The only issue that occurred
when solving this challenge was that the server did
not accept solutions being sent too quickly or slowly
after each other, so a sleep of 0.5 (point 5) seconds
needed to be added to the script. This added a lot

to the execution time of the script since there were
80 numbers in the array at the end.

This solution to this challenge was definitely not
the most efficient and technologically clean solu-
tion. The python script written for this challenge
was quite unstable and needed to be monitored so
that it could be restarted if the connection ended
unexpectedly. However, given the fact that the
other challenges required more time and effort to
solve, the need to harden the script fell behind the
need to solve the other challenges.

2.2 Stegoböögö

”Stegoböögö” is a challenge pertaining to image
steganography. Steganography (derived from the
Greek word steganos, which translates to ”reticent”
or ”covered”[3]) is the art of concealing informa-
tion within other seeming innocuous information.
In terms of computer security, steganography is of-
ten used to hide messages or files within other files,
such as images. The art of hiding messages is not
new being used for thousands of years. The fifth
(5) century tyrant Histaiacus is said to have hid-
den a message by tattooing said message on the
scalp of a slave and sending the message by hav-
ing the slaves hair grow out and sending said slave
to the intended recipient, who read the message by
shaving the head of the slave. In regards to this
challenge there are many different steganographic
techniques used to hide information within specific
images. The different techniques take advantages
of different aspects of digital images. Data can be
hidden within the bits pertaining to the color val-
ues of each pixel (the most notable technique being
least-significant-bit steganography) or by using the
transform functions found in image processing tech-
niques, hiding it the coefficients of the frequency
components when processing the image using, for
example, a discrete Fourier transform.[4]

The challenge provides a JPEG image of ham-
burgers and the challenge text:

Just a delicious böögö.

The attacker has to figure out how the data has
been steganographically stored in the image and
retrieve the key from there.

2



2.2.1 Analysis and solution

Given that the only thing provided by the chal-
lenge is the text and image mentioned above the
initial problem to solve is to figure out where in
the image to look for the hidden data. By open-
ing the image in an xxd (a hexdump program for
GNU/Linux) a string of base64-encoded characters
could be read. Decoding the characters to ASCII
results in the string aes-256-cbc w/ salt and PASS-
WORD, sha256 digest. Using the tool binwalk2

on the image reveals that a trailing file is hidden
in the image that is encrypted using Openssl. To
verify that After this, the tool stegovertias (an im-
age steganography analysis tool) extracts this file.
The resulting analysis from this tool also indicates
that no data has been hidden in the color values
of pixels or in frequency components, since when
trying to extract that data only results in junk.
The technique used for hiding the file was simply
to append the file to the image, after the JPEG
End-Of-Image segment. Returning to the image, in
the upper left-side corner one can make out some
faint square shapes. By playing with the bright-
ness when viewing the image, a string of braille
characters can be made out. This string is read as
”BURGERSAREGOODWITHBRAILLE”. By us-
ing this as a passphrase when decoding the trailing
file using OpenSSL returns a password-protected
7z-archive containing a wav-file. Trying to unlock
the archive using the same passphrase used for the
OpenSSL file yields no result. Given that no other
hint for a potential password is found the archive
needs to be brute-forced.

No further solutions were found for this chal-
lenge, and it was therefore not solved.

2.3 Magic

The challenge starts with a website that generates
pseudo-qr codes based on the input. However, upon
closer inspection, it is revealed that the underlying
javascript takes the first 80 bits of input and uses
them in 1681 logical formulae that result in 41x41
binary image.

The goal seems to be solved where the logical
formulae give 1 in all output bits or 1s and 0s in
such a manner to produce a QR code. First, we
tested inputting all 1s or all 0s to the formula to

2https://github.com/ReFirmLabs/binwalk

see the behavior. Next, we inspected the logical
formulae to see if we can figure out some kind of
simplification. We split up the formulae for indi-
vidual bits into smaller parts that had to be true
or false based on the desired result for the entire
bit. The idea was to calculate the truth tables for
these smaller parts (with far fewer variables) and
see if we can find some input bits with unchange-
able value. After crashing few online solvers (even
with the smallest parts of the formulae), we used
programs running locally. After calculating several
of these smaller parts, we did not find any satisfy-
ing results that would help us with the rest of the
problem.

As the testing of logical parts was taking a sig-
nificant portion of time, it was decided to try and
see if there is some easier way to see the connection
between input and output bits. We created sev-
eral output/input samples and compared various
encodings (including image encodings) and unfor-
tunately had to conclude there is no encoding that
would explain the data transformations observed
that we know of.

After trying these options this challenge needed
to be dropped priorities and focus changed to solv-
ing other challenges due to time constraints.

2.4 Parasite

The parasite challenge gives,in regular Nixu fash-
ion, little to no guidance when from its challenge
text. It (the challenge) is tagged as a pcap chal-
lenge, and only provides one small paragraph of
text, a picture of a strange device the authors of
the challenge found in their office2.4, and a zip-
file containing the data the authors captured from
the device. In the picture, the device is connected
through a VGA-splitter to a computer.

The paragraph of text reads as:

We found a mysterious device attached

to a computer and it seems to be

transmitting some data. Can you

make any sense from this?

3



Figure 1: Strange device attached to computer us-
ing VGA cable.

The provided captured data given in the zip-file
contains a large text-file. This text-file is presented
as the network data sent from the device through
the authors office network. That data is formatted
line-by-line with entries. These entries are in turn
comma-separated, with four different datapoints.
Here follows an excerpt of said data.

1580765524.480193840,,,-0.061

1580765524.480193920,,,-0.061

1580765524.480194000,,,-0.061

1580765524.480194080,,,-0.056

1580765524.480194160,,,-0.061

1580765524.480194240,,,-0.056

1580765524.480194320,,,-0.061

1580765524.480194400,,,-0.061

1580765524.480194480,,,-0.061

1580765524.480194484,0,1,

1580765524.480194492,1,1,

1580765524.480194524,0,1,

1580765524.480194536,1,1,

1580765524.480194544,0,1,

1580765524.480194560,,,-0.061

2.4.1 Analysis and solution

Initial analysis of the challenge text and the pro-
vided material (picture2.4 and captured data) hints
towards the file being the PCAP-file3 for the data
captured from the mysterious device. The PCAP

3https://www.tcpdump.org/

file format is a format used when analysing and cap-
turing network traffic and given that the challenge
was tagged with pcap the logical next step is to
analyse the data using a program designed specifi-
cally for that purpose. However, when opening said
file in wireshark, a network protocol analyser, no
discerning information is found. Wireshark claims
the file is in the wrong format, and only garbage
data is displayed. One can see that as well on closer
inspection of the file, as it does not follow the stan-
dard of a PCAP-file.

Going back to the challenge text, data, and pic-
ture gives some more hints on how to actually go
forward with the challenge. Firstly the challenge
is not only tagged as a pcap challenge but is also
tagged with the text or is it?. This indicates that
what has been captured is not actually the network
data from the device, but something else.

Looking closer at the data, the first data-point
is of a different format then the rest. Running
one of those data points through a translator for
UNIX-timestamps produces a timestamp down to
the nanosecond on the third of February 2020
(2020/02/22). From this one can deduce that the
device gathers on each of these timestamps and
sends them through the network. A further de-
duction of the data ends in the following

• First field seems to be a timestamp

• For lines with second and third field empty
(type A), the timestamp seems to increment
by 80

• Type B lines (with fourth field empty) seem
to correspond to some event and do not affect
timing of type A

To further deduce what data is being captured
one needs to examine the picture2.4. Looking closer
at the picture one can see 3 cables going into the
device. One blue, one cyan, and one yellow. Given
that the device is connected using VGA and con-
sulting a VGA pinout schematic the cables are the
blue channel, horizontal sync, and vertical sync.
By looking at the data the three last data points
can be deduced as such. Given that the last data
point is filed with a seemingly analog value that
corresponds to the value of the blue channel in a
VGA-cable when active. The other values would
consequently be the sync signals, given that they

4



are a simple binary on or off. From this the na-
ture of the mysterious device is deduced. The de-
vice is a homemade frame-grabber, a device used to
covertly grab what is being displayed on the screen
and either saving it or, in this case, send it over
the network to the attacker. The solution to the
challenge becomes quite obvious after this. To get
the flag for this challenge, one only needs to replay
the captured data back into frames.

2.5 PEasy

”PEasy” is a reverse engineering challenge. The
challenge provides a 7zipped archive containing a
Windows executable and a .pdb file. Using these
the attacker needs to disassemble the executable
to obtain the flag. When running the executable
the attacker is asked whether or not he wants the
flag. Regardless of the answer the executable deems
it not to be enough and exits the program. The
challenge also provides this text:

We love Windows binaries, do you?

In classical programming, source code is con-
verted to machine instructions through a process
known as compiling. Compiling consists of several
steps, the last of which is assembling machine in-
struction from assembly code.

Without going into too much detail, many of the
advanced (originally) diagnostic tools can be used
by nefarious actors to partially reverse this process
by recreating the assembly code. This often pro-
vides the attacker with sufficient information about
the structure of a given binary to be able to change
its behavior (such as to remove digital watermark
or bypass password checks) [5].

As can be expected, much effort is spent try-
ing to hamper reverse engineering by other parties
through various obfuscation techniques [6].

To complete this challenge, we used a disassem-
bly tool called Cutter4. Cutter allows the user to
view the processor instructions of the given binary
file, view them in graph view (to better visualize
the jump instructions), find used strings and edit
the used instructions.

4https://github.com/rizinorg/cutter

Figure 2: PEasy prompt

After running the given binary, the user is
prompted by:

Do you want the flag? (y/n)

Answering y or n results in a closing message and
the program exits. Answering other characters re-
sults in a reminder to answer either y or n. There-
fore, the initial idea was to inspect the strings con-
tained in the binary and see if any of them is
the ’password’. After inspecting the string sec-
tions (can be done by either the cutter or GNU
strings utility), what was found was one long string
that after decoding from base64 and deciphering
through Caesar’s cipher (n=13), yielded extrac-
tion of Wikipedia article about Capture the Flag
(CTF)5. Various other strings were also tested as
the passphrase with no success.

Figure 3: Graph view of the disassembled code

The next step was to inspect the disassembled
code - the aforementioned graph view was espe-
cially useful in visualising the logical flow of the bi-
nary. Simply following the conditions, one can see

5https://en.wikipedia.org/wiki/Capture the flag

5



that the program first displays the prompt and then
compares the input with other characters. Written
in pseudocode, the program flow was similar to:

if input == ’y’

print "try harder"

else

if input == ’n’

print "you must want the flag"

else

print "you need y/n"

Sch code doesn’t check against anything other
than y or n so the previous attempts at guessing
some secret input were useless.

As this was the extent of logic branches of the
binary, the next step was to inspect the disassem-
bled code line-by-line for hidden data or instruc-
tions that did not show on the graph view (due to
being skipped by jump statements). This probing
has been more successful than previous attempts as
a skipped function call was quickly found:

Figure 4: Function call that is skipped over

Simply changing the jump instruction to point
to the omitted instruction caused the program to
display additional output before exiting:

78 73 88 85 123 104 97 104 97 95 112

108 122 95 116 104 105 115 95 119 97

115 95 115 111 95 101 122 95 120 68 125

After translating through ASCII, we get the valid
flag for this challenge:

NIXU{haha_plz_this_was_so_ez_xD}

2.6 PEybass

”PEybass” is, like the challenge mentioned above,
a reverse engineering challenge. As with ”PEasy”
it provides a 7zip archive, this time only with the
Windows executable. The attacker then needs to
disassemble the executable to obtain the flag. In-
stead of asking whether or not the user wants the
flag, the program asks for the flag directly, to verify
that it is correct. The challenge text is to no help
in this:

We love debugging. <3

2.6.1 Analysis and conclusion

This challenge was similar to the PEazy challenge.
However, no .pdb file was given. So to solve this
challenge one needed to look at the code more di-
rectly. Opening the code in a disassembler yielded
a flow graph that was quite convoluted. Modules
are looping around each other and a lot of arbi-
trary jumps are done between said modules. Look-
ing closer on the instructions one can see that the
code has been obfuscated. Arbitrary comparisons
of values, instructions placed in precarious places
that have no overall impact of the functionality of
the program. To solve this challenge, one therefore
need to obfuscate the code and flatten so that the
logical flow of the program is found. However, due
to time constraints, this challenge also had to be
dropped.

3 Conclusions

As mentioned in the introduction to this paper,
solving challenges are a good way to hone one’s
skills with information security. Not only are ex-
isting skills improved, but knowledge of new tech-
niques are often the result of this. In this conclu-
sion, those lessons will be put forth.

3.1 Scripting

The numb3rs problem was a good introduction to
the general concept of these challenges. It was a
good lesson about smaller CLI tools such as curl
and how to combine these smaller programs to-
gether in a bash script in order to create one func-
tional unit tailor-made for the problem at hand.
As bash scripts are often an invaluable tool for pro-
grammers and power-users alike, having a relatively
simple yet non-trivial problem is crucial for devel-
oping their capabilities. Solving this challenge also
honed one’s skill in socket-programming and the
TCP protocol using Python. Techniques for send-
ing TCP packets and keeping a socket connection
opened over a (relatively) long time, and catching
the errors that can occur when working with sock-
ets. However, as this challenge was not the most in-
tricate the knowledge gained from solving this was
minuscule.

6



3.2 Stegnography

Steganography is a field that is more akin to ac-
tual espionage more than the other CTF challenges
found on the internet. Given this, to solve this
challenge much research had to be done into dif-
ferent techniques for steganography. Steganogra-
phy being an old technique for hiding information
has a rich history starting in ancient Greece with
the scalp being tattooed with the message, their
hair regrowing over said message, and said hair be-
ing shaved by the receiving party for the message
to be read. In the current world, steganography
is more sophisticated and often uses quirks in me-
dia encoding protocols to hide information without
altering the transport media. Media files such as
audio or images are preferable for their (relative)
large size. For images, hiding information in the
bits corresponding to each pixel is a technique often
used. The most notable one is the least-significant-
bit steganography, hiding information in the least
significant bit of the color value of each pixel. Since
that bit does not have that large of an impact on the
overall image, no noticeable changes are seen when
looking at the said image. For the Stegoböögö chal-
lenge, another steganographic technique was used,
called trailing steganography. In this instance, in-
stead of hiding information in the image data infor-
mation was hidden after a JPEG trailer. Usage of
this quirk of the JPEG file format is the hallmark
of modern steganography, but if one is not well
versed in the techniques it is still something that
can slip under one’s nose. In trying to solve this
challenge, two specific tools were used to analyse
and extract the information. Using these tools are
on their own a lesson learned in steganography, giv-
ing one knowledge in where to look when analysing
potential stenographically hidden messages. The
tool binwalk, which is used for analysing binary
images for hidden information and executable code.
This tool proved especially useful in the beginning,
for when finding where the data was hidden. Bin-
walk found the hidden file trailing behind the orig-
inal JPEG, and provided more information of the
file signature for said file. Stegoveritas is a tool
used, much like binwalk, for the analysis of binary
image files. It also provides extraction of possible
hidden information within an image and using this
tool provided the actual hidden file. Stegoveritas
is also helpful with more in-depth steganographic

analysis and will try to extract information hidden
using the aforementioned LSB steganography.

3.3 Dissassembly

The disassembly problems, PEasy, PEybass, were a
great tool in helping the team understand the the-
ory behind disassemblers together with basic x86
instructions and inner workings of a processor. A
variety of analysis tools were used as part of the
cutter reverse engineering platform, such as string
extraction, flow diagram, classical disassembler and
instruction editing. PEybass also gave the team a
basic glimpse into working with an obfuscated bi-
nary file.

3.4 VGA and timestamps

The analysis done for the parasite challenge re-
quired a deep dive into both timestamps as well
as the technical specification of the VGA standard.
When looking into the data given from the chal-
lenge one needed to figure what the data repre-
sented. By looking into different log standards each
different datapoint needed to be analysed and fig-
ured out. When looking at the first data point one
needed to research different timestamps and figure
out what it meant. Therefore, looking deeper into
UNIX timestamps, on what UNIX timestamps ac-
tually measure and what it is presented as, as well
as looking into how it represents fractions that dat-
apoint was demystified. One learned a lot more
about what actually UNIX timestamps are from
this challenge. Looking into the other data points
and reading schematics and specifications for the
VGA standard also provided insight into not only
the challenge but also the VGA standard as a
whole. By looking at the actual wires in a VGA
connector as well as how each signal in said con-
nector represents data one could discern the other
data points.

7



References

[1] L. McDaniel, E. Talvi, and B. Hay, “Capture the flag as cyber security introduction,” in 2016 49th
Hawaii International Conference on System Sciences (HICSS), 2016, pp. 5479–5486.

[2] K. Blashki and S. Nichol, “Game geek’s goss: linguistic creativity in young males within an online
university forum (94/\/\3 933k’5 9055oneone),” Australian journal of emerging technologies and
society, vol. 3, no. 2, pp. 71–80, 2005.

[3] M.-W. Dictionary, “steganography definition.” [Online]. Available: https://www.merriam-
webster.com/dictionary/steganography

[4] I. J. Kadhim, P. Premaratne, P. J. Vial, and B. Halloran, “Comprehensive survey of image steganogra-
phy: Techniques, evaluations, and trends in future research,” Neurocomputing, vol. 335, pp. 299–326,
2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231218312591

[5] C. Linn and S. Debray, “Obfuscation of executable code to improve resistance to static disassembly,”
in Proceedings of the ACM Conference on Computer and Communications Security, 2003, pp. 290–
299.

[6] B. Schwarz, S. Debray, and G. Andrews, “Disassembly of executable code revisited,” in In Proc.
IEEE 2002 Working Conference on Reverse Engineering (WCRE. IEEE Computer Society, 2002,
pp. 45–54.

8


