Visualization of certificate chains associated
with selected domains

Matteus Henriksson
Linkoping University
Link&ping, Sweden
Supervisor: Niklas Carlsson
mathe228@student.liu.se

1 ABSTRACT

Certificate chains are important to provide a secure
connection with a server. It is in fact essential to use
certificates in order to avoid some attacks and they are
mandatory when establishing connections through TLS.
To gain further intuition a tool that visualizes certificate
chains has been developed.

The tool is intended to illustrate how the certificate
chains have changed through the years with the help
of graphs constructed in graphviz.

2 INTRODUCTION

The chain of trust is a model made up of a list of cer-
tificates starting from the server certificate and ending
at the root certificate, between these two there are in-
termediate certificates. All of them are signed by their
respective CA:s. This relationship allows the communi-
cations to be encrypted.

Using intermediate certificate authorities instead of
Certificate Authorities is a somewhat rising trend among
domains, we have seen domains such as Google that
have started to use this as a substitute and as a result of
this moved closer to the roots. By using intermediate
certificates the CA:s do not need to issue certificates to
their client from their root certificate and can thereby
shorten the distance.

To further research this trend we have developed a
tool in python using the graphviz tool to create com-
plete graphs of certificate chains throughout the years.
The tool uses a domain name as input and extracts all
data from 2000 to 2021. The tool uses data from crt.sh
database. With this tool we hope to shed some light on
the area.

Roadmap: The paper starts off with introducing con-
cepts and tools that are necessary to understand the

Rami Latif
Linkoping University
Link&ping, Sweden
Supervisor: Niklas Carlsson
ramab817@student.liu.se

tool. After that the Methodology is explained, the sec-
tion starts off with an overview describing the four
main modules of the tool. Later on the results and con-
clusions where performance and outputs of the tool is
discussed.

3 BACKGROUND

Concepts and resources for understanding the report
are explained in this section.

3.1 Certificates

Digital Certificates are used to help browsers to de-
termine whether a website is safe to use or not. The
browser does this by inspecting the certificates that
contain data (signature, key, issuer and more) to ensure
their online identity. Digital certificates are issued by
Certificate Authorities (CAs) and play a key role since
they are asserting the identity of the website.

So to be sure that the website is secure we need to not
only trust our browser but also CAs that are managing
certificates. All certificates that are issued are stored in
certificate logs that can be accessed publicly so that the
browsers can check the identity claim from the website.

The root certificate also known as trusted root is cen-
tral for the trust model. Most devices have a root store,
where a list of root certificates are placed, these certifi-
cates generally live on the device itself and are fully
trusted to sign any certificate. There are many different
root stores but, generally the devices use the native root
store [8] for example if you own an iPhone the device
uses Apple’s root store. The root certificates can in turn
be used to sign certificates that will automatically be
trusted by the browser.

Going directly to the trusted root is not the only
option to sign certificates, this can be done with the help
of intermediate certificates as well. An intermediate

TDDD17 student project, May 24, 2021, Linkdping, Sweden

certificate is a certificate signed by a trusted root and
can in turn sign other intermediate certificates to create
a chain of trust.

3.2 Crt.sh

One of the ways (since 2011) that the web browser de-
cides to trust certain certificates is by looking at public
transparency logs. Public transparency logs contain
issued certificates by publicly trusted certificate author-
ities and are used to avoid mis-issued certificates. [9].

Crt.sh is a certificate search engine that is used to
look up certificates that have been logged in Certifi-
cate Transparancy logs which has been more or less
mandatory for certificate authorities [3, 4].

As of 2020 Crt.sh offers a graph ! feature that displays
color-coded certificate chains for certificates. This fea-
ture has been a keystone for our project.

3.3 Graphviz

Graphviz is an open source visualization software. The
software is used to structure data so that it can be repre-
sented in diagrams, graphs and networks. The software
is widely used in areas such as networking, bioinformat-
ics, software engineering, database design, web design,
machine learning [1].

Graphviz allows the user to choose between different
layouts that have different purposes, the most common
way of using Graphviz is by downloading the package
from their website and start writing code with their
syntax in some editor. Since our tool is intended to not
only display graphs we have used the python package
graphviz [2] (version 0.16) so that we could combine
our python code and utilize the graphviz functionality
to generate graphs directly without any stopovers.

List of layouts:

e “dot” The dot layout is used to make hierarchical
drawings of directed graphs constructed with an
algorithm that aims to avoid edge crossing and to
minimize length of the edge.

e “neato” The neato layout is used to attempt to
minimize a global energy function. For example
this layout can be used when constructing Entity
Relation Diagrams.

e “fdp” The fdp is similar to neato but implements
the Fructher-Reingold heuristic.

IExample of graph: https://crt.sh/?graph=18opt=nometadata

Latif and Henriksson

e “sfdp” The sfdp layout is used for larger graphs
and works on the same basis as the fdp layout.

e “twopi” The twopi is a radial layout where the
nodes are placed in concentric circles.

e “circo” The circo layout is a circular layout, could
for example be used for diagrams that have cyclic
structures such as .

In this paper the dot layout was chosen to generate
directed graphs. Image of a directed graph can be seen
in Figure 1.

N
AN

Figure 1: Simple directed graph taken from graphviz website

4 METHODOLOGY

This section provides an overview of the construction,
infrastructure and design decisions that were made.

4.1 Overview

The implemented tool was written in python and con-
sists of four parts, firstly to perform a lookup of given
URLs on crt.sh and extract information about all ac-
costed certificates. Secondly to filter out irrelevant cer-
tificates by matching keywords with the associated
DNS-addresses for the certificates, and download cer-
tificate chains for the remaining certificates. Thirdly to
sort the data in the downloaded certificate chains based
on publisher (certificate authority) and year of issue.
Lastly to construct graphs that visualise the data.

Visualization of certificate chains associated with selected domains

4.2 Data collection from crt.sh

All data was collected directly from the website crt.sh
and downloaded as JSON-files.

The website crt.sh only allows small throughputs,
which makes it inefficient to perform a data collec-
tion that requires hundreds or thousands of requests
to the website. To streamline the data collection pro-
cess, A Python library was used to make the requests
run asynchronous and concurrent. Crt.sh only allows
5 concurrent connections from the same host and if it
is exceeded, the server returns status code 429 - too
many requests. For that reason semaphores were im-
plemented to set a limit on 5 concurrent requests.

Another risk in addition to the risk of status code
429 when to many requests are is that the server is
very unstable and often goes down for short periods
of time, usually 10sec - 60sec. During a collection that
lasts about an hour, it is common for the website to
go down several times. To handle this, all status codes
are checked, and if a request fails, a new attempt is
made after 20 seconds to ensure that no certificates are
missed.

To make it more feasible, the focus was on certificates
used for main domain, in other words domains that
would have the high rank and be most used. This was
performed by matching URL-addresses associated with
certificates with a set of keywords, and filter out certifi-
cates that do not match. So when a domain is looked up
on crt.sh and a list of associated certificates is returned,
the list goes through a process where every certificate
is analysed and those that are not directly associated
with the top domain are filtered out. For example, if the
domain "google.com" is looked up certificates associ-
ated with the lower level domain "*.mail.google.com"
are filtered out.

4.3 Construction of graphs

To construct the graphs we use the dot layout described
in Section 3.3.

4.3.1 Color-coding.

Since the purpose of the tool is to observe new pat-
terns among the trust relationship and not looking into
specific certificates and leaf nodes there has been some
filtering and categorization. The categorization is based
on CAs and issue years for the certificates associated
with the leaf nodes. Leaf nodes that have the same color,

TDDD17 student project, May 24, 2021, Linkdping, Sweden

year and come from the same CA are grouped into one
node.

The categorization of the leaf nodes looks as follows:

e 0-1 years old: blue

e 1-4 years old: green
e 4-8 years old: yellow
e >8 years old: red

Image that illustrates this can be seen in Figure 2.

Figure 2: Number of certificates(unique ID of CA|Issue year)

T(2812020)

4.3.2 Rendering.

To create a directed graph the library graphviz was
used. The library contains a function called Digraph
that lets the user create a canvas which in turn can be
filled with nodes, edges and sub graphs.

To begin with, a sub-graph was created with highest
rank so that the graph is aligned at the top of the canvas.
The sub-graph was filled with the root store nodes since
they are supposed to be at the top of the hierarchy.
During this process the unique CA:s where added to
the canvas and after that edges and lastly the leaf nodes
and their respective edges.

5 RESULT

This section presents the results and is divided into two
subsections. Section 5.1 presents statistics related to
the performance of the tool and section 5.2 presents
generated graphs.

5.1 Performance

The constructed framework was successful in collecting
data from crt.sh. however, it proved to be somewhat
ineffective. The approach to perform asynchronous re-
quests with a semaphore that allows a maximum of
five concurrent connections unfortunately did not im-
prove efficiency. This is probably because crt.sh has set
a limit of a certain number of requests per IP address
in some time frame, which cannot be circumvented by
performing several concurrent requests from the same
IP address. This resulted in slower data collection, but
despite this the framework was successful in collecting
data, even for very large domains such as Google. Table

TDDD17 student project, May 24, 2021, Linkdping, Sweden

1 shows that it took 92 minutes to collect data and gen-
erate graphs for the domain "google.com”, but then one
should be aware that this domain is very large and that
a total of 1762 certificates were downloaded, while in
other hand the graph for "apple.com" was constructed
in only 7 minutes with 115 certificates.

Table 1 shows that similar amounts of certificates
were found for both "google.com" and "apple.com", but
that the amount of matched certificates differ greatly
for the two domains. This is probably because only
certificates associated with the top level domains were
matched. A reasonable assumption is that top level do-
mains for "google.com" are used in greater extend then
for the domain "apple.com", which is probably due to
the fact that people to a greater extent use different
types of internet services related to Apples rather than
to visit their website.

The amount of certificates matched and certificates
that were downloaded are the same, for all websites.
This shows that the framework is capable of handling
bad requests and making sure that no certificates are
missed, even when the website crashes during data
collections.

H Google Apple Facebook H

Certificates found 2735 2741 3381

Certificates matched 1762 115 1484

Certificates downloaded 1762 115 1484
Time (min) 92 7 87

Table 1: The table show some key statistics related to the data col-
lection process for youtube.com, google.com and facebook.com

5.2 Graphs

The constructed graphs for "apple.com" and "google.com
became very large, which is due to the fact that both
domains have used many different certificate authori-
ties for publishing certificates in recent years. But the
graphs are clear and intuitive. Figure 3 and 4 show
two parts of the graph for "google.com", which rep-
resents the two latest certificate authorities used by
google which were the only CAs to issue certificates
for "google.com” in 2021.

Latif and Henriksson

wo

150(242018)

Figure 3: Displaying the amount of certificates issued for
"google.com" per year by the certificate authority GTS CA 101

Figure 3 shows GTS CA 101 and it is visible that this
CA has issued 150 certificates in 2019, 232 in 2020 and
62 in 2021. Note that the blue ellipse represents the
certificates issued this year (2021).

a»

Figure 4: Displaying the amount of certificates issued for
"google.com" per year by the certificate authority GTS CA 1C3

The certificate authority GTS CA 1C3 is displayed in
Figure 4 and shows that this ca issued 20 certificates in
2020 and 60 certificates in 2021. Note that GTS CA 101
displayed in Figure 3 along with GTS CA 1C3 displayed
in Figure 4 are the only certificate authorities used by
"google.com" connected to blue ellipses, which is visible
in the graph attached in appendix.

6 RELATED WORK

All though the importance of certificates and the chain
of trust is well known [7] there aren’t that many good
available tools that clearly show all important compo-
nents of the chain such as CA:s, Root stores and certifi-
cates. The similar tools that were found mainly focus on
displaying adjacent certificates and more simplified re-
lationships that give an overview of the domains [5, 6].

7 CONCLUSION

The constructed framework is very capable of collec-
tion certificate data from crt.sh and constructing graphs

Visualization of certificate chains associated with selected domains

which provides clear compilations and visualizations
of different types of certificate chains associated with a
given domain, and in which years the different chains
have been relevant. Based on the graphs, it is possi-
ble to study changes in certificate chains and patterns.
The framework is also robust and capable of dealing
with bad requests and website crashes, which ensures
that all certificates are downloaded and that no one
is missed. This means that the user does not have to
control anything during the collection process and can
let the process run in the background and trust that the
framework has the situation under control.

With that said, the framework also has some short-
comings. First of all, the data collection process is not
very efficient. This is not necessarily a problem because
the framework is capable of constructing graphs consist-
ing of about a thousand certificates in reasonable time,
which is enough for most domains. However, problems
might arise if users want to collect data related to a
number of different domains and compile it in one and
the same graph. Data collection might be improved by,
for example, collecting data directly from the database
related to the website crt.sh instead of collecting data
from the website as JSON files. However, it is unclear
how much more efficient it is to download directly from
the database. So it is hard to say whether such a change
would have made data collection more efficient.

Another disadvantage is that the graphs become very
large, which is mainly due to the fact that domains have
used a wide variety of certificate authorities, which
scales up the graphs.

7.1 Limitations

To make the visualizations more feasible, only certifi-
cates used for the main domain have been considered
which may give a misrepresentation of what it would
have looked like if all certificates had been taken into
account.

To get clear visualizations, it was necessary to mini-
mize the amount of data displayed in the graphs.

A lot of time was invested in implementing an asyn-
chronous framework with several concurrent connec-
tions to crt.sh. However, this ultimately proved not to
increase efficiency. An alternative solution that might
have been better is to perform requests directly to the
database for crt.sh. But due to lack of time, only one of
the two proposed solution has been implemented.

TDDD17 student project, May 24, 2021, Linkdping, Sweden

The search function on crt.sh was perceived as un-
clear. All certificates related to a specific domain were
not received by simply searching for a single URL. For
example, a search on only “google.com” gave certifi-
cates issued until 2014, but a search for "www.google.com"
gave certificates issued until 2021, but missed many of
the previously issued certificates. This was handled by
searching for three URLs for each page, namely "ex-
ample.com", "www.example.com" and "*.example.com"
and extracting all unique certificates from the combined
search. However, it was not ensured that all certificates
related to a domain actually were retrieved using these
there URL combinations. But the designed tool allows
the user to add an unlimited number of URLSs for the
combined search, so if one wants to add more addresses
in the future, it is possible.

8 FUTURE WORK

Some minor changes could potentially improve the
tools efficiency, such as restructuring the code so that
it collects data from the database instead of the website.
It could also be possible to continue working on and

refine the visualizations, to make the graphs smaller in
width.

REFERENCES

[1] 1991. Graphviz. Retrieved May 4, 2021 from https://graphviz.
org/

[2] 2014. Simple Python interface for Graphviz. Retrieved May 4,
2021 from https://pypi.org/project/graphviz/

[3] 2017. Announcement: Requiring Certificate Transparency in
2017. Retrieved May 7, 2021 from https://archive.cabforum.
org/pipermail/public/2016-October/008638.html

[4] 2018. Apple’s Certificate Transparency policy. Retrieved May 7,
2021 from https://support.apple.com/en-us/HT205280

[5] 2019. certgraph simple D3 "graph" (a hierarchy tree, really) of
the most popular websites. Retrieved May 11, 2021 from https:
//github.com/ndrix/certgraph

[6] 2020. A tool to crawl the graph of certificate Alternate Names.
Retrieved May 11, 2021 from https://gitlab.com/kalilinux/
packages/certgraph

[7] Stefan Brands. 2000. Rethinking public key infrastructures and
digital certificates: building in privacy. Mit Press.

[8] Zakir Durumeric, James Kasten, Michael Bailey, and J. Alex
Halderman. 2013. Analysis of the HTTPS Certificate Ecosys-
tem. In Proceedings of the 2013 Conference on Internet Mea-
surement Conference (Barcelona, Spain) (IMC ’13). Associa-
tion for Computing Machinery, New York, NY, USA, 291-304.
https://doi.org/10.1145/2504730.2504755

[9] Ben Laurie. 2014. Certificate transparency. Commun. ACM 57,
10 (2014), 40—46.

https://graphviz.org/
https://graphviz.org/
https://pypi.org/project/graphviz/
https://archive.cabforum.org/pipermail/public/2016-October/008638.html
https://archive.cabforum.org/pipermail/public/2016-October/008638.html
https://support.apple.com/en-us/HT205280
https://github.com/ndrix/certgraph
https://github.com/ndrix/certgraph
https://gitlab.com/kalilinux/packages/certgraph
https://gitlab.com/kalilinux/packages/certgraph
https://doi.org/10.1145/2504730.2504755

TDDD17 student project, May 24, 2021, Linkdping, Sweden Latif and Henriksson

Appendices
A GRAPH FOR GOOGLE

N - P - O > O

i

-) - k
- e T - o @ e -_ > @ =
o e o @ s oo e

B GRAPH FOR APPLE

.4 e e - A B A A
| R .| (| | |
sy EmEm | RO CERD RN EEmST ez f=—1 f—§
@ @) e] e —- —— — - e
O‘ ..—_. '",_ m‘ o= N _ .‘ :
- - - - ZF T
L e T e
B
C GRAPH FOR FACEBOOK
D i R R R < R AR T]
]] o] (o] Eme] [
e []] @]]
x|] [] =]] D
R e T [|]
- o - i
s G | o o
-------- o - -

	1 Abstract
	2 Introduction
	3 Background
	3.1 Certificates
	3.2 Crt.sh
	3.3 Graphviz

	4 Methodology
	4.1 Overview
	4.2 Data collection from crt.sh
	4.3 Construction of graphs

	5 Result
	5.1 Performance
	5.2 Graphs

	6 Related work
	7 Conclusion
	7.1 Limitations

	8 Future work
	References
	Appendices
	A Graph for Google
	B Graph for Apple
	C Graph for Facebook

