
TDDD17 Tracker2
[trackertracker]

Project report for Information Security Course
Linköpings Universitet, Sweden

Marcus Elander
marel184@student.liu.se

Linus Aarnio
linaa722@student.liu.se

Supervisor: Niklas Carlsson
niklas.carlsson@liu.se

Abstract—This project has investigated the possibility to over-
lay ads with information regarding ad provider and source
domain. It was found that connecting an ad to an element on a
web page is a hard task in general but possible in some cases.
A plugin, based on CatBlock and AdBlock was developed which
displays all identified ads on a web page in a list within the plugin
popup menu and overlays on a subset of ads on the web page.
The report discusses the privacy implications of third party ads,
the structure and limitations of the created plugin and alternative
approaches.

I. INTRODUCTION

Our task was to create a browser plugin that overlays ads
and other third party elements on a web page with the domain
name of the source of the element. The goal is to easily see
which third party trackers and ad services a user is exposed to
on different pages and what content they provide. The plugin
is intended to be used in research on web tracking and possibly
be extended to use by end users interested in knowing which
parties are tracking them and selectively block ad providers.

Using a tool such as this can help a user or researcher find
out why a user is shown certain personified ads. Since the
requests from each page is sent to the ad provider, it is also
possible to know which third party services are gathering the
most information about users by finding the most prevalent
domains on pages.

II. BACKGROUND

Ad networks are in many cases setting cookies that identify
the user, so that the aggregated data from different sites can be
tied to a specific user. [1] If such a cookie is set by a network
present of all sites visited by a user, they have access to the
users’ entire browsing history.

In addition to this aggregated data, ad networks use algo-
rithms to create profiles, which can be very detailed if a lot of
data is collected, on users. These profiles are not kept private
and might be openly sold to interested parties. [2]

A. Theoretical method

The theory behind identifying third party elements has been
extracted from existing ad blocking plugins, such as Catblock
[3] and uBlock Origin [4]. We have analyzed the source code
and tested elements from a local copy to find the method used
to identify an element as an ad.

B. Practical method

Development of the plugin started, as stated in the previous
section, with analyzing existing plugins. The development fol-
lowed a step-for-step plan to enable handling of smaller pieces
of a bigger problem. The steps were defined as following.

1) Setup basic plugin
2) Identify ad elements
3) Generate list of all ad source domains
4) Connect source domain to ad element
5) Generate overlay element
6) Place element on existing ad

III. SOLUTION AND ANALYSIS

This section describes the solution and provides technical
details regarding how it works.

The result of this project is a plugin that identifies all
source domains of ads on a web page and displays them in
a list and on the ads’ respective elements as an overlay. This
solution was reached through studying existing ad-blockers
and building upon Catblock. It enables the user to analyze
what ads appear when browsing and where they are provided
from.

The plugin works by utilizing Adblock and by extension
filter lists to identify ad elements when a request is made
from the ad provider. The filter lists contain known patterns
that have been reported as ads. The patterns are found in urls,
css-classes and styles. Every request made by the browser is
intercepted and checked with regex for a match against the
different patterns, mostly url patterns. Adblockers also use css
matching, e.g. an element with css class containing ”right-col-
ad-600” would be matched from EasyList [5]. However, by the
time this matching is made there is usually no connection to
the serving domain, which leads to it being unusable in this
application.

The intercepting/blocking functionality in itself is using
the existing API from the chrome.webRequest library. [6] By
defining a listener and attaching it to onBeforeRequest one
can access the request and some of it’s data. Then, through
the previously mentioned filtering, the handler function can
return true for the requests that should be blocked and the
listener can be defined to perform this blocking. See below
for code example.

Fig. 1. An example of the popup display window and an overlayed ad on
BBC homepage

Listing 1. Example code of blocking requests with a handler function.
chrome . webRequest . o n B e f o r e R e q u e s t

. a d d L i s t e n e r (o n B e f o r e R e q u e s t H a n d l e r ,
{ u r l s : [” h t t p : / / * / * ” ,

” h t t p s : / / * / * ” ,
”ws : / / * / * ” ,
” wss : / / * / * ”]} ,

[” b l o c k i n g ”]
) ;

Our solution uses the existing code from Catblock/Adblock
to intercept and match the requests for ads, but is modified
to not block the requests but instead store the matched urls
in a list. The identified ads are then displayed in the plugin’s
popup window accessible by the toolbar. The existing plugin
popup window from Catblock was remade to display this list
instead of the data it originally displayed. An example of the
popup window showing the ads found on bbc.co.uk is found
in Figure 1.

The overlays generated by the plugin works by identifying
the position of the element that made the request and then
placing a new partially transparent element with the same
position and size. This new element can then display the url
the request is made to. An example of such an overlay on the
homepage of Aftonbladet is shown in Figure 2. The problem
with this approach is that only some types of elements have
a known position and size at the time the request is made.
Table I shows the resource types that can make requests, and
indicates those where we can determine size and position of
the element with green. The most common type of resource
to request an ad resource are scripts. [7] They perform the
request before creating the HTML element which makes our
approach unable to overlay the ad element.

Fig. 2. An example of an overlayed ad on Aftonbladet homepage

TABLE I
LIST OF REQUEST TYPES WITH INDICATION OF WHETHER THE SIZE AND

POSITION OF THE ELEMENT CAN BE DETERMINED IN THE REQUEST

main frame sub frame stylesheet
script image font
object xmlhttprequest ping
csp report media websocket
other

A. Ad types

This section discusses identified types of ads such as ads
provided by the host domain, third-party ads and ”one pixel
ads”.

We have identified three main classes of elements picked
up by the plugin. The first one is ads where the host domain
itself or a variation of it is the one serving the ad. It might
still be an ad for a third party product or service and link out
to another domain on click, but our plugin picks up only the
server. The second class are visible third party-ads, where the
whole ad is fetched as a resource from a third party domain.
The third class are elements which cause a request to a third
party domain but do not result in a visible element on the
page. We refer to these as one pixel ads.

From a privacy standpoint, we can see differences between
the types in how much data the trackers can collect about a
user and the knowledge a user has about the tracking. The
ads served from the same domain can collect data about the
user, but only while he/she browses on the domain. Even if the
ad inserts tracking cookies, a domain that only serves ads on
its’ own pages can’t aggregate data about the user across the
internet. First-party ads tend to be visible, and the user also
expects the same domain to know about their browsing habits
on the site so we consider the knowledge about tracking to
be good in this kind of ad. A third party ad may be able to
gather more data about the user. If the ad is served from an ad
network with presence on many sites, and the network places
tracking cookies in the users browser, it can have information
about a users entire browsing history. Otherwise, they can
gather the same amount of data as first-party ads. Ads are
usually clearly visible, but since it might not be obvious that
the request is made to a third party domain instead of the same
domain as in the first class, the detectability of the tracking is

lower.
The third class is one pixel ads, where an element of only

one pixel is inserted on the page and performs a request to a
third party domain. This can collect data about the user in the
same way as third party ads, but has much lower detectability.
A tech-savvy user might see a third party ad and be aware
they are being tracked, but it doesn’t help to know about the
tracking capabilities of one pixel ads since they can’t be seen
on the page without a plugin pointing them out.

B. Evaluation and Comparison

This section will discuss whether the solution proved to be
effective and why. Alternative solutions will also be discussed
and how they could potentially change the outcome of the
project.

1) AI based ad identification: Another alternative solution
is to make use of AI instead of filter lists to identify ads
on the web page. Possible advantages of choosing such a
solution could be a more detailed identification of the ads, the
possibility to categorize based on content and other parameters
as well as not having to rely on the filter lists being up to
date and comprehensive. Drawbacks to this solution are the
specialized knowledge required and the time to implement
such a solution and to train the AI to perform well. There
are existing efforts to use machine learning for detecting ad
resources.[7] They build a graph connecting HTML elements
with requests and JavaScript behaviors. This graph could
possibly be used to place overlays even on the types of
elements which our current approach is unable to overlay.

IV. CONCLUSION

This section will conclude the report with final remarks on
the project and its outcome as well as summarize the report.

The projects results partially fulfills the predefined goal of
overlaying information on ad elements on a web page. The
main drawback identified is that most ads are not possible to
overlay. This in combination with the hidden tracker element
of a web site serves as a threat to the users privacy and
integrity. As long as one considers these drawbacks, the
product developed in this project could be used as a base for
future research regarding ad servers and the identification of
different ad types a user is exposed to during browsing since
all ads are shown in the popup list. Future development to the
plugin produced in the project could be to sort the generated
list based on ad type or generate statistics based on browsing
sessions to inform the user of recurring ad types and source
domains. To overlay all ads on all pages, another approach
than filter list matching is probably better.

REFERENCES

[1] J. Estrada-Jimenez, A. Rodriguez-Hoyos, J. Parra-Arnau, and J. Forne,
“Measuring online tracking and privacy risks on ecuadorian websites.”
2019 IEEE Fourth Ecuador Technical Chapters Meeting (ETCM), Tech-
nical Chapters Meeting (ETCM),2019 IEEE Fourth Ecuador, pp. 1 – 6,
2019.

[2] I. Ullah, R. Boreli, and S. S. Kanhere, “Privacy in targeted advertising:
A survey.” 2020.

[3] Catblock. [Online]. Available: https://getcatblock.com/

[4] ublock origin. [Online]. Available: https://github.com/gorhill/uBlock/
[5] Easylist blocking filters. [Online]. Available: https://easylist-

downloads.adblockplus.org/easylist.txt
[6] chrome.webrequest. [Online]. Available:

https://developer.chrome.com/docs/extensions/reference/webRequest/
[7] U. Iqbal, P. Snyder, S. Zhu, B. Livshits, Z. Qian, and Z. Shafiq, “Adgraph:

A graph-based approach to ad and tracker blocking,” in 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 2020, pp. 763–776.

