
1

Visualizing third-party ad-domain
mappings on a webpage

Emil Nilsson, Email: emini757@student.liu.se
Lukas Rajala, Email: lukra972@student.liu.se

Supervisor: Niklas Carlsson, Email: niklas.carlsson@liu.se
Project Report for Information Security Course

Linköping University, Sweden

Abstract—This report covers the arms race between ad
providers and privacy aware users, presenting the efforts that
have been made by us to bring attention to this problem in a more
visual way for an average user. We cover the different techniques
used for detecting ads and what possibilities ad-providers have
to prevent or circumvent them. We also cover the difficulties
of attributing a visual element on a web page to a specific ad
provider.

I. INTRODUCTION

The ad providers are wreaking havoc on the modern web.
While some try to be responsible, others do everything they
can to maximize their profits. When this involves knowing
the users you can be sure that the most ruthless providers will
go into any length to gather knowledge about the users on
the web. With this in mind the problem being addressed in
this report will be how to track who is tracking you, with a
focus on sharing this information to users. There are a lot of
similarities between ad detection and malware detection. Both
in that it’s a race between detection and evasion, but also in
that the two main ways of detecting it is either by checking
against a list of known targets or by analyzing patterns in the
behaviour of the targets.

A. Limitations

This project has a limited time budget to match the amount
of university credits given. In total for the project each one
of us should allocate 80 hours, including practical project
work, writing of the report and presentations of progress.
This creates a limit in the scope of this work. The final
results will therefore leave some important questions and
conclusions unanswered. As a consequence of this there are
many references to improvements which can be made in future
work.

II. BACKGROUND AND RELATED WORK

Behind this seemingly quite simple issue there are many
challenges to be considered. These sections cover what tech-
niques traditional ad blocking involves and the pitfalls of these
techniques for this project. This provides context to what has
to be further researched and developed for the proposed issue
of visualizing ad-domain mappings.

A. Web ads

An advertisement is a piece of media that tries to persuade
the viewer of purchasing a product or service. Ads are pro-
duced by companies to be able to reach out to more potential
customers and persuade them to buy their product or service
which in turn leads to greater profits for the company. [9]
The company that creates the ad isn’t necessarily the same
company that provides the ad, here the ad providers step in.
[8] Ad providers are companies that specialises in providing
ads to customers. By advertising on the web these ad providers
can target users better and show ads that are more relevant to
the user. They do this by collecting information about people
on the internet and then providing ads based on the information
collected, the next section will go into more detail on how they
collect this information. When discussing ads in this report we
are exclusively talking about online ads, that is ads which are
displayed to be viewed in a modern web browser.

B. Trackers and Privacy

To collect data of users browsing the web ad-providers
use multiple techniques that are classified as trackers. These
trackers are embedded into most websites, trackers are mostly
not provided by the owner of the website and are therefore
commonly referred to as third-party trackers. [10] These third-
party trackers can collect the browsing habits of users such as
browsing history and even information such as email adresses
could be leaked with these trackers. [4] This is obviously a big
concern to privacy conscious users as your information can be
collected and sold without your consent or knowledge.

C. Browser extensions

Web browser extensions allow a programmer to modify the
behaviour of a web browser, this is done using an API provided
by the browser. These are distributed to users over the internet
so that a user can install these third party extensions in their
own browser. An extension is running in a more privileged
environment than normal websites, but still have restrictions
on what they can accomplish. [3]

D. Traditional ad-blocking

Ad-blockers are a widely used type of web browser ex-
tension, with the purpose of blocking resources identified



2

TABLE I
NUMBER OF EACH RESOURCE TYPE BLOCKED BY FILTER LISTS. [6]

Resource # Blocked by Filter
Lists

Percentage of Total
Blocked

Image 11,584 ≈ 11%
Script 67,959 ≈ 65%
CSS 9,255 ≈ 9%
AJAX 8,305 ≈ 8%
iFrame 7,745 ≈ 7%
Video 23 ≈ 0%

as ads that would otherwise be fetched and shown on a
webpage. These resources are commonly categorized to im-
ages, scripts (JavaScript), style sheets (CSS), asynchronous
requests (AJAX), embedded web pages (iFrames) and video
elements. An ad will commonly be blocked by preventing a
network request for the resource from being run or by finding
an element in the rendered HTML document (DOM) and
removing or hiding it. [1]

E. Filter lists

Filter lists are the most common way for ad-blockers to
detect ads on the internet. These are manually curated and
updated by crowd sourcing on the internet. These are used in
almost all popular ad blockers on the internet. [16] A single
filter is a rule that tells your browser extension which resources
and elements to block. Filter lists are a set of rules include
URLs to web resources which are previously known to be ads.
They also include patterns in HTML markup (described using
CSS selectors) which are known to be specific ads. This allows
for a shared format where even the user of an extension can
define their own custom patterns to filter. [5]

An analysis of filter lists found that most ad-blocking using
filter lists is achieved by blocking resources of the script type.
[6] See table I for details.

These resources can be categorized to two different cat-
egories, visible resources and invisible resources. Images,
iFrames and videos are considered visible, and scripts, CSS
stylesheets and AJAX requests are considered invisible. Some
resources in the visible category may even be invisible to
the user. For example a 1x1 pixel image used for tracking
purposes. According to table I, only around 18% of resources
found by filter lists can be considered visible, but this also
includes resources such as tracking pixels. This creates a
problem where you can not simply overlay a resource from a
filter list as it is not connected to an area on the screen.

To solve this issue a solution is JavaScript attribution, which
means being able trace which script produced a certain visible
element on a page. There are several solutions to this problem,
including stack walking, Chromium AdTracker, AdGraph [6]
and PageGraph [12]. The common issue with these solutions
is that they for the most part need to be executed at a lower
level than an extension has access to. This makes JavaScript
attribution a problem which often solved in the source code
of the browser, it’s rendering engine and JavaScript engine.

The best solution for JavaScript attribution at the browser
extension level is stack walking. [6] This technique involves

throwing exceptions and following their stack trace for attri-
bution. This works in some use cases but has its limitations
that are easy for an ad provider to work around.

F. Ad-blocking Arms Race

With ad blockers becoming more and more popular the ad
providers needed a way to to get their ads through the blockers.
This resulted in the start of what we call ad-block detection,
ad ”obfuscation” and ad injection.

A report by Peter Snyder et al. [16] also shows that filter
lists keep growing as more new rules get added than old ones
get deleted. This results in large lists where only a small subset
is actually useful, reducing the performance of ad blocking.
The massive dead weight in these lists are a result of the arms
race making many old rules irrelevant.

1) Ad-block detection: Ad-block detection is what it sounds
like, websites are looking for ad block and if detected they
take action by informing the user to turn of ad block or by
disabling certain functionality on the website.[11]

2) Ad ”obfuscation”: Facebook and reddit are two popular
websites that let users share and read posts from other users
on the platform. Both of these sites are displaying ads to the
users by disguising them as posts and adding them into the
users feed.

3) Ad injection: Video streaming sites usually try and
provide ads in the video player so that users have to watch
an ad before viewing the video. When ad-blockers started
blocking these ads the ad providers started injecting the ads
into the video stream making it harder to detect. Companies
are starting to catch on and targeting their audiences through
content creators (”influencers”) and getting ad time directly in
the content.

G. Artificial Intelligence

To solve one of the largest drawbacks of filter lists and to
try and stay ahead of the cat and mouse game a good idea
would be to use some sort of AI that could recognise ads. In
fact there are multiple studies on this with promising results.
These studies suggest solutions that could be used for either
detecting and blocking ads or using the AI to update the filter
lists to try and stay ahead of the ad providers. To do this they
extract features from ads such as text, link, layout and style.
The idea behind this is that an ad is often easily recognisable
by these features. By training a model on these features would
make the ad providers lives harder since they would have to
change these features to try and trick the model but while
still following regulations that require that ads needs to be
disclosed.

1) Perceptual ad detection: A possible solution to finding
ads is to detect them using perceptual ad detection as described
by Storey et al. [17] This would involve making use of what
humans can see on the page. A good example of this would be
legally required disclosure of ads such as the text ”sponsored”
or ”ad”. If you find this text in a certain way you have likely
found an ad. This type of ad detection is hard for ad providers
to counter as they are legally obliged to disclose the presence
of an ad to users.



3

H. Existing legislation

Grant Storey et al. [17] propose an approach to ad-blocking
where instead of using traditional filter lists, existing legis-
lation is used. This is done as a way to combat the arms
race of advertising providers trying to avoid detection by filter
lists, challenging the assumption that the arms race between
ad detection and ad providers will escalate indefinitely. This is
described as perceptual ad blocking which ignores traditional
methods to completely focus on information that would be
visible to a human because of legislation.

This shows a key difference in malware detection and ad
detection, which is that as ads are legal, they most likely follow
legal frameworks. Although this might be useful, we can
assume that the worst offenders when it comes to malicious
ads are the ones who would be less likely to follow legislation.

III. METHODS

The goal of the project is to create a web browser extension
to visualize ad and tracking information on web pages. The
ad information shall be mapped to the individual ads so that
a user of the extension gets a quick overview of the source of
an ad. The extension shall primarily be developed for running
in the Firefox web browser, although the technical framework
behind the browser extension is not in focus in this report. The
main challenges with this project are detecting which parts
of websites are ads, and which ad provider has provided a
specific ad. This problem comes with two main challenges.
It may for example be trivial to find that a script from a
certain ad provider is being loaded, but this does not give any
information of what visual elements the script will produce.
On the contrary, finding an element and deducing which script
created it is also difficult.

To address the goal of this project, we will firstly discuss
our basic prototype, and secondly offer theoretical insights in
how this prototype could be improved by discussing different
methods for further development.

A. Prototype

To solve this problem we have decided to create a prototype
extension, named B AdBoy, as a proof of concept for solving
this issue. The practical method that is applied in our prototype
is using filter lists of known ad patterns. This is done by using
common filter lists and filter list parsing to find relevant ads.
To be able to quickly make use of these filter lists, with an
efficient parser, the core components of existing open source
ad blocking software are used. After searching the web for
relevant open source projects we decided to use the AdBlock
Plus Core, by forking the webext-sdk repository. [2]

We decided to use two common filter lists in the prototype,
EasyList and Peter Lowe’s list. These lists were chosen based
on their popularity and have not been thoroughly evaluated or
compared to others. The filter lists are added using AdBlock
Plus Core’s built in filter list subscription functionality.

As the blocking part of the AdBlock Plus Core is not of
interest in this application we disabled the network request
blocking and element hiding code. This was then replaced
with our own code for overlaying ads. The overlaying part

Fig. 1. Example of an overlaid ad with source attribution.

gets a large amount of CSS selectors from AdBlock Plus Core
after the page has loaded and queries the document for these
using the built in browser APIs. This gives a small amount
of target elements that are classified as ads. To avoid double
overlaying, we remove target elements that have any other
target element as an ancestor node in the DOM. Resulting in
only the outermost target elements being kept. The querying
is periodically rerun to find newly added ads, for example if
a webpage has infinite scrolling or if a new page is loaded in
a single page application.

The remaining set of targeted elements each get a CSS
class name and also a child element for the overlay and its
contents. We then add mutation observers to all the targeted
ads, which detect any changes to the HTML of the target or
its descendants.

The ad overlay gets the detailed information about ad
sources by searching all of its descendants for their “src”
attributes, which results in a list of URLs to external content
such as images, iframes and scripts. These urls are further
parsed to only include the main part of the domain name,
excluding subdomains, according to Mozilla’s Public Suffix
List [14], and duplicates are removed. The overlay is recreated
any time the ad mutates, by listening to the mutation observers.

Finally the extension ads some CSS styles to the head of the
page, targeting the ad and overlay. To improve user experience
the ad gets a grayscale and opacity filter to move user focus
from the ad to the overlay. The result of this is shown in figure
1.

B. Theoretical

As a follow up to the prototype we also aim to theoretically
analyze the effectiveness of our prototype with the following
questions in consideration.

• How relevant is the content of the filter lists to our
project?

• How can we detect more ads?
• Are the sources shown in the overlay accurate?
• How does our prototype perform in the arms race?
• What is the user experience for a user of the extension

like?



4

Fig. 2. Showcasing the presence of an overlaid ad in the news feed of bbc.com.

IV. RESULT AND ANALYSIS

This section aims to evaluate our results, including what
our prototype does well, what could be improved and what
technological limitations affect the prototype. We will connect
these results to the theoretical questions described in the
methods.

The B AdBoy Prototype has shown to be effective at
overlaying ads on many web pages. Without optimizing the
tool for a specific website or ad provider it can detect different
types of ads on different websites. An example of it in action
on a news website can be seen in figure 2.

With ad detection based on filter lists no manual work has
to be done to keep the extension up to date, as it automatically
fetches current filter lists using AdBlock Plus Core. This
provides a solution that will stay updated without requiring
additional work from us as developers. It is versatile enough
to display ads served both from third parties and first parties
(as seen in figure 3).

Fig. 3. Ad served from a first party host on reddit.com.

A. Evaluation of Filter Lists
As the AdBlock Plus Core and the filter lists are designed

to block ads, the workings of the forked project are not
completely in line with what we want. Many filters from the
filter lists are targeting scripts, which we simply ignore. While
filter lists have been proven to be very useful for completely
blocking ads, they have their drawbacks in allowing visualiza-
tion for the user. This is because many ads on today’s web have

made great efforts to avoid the most simple forms of detection.
This has resulted in a majority of ads being distributed as
scripts, while very few ads are just a simple image or iFrame
embedded in a page, as seen in table I. A script can easily be
blocked from running at all, but make it a lot more difficult to
analyze what ads these scripts actually produce. This makes
current filter lists very useful for detecting which ads exist,
but not very useful for detecting the behaviour of these ads.

When we disabled script blocking, we noticed that the
elements that the script produced were also elements that the
filter lists target. This proved to be useful as many ads could
still be found this way. Although this was the case, it catches
far from every ad out there. This enforces our belief that filter
lists could be better optimized for ad visualization instead of
ad blocking, by creating purpose built filter lists.

1) Filter list optimization: With the drawbacks of the
current filter lists, one approach would be to generate new filter
lists specialized for the purpose of visualizing ads instead of
blocking them. This could be done by curating filter lists for
this purpose by crowd sourcing, as is already done by popular
ad blocking filter lists.

Another promising solution would be using artificial intel-
ligence to generate more optimized filter lists. This has been
done by Sjösten et al [15] for the purpose of serving localized
filter lists to underserved regions of the world. They combine
usage of PageGraph for brower instrumentation with an ad
classifier into their filter generation pipeline to generate new
filter lists to complement existing filter lists. This research
might prove useful in the future for creating better filter lists
optimized for visualizing ads.

An important aspect to consider is the performance of large
filter lists. As some websites have shown to slow down with B
AdBoy enabled, importance should be put in removing unused
filter rules. This has previously been discussed by Snyder et al.
[16]. Besides measuring the usage of specific filter rules across
the web and removing the most uncommonly applied filters.
Filter lists could also be pruned, to only include the rules
which are compatible with the ad visualization technology in
use, to avoid unnecessary performance overhead.

B. Evaluation of ad detection

After manually testing our extension on popular websites
we see that most ads are indeed overlaid correctly and many
also provide a possible source for the ad. However some ads



5

are missing the sources. We have also found that our extension
misses ads to overlay meaning that we don’t have a perfect
detection rate of ads. The magnitude of this issue is hard to
measure since we can’t use any prebuilt tests for ad-blocking
and we would need to build a new test suite for testing our
solution.

C. Evaluation of Displayed Sources

As seen in figure 4 the quality of the displayed sources may
vary. Here there are three different domains serving external
resources inside of the ad. In this case the logo images are
hosted on imgur.com, a tracking pixel is from stackover-
flow.com and a hidden iframe is served from googlesyndi-
cation.com.

Fig. 4. Ad on stackoverflow.com displaying multiple sources.

For our source finding algorithm it is impossible to know
which one of these domains, if any, is serving the actual ad.

This algorithm for finding the source of an ad is a severe
flaw in our implementation that would require additional work
in the future. This is due to many ads not having descendants
with a “src” attribute corresponding to the provider. Instead
the “src” could be for example an image, which is displayed
in the ad, but unrelated to the provider of the ad, as seen
with imgur.com in figure 4. The browser API api also blocks
the traversal of iframes, due to security concerns, resulting
in the inability traverse into an iframe. This can be solved
by running a script from the extension inside all iframes as
well. By doing this the sub documents can send information
to the main document through the background task of the
extension. Some ad providers use iframes without providing a
“src” attribute, making our extension fail to find a connected
domain. From our experience Google does this with some of
their ads. This issue would be solved by further researching
JavaScript attribution instead of working with the assumption
that ads would serve some external files under the provider’s
domain.

JavaScript attribution using stack walking could be imple-
mented in the browser extension in the future, but has been
proven to be easily defeated by ad providers looking to avoid
detection.

Many of the cutting edge research papers have chosen to
go beyond the level of a what a web browser extension is
capable of through the browser’s provided extension API. [6]
[7] [4] This is done to achieve a more optimal result than
has previously been accomplished by web browser extensions.
While going outside the scope of a web browser extension
does not help with the final delivered product in this project,
it could prove to be very useful for delivering additional data
to our extension.

An option which shows a lot of potential for future work
is combining these solutions. For example by using B AdBoy
together with PageGraph as a web crawler [13]. This would
create an environment where B AdBoy could use working
JavaScript attribution to automatically build a database of
relations between sources and DOM elements. This database
could then be accessed by B AdBoy users to recive more
accurate source attribution.

D. Evaluation of the Arms Race

Unfortunately our solution isn’t the solution to the arms
race. However we can see some benefits and drawbacks
with our solution. The benefits are that ads are not actually
blocked and that ad providers don’t need to take up arms
against our extension since their ads are still displayed to
the users. Another benefit is that our solution isn’t targetable
by traditional Ad block detection. However there are some
obvious drawbacks to our prototype the main drawback is
that ad providers are in constant fights with ad blockers and
therefore also in fight with our filter lists that are used in the
prototype. This means that we rely on filter lists that need
to be updated every so often. Also if the ad providers really
wanted to they could easily detect our overlaying and try and
interfere with it. So as we can see our prototype is far from
ending the arms race, our solution is a way for ads to exist
on the web but also show a behind the scenes view of all
the providers involved in bringing you the ad. This would
hopefully encourage users to make better decisions and for
ad providers to take a better path in providing ads without
stalking the user all over the web. The following subsections
will cover the future improvements in this area.

1) Proposing new legislation: As described in the back-
ground ads often have to be disclosed according to existing
legislation. This makes it possible to for example search for the
word ”sponsored” or ”ad” in the webpage. These legislations
are a good start to providing transparency for ads on the web,
but can be considered not enough. New legislation could be
brought forward so that users could browse the web freely
without being tracked, or at least be fully aware of the tracking.

Although this report will not go into the area of proposing
new legislation it is still a valid option. However a potential
drawback is that a feasible assumption would be that the ad
providers who badly follow legislation would be the ones who
are most likely the most malicious or intrusive providers. The
website might also follow other local laws than the user so
while the European Union or United States of America might
have strong laws that a lot of websites follow, many websites
are hosted for audiences in other parts of the world.



6

E. Evaluation of User Experience

A normal ad-blocker partially aims to increase performance
by removing network requests and stopping script execution.
Our prototype does not in any way increase performance, as it
does not block these things. This means that if anything it is
an added performance penalty for the user. The evaluation of
how large the decrease in performance is will not be done in
this report, but it could prove to be significant on a webpage
with a complex DOM tree.

Applying a gray scale filter to the ads will bring the users
attention away from the ads and to the actual content of the
website. We see this as an improvement as it doesn’t take away
focus from the website that you are visiting and will let you
focus on whats important first.

In the case where there is a false positive overlay or an ad a
user actually wants to see, the overlay should be dismissable.
This has not been implemented in the prototype as it would
take resources from more important work. In the scenario
where this prototype should be developed into an extension
distributed to users, this requirement should get increased
priority. The ability to permanently remove a specific overlay
from a website should then also be included.

False positives are not as sensitive for our extension com-
pared to an ad blocker, since no content is being blocked or
hidden. In the worst case of getting a false positive, the overlay
from our extension would be dismissable.

Our extension is also missing a graphical user interface
(GUI), as this has been downprioritized. If the browser ex-
tension were to be distributed, a user should using a GUI be
able to configure options such as filter lists, filter exceptions,
and visuals of the overlay. The GUI should also show the user
hidden trackers on the web page that can not be overlaid as
they are not visible on the page.

V. CONCLUSIONS

There are many ways to detect the presence of ads on a web
page. But many of those do not take into account where on the
page an ad is displayed. This makes for a challenging problem
to solve. Our prototype solves the task of visualising some of
the ads and ad-providers on the web. It does this by using the
traditional filter lists to find elements which are considered
ads. We then dig deeper into the elements and their children
to try and find the sources of who has distributed them.

This technique is not flawless and relies heavily on filter
lists. In this report we have discussed improvements that could
be made. Some are possible to solve by continuing purely
using an extension. While others are outside of the scope for
an extension, but could be useful for creating external data
sources for the extension.

The browser extension is still an early prototype, lacking
functionality in many areas such as testing, optimization, ad
detection, source attribution and user experience. Although
this is lacking, the report aims to provide insights in how
all of these areas can be improved in future revisions of the
extension.

There is no data indicating how the prototype performs in
the amount of ads found and the reliability of the source

attribution. In the case where further development of the
extension is to be done, we recommend testing and comparing
the amount of ads successfully found to that of an ad blocker,
and that the source attributions are compared to those of a tool
such as PageGraph.

While there is obviously much left to do before the product
is perfect, we believe that what we have achieved are great first
steps into the area of ad visualization web browser extensions.

REFERENCES

[1] Ad blocking. URL: https://en.wikipedia.org/wiki/Ad
blocking (visited on 04/27/2021).

[2] Ad Blocking Web Extension SDK. URL: https : / /
gitlab. com/eyeo /adblockplus /webext - sdk (visited on
05/04/2021).

[3] Browser Extensions. URL: https://developer.mozilla.org/
en-US/docs/Mozilla/Add-ons/WebExtensions (visited
on 04/27/2021).

[4] Steven Englehardt and Arvind Narayanan. “Online
Tracking: A 1-Million-Site Measurement and Analy-
sis”. In: CCS ’16. Vienna, Austria: Association for
Computing Machinery, 2016, pp. 1388–1401. ISBN:
9781450341394. DOI: 10.1145/2976749.2978313. URL:
https://doi.org/10.1145/2976749.2978313.

[5] How to write filters. URL: https : / / help . eyeo . com /
en / adblockplus / how - to - write - filters (visited on
04/27/2021).

[6] Umar Iqbal et al. “AdGraph: A Graph-Based Approach
to Ad and Tracker Blocking”. In: 2020 IEEE Sympo-
sium on Security and Privacy (SP). 2020, pp. 763–776.
DOI: 10.1109/SP40000.2020.00005.

[7] B. Li et al. “JSgraph: Enabling Reconstruction of
Web Attacks via Efficient Tracking of Live In-Browser
JavaScript Executions”. In: NDSS. 2018. DOI: 10.14722/
NDSS.2018.23319.

[8] Zhou Li et al. “Knowing Your Enemy: Understand-
ing and Detecting Malicious Web Advertising”. In:
CCS ’12. Raleigh, North Carolina, USA: Association
for Computing Machinery, 2012, pp. 674–686. ISBN:
9781450316514. DOI: 10.1145/2382196.2382267.

[9] Rima Masri and Monther Aldwairi. “Automated
malicious advertisement detection using VirusTotal,
URLVoid, and TrendMicro”. In: 2017 8th International
Conference on Information and Communication Sys-
tems (ICICS). 2017, pp. 336–341. DOI: 10.1109/IACS.
2017.7921994.

[10] Johan Mazel, Richard Garnier, and Kensuke Fukuda.
“A comparison of web privacy protection techniques”.
In: Computer Communications 144 (2019), pp. 162–
174. ISSN: 0140-3664. DOI: https://doi.org/10.1016/j.
comcom.2019.04.005. URL: https://www.sciencedirect.
com/science/article/pii/S0140366418300604.

[11] M. Mughees et al. “A First Look at Ad-block De-
tection: A New Arms Race on the Web”. In: ArXiv
abs/1605.05841 (2016).

[12] PageGraph. URL: https : / / github . com / brave / brave -
browser/wiki/PageGraph (visited on 04/27/2021).



7

[13] pagegraph-crawl. URL: https : / / github . com / brave -
experiments/pagegraph-crawl (visited on 04/27/2021).

[14] Public Suffix List. URL: https://publicsuffix.org/ (visited
on 05/04/2021).

[15] Alexander Sjösten et al. “Filter List Generation for Un-
derserved Regions”. In: Proceedings of The Web Con-
ference 2020. WWW ’20. Taipei, Taiwan: Association
for Computing Machinery, 2020, pp. 1682–1692. ISBN:
9781450370233. DOI: 10.1145/3366423.3380239. URL:
https://doi.org/10.1145/3366423.3380239.

[16] Peter Snyder, Antoine Vastel, and Benjamin Livshits.
Who Filters the Filters: Understanding the Growth,
Usefulness and Efficiency of Crowdsourced Ad Block-
ing. 2020. arXiv: 1810.09160 [cs.CR].

[17] Grant Storey et al. The Future of Ad Blocking: An An-
alytical Framework and New Techniques. 2017. arXiv:
1705.08568 [cs.CR].


