Investigating how browsers implement certificate
revocation checks in practice

Alexander Edberg

Linkoping University

Link&ping, Sweden
aleed476 @student.liu.se

Abstract—As the popularity of HTTPS rises, certificates be-
come more and more common. It is important the certificates
are handed out with care and if needed, revoked. Web browsers
must keep track of revoked certificates in order to keep the user
safe. Not only that, but the we browser should also not take a
chance if it does not know the status of the served certificate.
In this report, we investigate how Google Chrome and Firefox
handle their revocation checks for different domains and different
types of certificates.

Index Terms—Certificate Revocation, CRL, OCSP

I. INTRODUCTION

To ensure a safe browsing experience on the internet most
of the traffic is encrypted using HTTPS (SSL/TLS). This
encryption makes sure that no one can read or modify the
communication between the client and server. Certificates are
used to authenticate the server so that the client can be sure
that they are talking to whom they want to communicate with.
Certificate Authorities (CAs) are the ones giving out these
certificates and are verifying that the server is who they claim
to be. The certificates has an expire date when the owner of
the certificate has to request a new certificate and once again
verify who they are. However a certificate can also be revoked
due to various reasons like a stolen private key.

When a certificate gets revoked it is important that the web
browsers are aware of this since the certificate can no longer
be trusted. If an attacker has access to a certificate they could
easily eavesdrop on the communication until the certificate
expires. Currently using a Certificate Revocation Lists (CRL)
or Online Certificate Status Protocol (OCSP) are the most
popular methods of keeping track of revoked certifications.
It is important that the browsers do their revocation checks
to make sure that the user is browsing safely. In this paper
we look at how revocation checks are handled in practice by
different browsers (Chrome and Firefox).

The goal of this paper is to answer the following questions:

« How do modern browsers perform revocation checks for
different domains?

« Are different domains and certificates treated differently?
If so, how?

The rest of this paper is structured as follows. Section
I gives background on CAs, CR, CRL and OCSP. Section
IIT describes our methodology for answering our questions.

Kasper Landgren
Linkoping University
Linkdping, Sweden

kasla760@student.liu.se

Section IV presents our result. Section V a discussion on our
results and section VI will conclude the paper.

II. BACKGROUND
A. Certificates

Certificates can be used in many ways, it can be used to
sign and authenticate code, documents and individuals and
organisations when browsing using HTTPS. The most used
type of certificate when browsing with HTTPS is the x.509
certificate. This certificate validates that the individual or
organisation is indeed who they claim to be [1]. There are
different type of certificates that all require different types of
validation before the certificate is handed out. Three of the
most popular types of certificates are [2]:

o Domain Validation (DV) - A basic certificate that is given
out if you can prove that you are the owner of the domain
name.

o Organization Validation (OV) - This certificate require the
same verification as DV but also includes validation of
the person owning the domain name. Such as name and
address of the person.

« Extended Validation (EV) - The hardest certificate to get,
the validation for this certificate is quiet thorough and
things like the legal, physical and operational existence
of the organisation is verified.

CAs are the ones giving out these certificates and are usually
a third party that both the owner of the certificate and the
person putting their trust in the certificate trust.

A certificate that has been handed out by a CA can also be
revoked by the same CA. A certificate can be revoked due to
various reasons and down below we list the reason codes used
in CRLs as described in RFC 5280 [3]:

« unspecified (0),

o keyCompromise (1),

e cACompromise (2),

« affiliationChanged (3),

o superseded (4),

« cessationOfOperation (5),
o certificateHold (6),

e — value 7 is not used,

o removeFromCRL (8),

e privilegeWithdrawn (9),



o aACompromise (10)

An expired certificate is not the same as a revoked one and
should not exist inside a CRL. The expired certificate should
be handled in the same way as a revoked one and not be
trusted by the web browsers.

B. CRL

Certificate Revocation Lists (CRL) are one of the most
popular methods of keeping track of revoked certificates. Its a
way for CAs to keep track of and inform which certificates no
longer can be trusted. The CRLs works as a type of blacklist
and contains information about the revoked certificates such
as serial number, date of revocation, reason for revocation and
who issued the revocation. Once a certificate is added to the
CRL it does not get removed from the list until its expired.
CRLs are updated by the CAs and can be update as soon as
a new certificate is added to a couple of days in between.

Although CRLs are very popular they have some disadvan-
tages to them. There can be large amount of overhead since
the client needs to download the CRL and then go through
the whole list which can be a couple of thousand lines long to
make sure that the certificate is not present in the list. If the
client is unable to download the CRL in the first place then
most clients will default to trust the certificate.

1) CRLSet: CRLSet is the CRL that chrome uses. This list
is generated and used by chrome and revocations are added
by crawling selected CRLs published by CAs. The CRLSet
is intended to contain intermediate revocations and is updated
infrequently (at most once every few hours) [4].

2) OneCRL: Since Firefox 37 was launched in 2015 Fire-
fox has been using OneCRL which is Firefox own list of
revoked certificates. OneCRL only covers intermediate certifi-
cates from the CAs in Mozilla’s root program and is updated
when a CA notifies about an update [5].

C. OCSP

Online Certificate Status Protocol (OCSP) is another pop-
ular way to keep track of revoked certificates. OCSP tries to
make the overhead smaller for the client by not forcing the
client to download the CRL and instead send a query to the
CA asking for the status of the certificate. The CA returns a
response of the certificate status (good, revoked, or unknown).

OCSP solves the overhead problem for the client but in-
troduces a new possible overhead for the OCSP server since
queries are sent for every single certificate. Every CA signs a
lot of certificates and every time someone want to connect to
a website with a certificate from the CA a request is made.
OCSP can also be a privacy concern. Every time a query is
sent the OCSP responder has access to the IP of who sent the
query and what website they are visiting. This information
could possibly be used to track users browsing behavior.

D. OCSP Stapling

OCSP stapling is a continuation of OCSP. In OCSP stapling
the client does not have to make a request to a separate
OCSP responder, instead the client receives a timestamped

OCSP response from the web server directly. In this case the
web server contacts the OCSP responer at certain intervals to
validate its certificate [6]. This means that there is less strain
on the client since it no longer has to make a separate request
and receives the OCSP response in the handshake with the web
server. This also improves privacy since the OCSP response
is now served by the web server and not the OCSP responder.

E. Wireshark

Wireshark is a free and open-source software that allows it
users to capture and analyse network traffic on its’ computer.
It has a lot of features and allows you to filter and dissect all
the packets going through the clients network [7].

F. TLSvi.2

Transport Layer Security (TLS) is a security protocol that
provides secure communications over a network. It is used
in HTTPS to make sure that no one can read or modify the
contents of the packets and also makes sure that the two parties
communicating are who they claim to be by certificates [8].
TLS 1.2 is the most common version of TLS used today [9].

III. METHODOLOGY

We have been tracking IPv4 traffic over the protocol
TLSv1.2 [10] using Wireshark [7]. All traffic has been logged
and compared with revoked certificates in order to identify
how often they are used.

We also read the Chromium source code [11] in order to
try to find how exactly certificates are checked. We started
by identifying the interesting parts of the source code and
found the subfolder “cert” [12]. Through the README-file,
we identified the interface CertVerifyProc which contained
the interface used for verifying certificates. This interface
contained a function called Verify(), which in turn uses many
other function calls to verify certificates.

We tested the following websites on both Firefox and
Google Chrome:

« https://revoked-rsa-dv.ssl.com/
« https://revoked-rsa-ev.ssl.com/
o https://revoked-ecc-dv.ssl.com/
« https://revoked-ecc-ev.ssl.com/

To investigate how/if the browsers use OCSP-checks we used
wireshark to capture traffic and the four websites with revoked
certificates to see if Google Chrome and Firefox sent any
OCSP requests. We also tested certificates on badssl [13].

IV. RESULTS

What we found is that normal daily browsing did not use
any revoked certificates at all, and the only ones we caught
were those we were knowingly trying to get past Google
Chrome’s CRLSet [14].

We had assumed that Chromium performs no OCSP-checks,
but that appears to be incorrect, as we found the code in fig.
1 which contains a parameter named ocsp_response, which
indicates that such a control is performed. We have not been
able to establish how often these checks are performed.



Fig. 1. The implementation of CertVerifyProc::Verify() in the Chromium
source code

"NETLOG OCSP RESPONS!

Fig. 2. Check for non-empty ocsp_response in CertVerifyParams()

TABLE I
BROWSER BEHAVIOR ON REVOKED WEBSITES.

Website Chrome Firefox OCSP enabled | Firefox OCSP disabled
revoked-rsa-dv.ssl.com | Not Revoked Revoked Not Revoked
revoked-rsa-ev.ssl.com Revoked Revoked Not Revoked
revoked-ecc-dv.ssl.com | Not Revoked Revoked Not Revoked
revoked-ecc-ev.ssl.com Revoked Revoked Not Revoked

We did some comparisons with Firefox and found that while
Firefox caught every revoked certificate we tested, Google
Chrome did not. From the tested websites listed above, only
the revoked EV certificates, test number two and four, were
caught by Google Chrome as revoked, while all four were
caught by Firefox. However when disabling OCSP-checking
in Firefox it did not catch any of the revoked certificates.
We found that the pinning-test on badssl was caught by
Google Chrome, and not by Firefox, but after updating to
a newer version of Firefox, we found no difference between
Firefox v88.0 and Google Chrome v90.0.4430.93 when testing
certificates on badssl.

Fig. 2 shows that the function CertVerifyParams() accepts
an empty OCSP response and will only add it to the parameter
list if it exists.

From our findings Google Chrome never sent any OCSP
requests. Firefox also never sent any when we disabled OCSP-
checking in the settings. With OCSP-checking enabled in
Firefox we found that Firefox do send a OCSP request upon its
first visit to a new website. However a OCSP request was not
sent the second time we visited the websites. After clearing the
cache Firefox did still not send any OCSP requests when we
visited the websites. Only once we restarted Firefox it started
sending the OCSP requests again suggesting that Firefox might
only send requests the first time its visiting a website in a new

session.

V. DISCUSSION

Since we only checked Kasper’s personal internet traffic,
we can only extrapolate this data to persons with similar
browsing habits. We also have a very small amount of data
when compared to everybody who is using Google Chrome
for their daily internet browsing.

We had difficulties pinpointing where exactly in the code
these verifications are performed since it includes code from
38 other files from the Chromium library. Mapping many of
these paths may have been possible if we had not started off
with the intent of registering how often revoked certificates
are used in practise, and instead started studying the source
code from the beginning.

T

W

H]=]

-1

nal: Is a diFELhUPy

I rL-'I

]

(]
=

g

Fig. 3. Occurrences of Verify in the cert directory

As shown in fig. 3, Verify appears 296 times in the cert
directory alone. One of these is the declaration and some are
comments.

Fig. 4. Occurrences of Verify in the Chromium source code

As shown in fig. 4, Verify appears 1491 times in the
entire code base. Scanning the code base for references and
occurrences is very time consuming. It takes approximately
45 minutes for every single scan of the code base to run to
completion. This slowed our progress by a significant amount.
This could be improved upon by narrowing down the search,
which would require finding exactly which folders are of
interest.

Given that ocsp_response is treated as an optional param-
eter, we can conclude that Chrome does not perform these
checks at every call and that CRLSet is lacking revoked
certificates since we have found revoked certificates that were
allowed.

Since Google Chrome does not perform OCSP-checks by
itself [15] and still caught revoked certificates, we can assume
that these revoked certificates are all contained in CRLSet.
There are, however, browser extensions to Google Chrome
that add OCSP-checks to the browser. [16]

VI. CONCLUSION

How do modern browsers perform revocation checks for
different domains? We have not found a definitive answer to
this question.

Are different domains and certificates treated differently? If so,
how? We have not found a definitive answer to this question.



ACKNOWLEDGMENT

We would like to thank the course staff of the course
TDDDI17 Information Security, Second Course at Linkoping
University, and especially our supervisor Niklas Carlsson, for
their involvement and support during this project.

REFERENCES

[1] [Online]. Available: https://sectigo.com/resource-library/what-is-x509-
certificate

[2] [Online]. Available: https://www.verisign.com/en_US/website-
presence/online/ssl-certificates/index.xhtml

[3] [Online]. Available: https://datatracker.ietf.org/doc/html/rfc5280page-69

[4] [Online]. Available: https://dev.chromium.org/Home/chromium-
security/crlsets

[5] [Online]. Available: https://blog.mozilla.org/security/2015/03/03/revoking-
intermediate-certificates-introducing-onecrl/

[6] [Online]. Available: https://knowledge.digicert.com/quovadis/ssl-
certificates/ssl-general-topics/what-is-ocsp-stapling.html

[7]1 [Online]. Available: https://www.wireshark.org/

[8] [Online]. Available: https://www.cloudflare.com/learning/ssl/transport-
layer-security-tls/

[9] [Online]. Available: https://www.calcomsoftware.com/leaving-tls1-2-
using-tls1-3/

[10] [Online]. Available: https://www.ibm.com/docs/en/zvse/6.2?topic=openssl-
transport-layer-security-tlsv12

[11] [Online]. Available: https://github.com/chromium/chromium

[12] [Online]. Available: https://github.com/chromium/chromium/blob/master/net/cert

[13] [Online]. Available: https://badssl.com/

[14] [Online]. Available: https://dev.chromium.org/Home/chromium-
security/crlsets

[15] [Online]. Available: https://www.computerworld.com/article/2501274/google-
chrome-will-no-longer-check-for-revoked-ssl-certificates-online.html

[16]



