
Follow the Money

Louise Almér, Nina Argillander
Email: {loual201, ninar253}@student.liu.se

Supervisor: Niklas Carlsson, {niklas.carlsson@liu.se}
Project Report for Information Security Course

24th May 2021
Linköping University, Sweden

Abstract—Illegal activities have been linked more and more to
the usage of cryptocurrencies since the users are anonymous
and therefore can not be tracked by authorities. Since anyone
can use cryptocurrencies, it is also practical for criminals
to use. This report investigates if it is possible to visualize
suspicious activities based on the transactions made from
suspicious Bitcoin addresses. A tool was implemented, which
retrieves data from a given input Bitcoin address, filters the
data and displays a transaction flow from that address. From
the result, the transaction flow can be visualized but the results
varies depending on the filtering type. When displaying the
top k transactions for each step in the transaction history and
placing remaining transactions as a single other transaction, the
best visualization were obtained. Therefore, it can be concluded
that it is possible to visualize the transaction flow from one
Bitcoin address.

1. Introduction

Bitcoin is an electronic cryptocurrency. It has no central
authorization that controls and can manipulate the currency,
like a government or other large authority. Bitcoin users
are only known by their Bitcoin address and it is nearly
impossible to find out who is the owner of a certain Bitcoin
address. Since all users are anonymous, Bitcoin can be used
for illegal activities without repercussions.

This project investigates the possibility to visualize the flow
of money from suspicious addresses. The project have some
limitations, only one suspicious address is used as an input
address to the tool i.e., it will not be possible to visualize
the flow from multiple input addresses at once. The input
addresses used for testing the tool were received from the
supervisor. From earlier projects these addresses had been
located and deemed suspicious and therefore interesting to
visualize the money flow from.

2. Theory

In this section the background of Bitcoin is presented. The
theory for the data retrieval and visualization is thereafter
explained.

2.1. Bitcoin

Bitcoin is an electronic cryptocurrency created by Satoshi
Nakamoto, an unknown person or group, in 2008. It is
a decentralized currency, meaning that there is no central
authority that controls the currency, e.g. a government or
other large authority. Instead Bitcoin uses ledgers and the
block chain technology. Ledgers are, traditionally, a book
where transactions to and from an account are recorded.
Bitcoin uses a block chain as a virtual ledger, which records
all transactions. The transactions are put into blocks which
are hashed and the blocks are connected through the hashes.
Each block contains the hash of the previous block, creating
a block chain. All users keeps their own copy of the block
chain and the copy is updated when new blocks are added
into the chain [1].

Since each block is hashed, a lot of computations are needed
to make the transactions valid and inserted into the block
chain. These computations are done by miners who listens
for transactions, creates blocks for them and computes the
hashes. The hashes need to fulfill certain requirements, e.g.
have a certain amount of zeros in the beginning of the hash,
which makes it harder to find a correct hash. When the hash
has been computed the block is broadcast to all users and
then added to the block chain. The block chain ensures that
all users are agreeing that the transactions in the different
blocks are valid, therefore no central authority is needed.
The miners get a profit for each block they manage to find
the first correct hash for, therefore the miners competes on
computing a correct hash [2].

There is a possibility that an attacker creates fake blocks and
broadcast the computed hashes. This would then be added to



the block chain the users keep. In the block chain technology
there exists safety mechanisms that will prevent fake blocks
being added to the block chain. The users receiving fake
blocks will be listening to the miners creating valid blocks
as well, i.e. receiving blocks from two sources. The block
chain of the users creates two forks, one from the miners
and one from the attacker. The block chain that is valid is
always the longest, so for the attacker to succeed they have
to compute blocks faster than the miners. This is almost
impossible to achieve since there are many thousands of
miners and perhaps only one attacker, so the chance of
the attacker computing hashes faster is very limited. If the
attacker would be faster than the miners it would be more
profitable for the attacker to add the valid blocks instead of
the fake blocks since the fastest miner gets a reward [2].

All transactions are made public by the block chain, which
means that anyone can see any transaction. The transactions
are connected to the input and output addresses, therefore
can the transactions of a specific address be located. Even if
the transactions of an address are examined the owner will
remain anonymous, therefore it is common for criminals to
use bitcoin for illegal activities [3].

2.2. API:s

Since all transactions are made public by the block chain,
it is possible to access the transactions even if one is not
a Bitcoin user. There are several different strategies for re-
trieving data from the Bitcoin block chain, either by writing
an API or using preexisting API. In this project preexisting
APIs were used so that the focus of the project could be
the visualization and not data retrieval. Two API:s for data
retrieval were tested; Blockcypher Data API and Blockchain
API. The Blockchain API was not as documented as the
Blockcypher API, therefore the Blockcypher API was used
for data retrieval.

Blockcypher has multiple API:s for different retrieval pur-
poses e.g., transaction API, wallet API and Blockchain
API. Only the transaction API was used since the only
information needed was about transactions. The transaction
API have rate limits for both daily and hourly requests, these
were not specified but from some experimenting seems to
be 120 requests/hour and 2000 requests/day. This limitation
was taken in consideration in the implementation of the tool,
presented in section 3.1.1.

2.3. Visualization

The visualization had to visualize Bitcoin addresses and how
these are connected through transactions. Different possible
diagrams for the visualization were considered and after
some research it was concluded that a Sankey diagram could

be a good diagram to use for this type visualization. With a
Sankey diagram the addresses can be represented by nodes
and the transactions can be represented by the connections
between the nodes. Furthermore, the width and color of the
nodes and connections could represent different aspects, e.g.
the amount of money or the number of transactions between
the addresses, to give more dimensions in the diagram.

3. Implementation method

In this section the programming language and framework
used in the project is presented. The implementation of the
tool is explained as well.

3.1. The Tool

Below are the three different parts of the system presented
and how they were implemented.

3.1.1. Data retrieval. Python was used to access the Block-
Cypher API. With the function get_address_full of
the Transaction API all of the information about the input
address was received, including a list of all transactions
made to and from the address. For the visualization purpose
only the output transactions were interesting as these are the
transactions made from the current address. The function has
a limit of how many transactions that can be received in one
request, 50 transactions at the most, and if the address has
more transactions the flag has_more is true. The tool will
then call get_address_full again, but with the flag
after set to the number of transactions that has already
been received. This makes it possible to collect all of the
transactions made from an address.

In the tool the transaction values for all transactions made
to the same address are added together and the number
of transactions are counted. Therefore, only one connec-
tion between a source and a target address is saved. The
source address, all of the target addresses with their total
transaction value and the number of transactions made are
saved into a Python dictionary. For each target address in
the dictionary the get_address_full function is called
and the process is repeated.

When all data has been retrieved, or the daily limit is
reached, the data is saved to a CSV file as well as a pickle
file. A pickle converts a Python object to a character stream
that can be unpickled at a later time. By saving it as a
pickle it is possible to filter the pickled data in several ways,
without using the API to collect the data every time.

Since the API has rate limits, a counter for the hourly
respective the daily calls to get_address_full counts



how many requests are made. If the hourly limit is reached
the program will pause for an hour and if the daily limit is
reached the program will save the data retrieved and exit.

3.1.2. Filtering the Data. The filtering process was imple-
mented in Python. The transaction data that was retrieved
contained plenty of transactions that were too small to be
deemed important. To visualize all of the transactions in the
diagram it would be clustered with unimportant transactions,
therefore the data had to be filtered before visualization.
Three different types of filtering were implemented; filter
by the number of transactions between addresses, filter by
the money exchange between addresses and filtering based
on the top k transactions.

Filtering based on number of transactions was implemented
since it could be interesting to see how many transac-
tions were made between two addresses. If an address
sends a small amount of money frequently to an address
it could indicate suspicious behaviour. Another suspicious
behaviour could be to send a large amount of money in a
few transactions, therefore was the filtering by money also
implemented. Another type of filtering implemented was
filtering by number of top transactions. For every step in
the transaction flow the k largest transactions were saved
whilst the rest of the transactions were bundled together in
one large transaction called other. By limiting the number
of transactions on each step to k + 1, a cluttered diagram
could be avoided and the transaction flow from the input
address were more understandable.

3.1.3. Visualize the Data. JavaScript with React and the
framework D3 were used to visualize the data. In the CVS
file, with the collected data, the source, target, transaction
value, number of transactions and the step number were
stored. When using Sankey diagrams every address becomes
a node and the nodes are connected by the transactions. The
height of the node is determined by the money amount the
address have and the width of the connection between two
nodes are determined by the transaction value. The colour of
the nodes and transactions could be manipulated. The colour
of the transaction were set to different colour depending
on the number of transactions between two addresses. The
different intervals and the corresponding colour are shown
in Table 1.

TABLE 1. CORRESPONDING COLOUR AND INTERVAL FOR THE NUMBER
OF TRANSACTIONS.

Colour Hex Interval
Dark Blue #003f5c 0-1

Medium Dark Blue #374c80 2-10
Blue-Magenta #7a5195 11-20
Magenta-Pink #bc5090 21-50

Pink-Red #ef5675 51-100
Red-Orange #ff764a 101-400
Yellow-Red #ffa600 401-700

4. Results

With a given, suspicious, input address
1M3jWAPH6Uq5ZS1GwB1jcfkPuRXBscdXw1 the following
results were gathered. Figure 1 shows the Sankey diagram
of the unfiltered data, i.e. all of the transactions retrieved
from the API.

Figure 1. Resulting graph without any filtering

Figure 2 shows the Sankey diagram of the top three trans-
actions of each step and the rest is combined into one node.

Figure 2. Resulting graph with top three transactions in each step

5. Discussion

The tool uses BlockCyphers API to collect the information
about the Bitcoin transactions. The API comes with re-
strictions regarding how much information can be collected
during a period of time as described in section 2.2. This
limitation has been a problem during the project since it
could take several hours/days to collect a sufficient amount
of data. An improvement that could have been implemented
is to write an API instead of using a preexisting one. Without
using a preexisting API the rate limits could have been
avoided and the data would have been faster to retrieve.

As mentioned in section 3.1.1 the transactions made between
the same source address and target address were added
together to one transaction and a counter was used to
keep track on the number of transactions between the two
addresses. One negative aspect of bundling the transaction



together is that it is no longer possible to examine the
transactions individually, e.g. if there is one large transaction
and several smaller ones. However, the amount of data
is relatively large and if every transaction between two
addresses were used the data would have been difficult to
visualize. Therefore this simplification was necessary so that
the result was better visualized.

From Figure 1 one can observe without any form of filtering
it is hard to gain any real knowledge about the transactions.
When applying the filtering of k = 3 top transactions, see
Figure 2, it became easier to understand how the money was
sent from the input address. One negative aspect of this type
of filtering was that we lose some information regarding the
addresses that are bundled together in the other transactions.
The other types of filtering were not as effective as the top
k filtering and the visualizations were still very cluttered
with many transaction. Therefore it was hard to gain any
knowledge about the money flow with the other types of
filtering.

To separate the transactions from each other the colour of
the transactions were set to a fixed interval, see Table 1,
depending on the number of transaction between the ad-
dresses. This implementation gave another dimension to the
diagram. Some improvements to the tool could be an adap-
tive interval range of the colours e.g., if all addresses had
22-27 transactions each, they could have different colours.
Another way of using the colour dimension could be to show
how active the addresses are, for example if an address has
been active less than a year or if it has been used during
a long period of time. This aspect could be interesting to
visualize since it could be suspicious if an address is only
active for a short period of time but sends large amount of
Bitcoins. Another improvement would be to add the color
scale legend, to show which interval the different colors
represent, in the final visualization. The colour scale legend
was partly implemented, however it was not finished in time
for the deadline and therefore it was not added into the final
tool.

6. Conclusions

In conclusion, it is possible to visualize Bitcoin data using
one suspicious source address as input. However, what can
be seen in the result is that the diagrams can easily get
cluttered and hard to gain any specific knowledge about the
transactions without the correct type of filtering. The best
results were obtained when filtering on the k largest trans-
action for each step. Therefore it is possible to visualize,
with varying result, the transaction flow from one suspicious
Bitcoin address.

References

[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System“,
2008, accessed: 05-03-2021, https://bitcoin.org/bitcoin.pdf

[2] 3Blue1Brown, “But how does bitcoin actually work¿‘, published:
07-07-2017, accessed: 25-05-2021 https://www.youtube.com/watch?
v=bBC-nXj3Ng4&t=1243s&ab channel=3Blue1Brown

[3] Bitcoin.org, “Some things you need to know“, accessed: 06-05-2021,
https://bitcoin.org/en/you-need-to-know


