
Cryptocurrency transaction mapping

Isak Häggström
970825-6475

e-post: isaha512@student.liu.se

Mátyás Barócsai
980311-3159

epost: matba803@student.liu.se

Supervisor: Niklas Carlsson, niklas.carlsson@liu.se
Project Report for Information Security Course

Linköpings universitetet, Sweden

May 24, 2021

Abstract
Cryptocurrency has become a very popular in todays so-
ciety offering a digital, decentralized, and anonymous
currency. Due to its anonymity, bitcoin together with
other cryptocurrencies has increasingly been used in
criminal and fraudulent activities such as scams, black-
mailing and black-market purchases. This report ex-
plores ways to visualize cryptocurrency transactions, and
tries to answer the question on what information can
be extracted from a cryptocurrency address. The result
is Cryptocurrency Transacton Mapping Tool (CTMT). A
tool that uses the Blockcypher API to gather information
on transactions and vizualise these transactions in differ-
ent graphs.

1 Introduction
A cryptocurrency such as Bitcoin is a Virtual or digital
currency protected by cryptography. Most of the current
cryptocurrencies are decentralized ,peer-to-peer (P2P),
networks. These P2P networks manages a distributed
ledger called blockchain, which is the technology that
allows for the different cryptocurrencies to be transferred
around the world without a need for a mediator or a
central server and the possibility for anonymity.

A blockchain is essentially a digital ledger of trans-
actions. This ledger is duplicated and distributed

across the entire network of computer systems on the
blockchain. Each part of the chain contains a number of
transactions, and for every transaction that occurs on the
specific blockchain, a record of that transaction is added
to every participant’s ledger.[1]

1.1 Purpose
The purpose of the project is to get a better understanding
of how bitcoin and other cryptocurrencies can be used in
various scamming operations.

1.2 Goal
The goal of this project in the course TDDD17 is to col-
lect, filter and graph information about bitcoin transac-
tions. And by doing this provide a tool to help visualize
how the money moves from the victim to the scammers
bitcoin wallets and further down.

1.3 Problem statement
The following problems will be discussed and analysed in
this project:

• How do we create a visualization tool to follow bit-
coin transactions?

• Which type of information is possible to extract from
a bitcoin address?

1



2 Background
This section will discuss the methods used in the project,
both theoretical and practical.

2.1 Past work
This project is built upon work done by students in this
course (TDDD17) last year (2020). Their project goals
was to gather information from Bitcoin addresses and cat-
egories these depending on what information the user is
interested in. This project will use part of that informa-
tion when choosing the addresses to be graphed.

2.2 Methods
This section will introduce the methods and tools that are
going to be used to implement and analyse the cryptocur-
rency transaction mapping tool (CTMT).

2.2.1 Blockcypher API

The Blockcypher API is a free to use API for collecting
information about and/or interacting with blockchains
[2]. In this project the Blockcypher API will be used
to collect the transaction history of bitcoin addresses
which have been linked to potential criminal activities.
The Blockcypher API supports multiple language SDK’s
but in this project the API will be used in Python only.
The API itself will be installed and used as described in
Blockcypher’s official python library manual [3].

Blockcypher API does enforce certain constraints
when using the free tier. The only constraint that will
affect our implementation is a rate-limit, which ensures
that only 200 API request can be made per hour by a free
tier user such as ourselves. [2]

2.2.2 Python

In this project the Python programming language will be
used, due to it being an easy and intuitive language ex-
cellent for smaller project such as this one. Furthermore
Python has a large number of third-party modules which
can be used to quickly implement code. [5]

2.2.3 Graphviz

Graphviz is an open-source python module that in this
project is used to create graph objects specified in DOT
Language, which is a graph description language. The
tool was initated by AT&T Labs. [4]

2.2.4 JSON

JSON (JavaScript Object Notation) is language indepen-
dent data format with the purpose of being lightweight
and easy to read for both humans and machines. JSON
is completely language independent even if it uses con-
ventions from the C-family of languages, these languages
includes C, C++, C#, Java, JavaScript, Perl, Python etc.
These characteristics make JSON popular to use for com-
munication between programming languages. [6].

3 Solution and Analysis
In this section the solution and result will be presented
and analyzed.

3.1 Cryptocurrency Transaction Mapping
Tool (CTMT)

To answer the problem statement and be able to present
paper-ready figures a python tool was programmed. The
tool’s purpose is to make it easier to collect, filter and gen-
erate a diverse set of graphs each representing the trans-
action history of a given Bitcoin wallet. The tool is made
up of three script modules each with its purpose and func-
tionality. The modules are executed via the main program
separately or in pipe-lined fashion as seen in figure 1.

Figure 1: Structure of the python tool

2



3.1.1 Data Collection Module (DCM)

The Data Collection Module (DCM) is responsible for
retrieving the transaction history for a specific address
given by the user. It stores the information in a json
format inside a specified file.

The Data Collection Module starts by asking the
user for a specific amount of transactions that should be
retrived. Then the Blockcypher API is used to request the
information on the transactions. A loop is needed here
because the API only allows to gather information on
50 transactions for each request. There is also a limit on
how many request per hour can be done, 200. After this
number is reached the program stops for an hour and then
restarts at the same spot. When the number of transaction
that the user is interested in is reached the loop stops and
the information is written to a specified file. Figure 2
shows the two different API requests made depending on
if we have reached the request limit or not.

Figure 2: A code snippet of the requests to the Block-
cypher API.

3.1.2 Data Filtering Module (DFM)

The purpose of the Data Filtering Module (DFM) is
to filter and limit the number of transactions which
will be graphed. As the data collection module’s only
functionality is to collect and store the transaction history
of a given Bitcoin wallet, it becomes clear that redundant
or irrelevant information about transactions will be
gathered by the module. Limiting or filtering the gathered
information greatly reduces graphing times for the Data
Graphing Module (DGM) and makes the resulting graphs
not only more readable but better looking.

The filtering technique is chosen by the user when
the module is executed by the main program. There are

multiple filter types each resulting in a different graph.
Currently there are three filter types programmed from
which the user can choose their desired one.

The ”raw filter” filters only redundant transaction
details but does not limit the number of transactions
graphed. This filter type results in graphs that are unnec-
essarily large and complex but can give the viewer an
understanding of the complexity of a bitcoin transaction.

The ”blockchain filter” filters the data such that the
resulting graph shows only the blockchain transactions
and not the individual bitcoin addresses and their transac-
tions. The ”interval filter” filters the data into intervals,
the result is a graph that will show the different intervals
of BTC amount in which transaction have taken place .
The filtering is applied to the collected data by reading
the JSON file in which the DCM has stored the raw
transaction history. The filtered data will then be written
to another JSON file from which the DGM can graph the
resulting graph.

3.1.3 Data Graphing Module (DGM)

The purpose of the Data Graphing Module is to create
and open an intuitive, aesthetic and easily understood
graph based on the data which the DFM has filtered and
stored in a JSON file. The graphing itself is done with the
help of Graphviz (see section 2.2.3 for more information).

The file that should be made into a graph is chosen
by the user if the Data Graphing Module is the only
module being run, or is automatically picked if the
whole program is running. To draw using Graphviz
each object in the input is read and added as nodes to
the graph. The result is then saved and showed to the user.

Graphing times are dependant mostly on the amount
of data which is processed. An address with longer
transaction history will result in longer execution of the
module. The type of filtering which is used will also have
an affect on the execution times. The fastest graphing
time is achieved with the interval filter as this is the
filter type which has the least amount of nodes. The raw
filter results in the longest graphing times taking up to 5
minutes to graph 100 transactions.

3



3.2 Graphs
The two tables below shows the number of transactions
from a specified address per Bitcoin interval. The graph-
ical representation of these tables can be seen in figure 3
(Appendix A).

Table 1
Interval (BTC) Nmbr of txs Direction

0 - 0.0015 60 Input
0.0015 - 0.003 21 Input
0.003 - 0.0045 22 Input
0.0045 - 0.006 12 Input
0.006 - 0.0075 4 Input
0.0075 - 0.009 5 Input
0.009 - 0.0105 4 Input
0.0105 - 0.0120 8 Input
0.0120 - 0.0135 0 Input
0.0135 - 0.0150 2 Input
0.0150 - 0.0165 0 Input
0.0165 - 0.018 2 Input
0.018 - 0.0195 0 Input
0.0195 - 0.021 2 Input

total number of txs 142

Table 2
Interval (BTC) Nmbr of txs Direction

0 - 0.0015 11 Output
0.0015 - 0.003 8 Output
0.003 - 0.0045 7 Output
0.0045 - 0.006 8 Output
0.006 - 0.0075 1 Output
0.0075 - 0.009 4 Output
0.009 - 0.0105 2 Output
0.0105 - 0.0120 8 Output
0.0120 - 0.0135 0 Output
0.0135 - 0.0150 1 Output
0.0150 - 0.0165 0 Output
0.0165 - 0.018 1 Output
0.018 - 0.0195 0 Output
0.0195 - 0.021 2 Output

total number of txs 53

4 Discussion
This section consists of an analysis and evaluation of the
results from this project. This includes a discussion of
the method of work, graphical representations and future
work based upon our results.

Starting up the project and gather information on
transactions using the Blockcypher API was not too
difficult. One problem however that occured with
Blockcypher API were the amount of requests needed to
gather the full history of transactions. This due to the fact
that each request could only gather information on 50
transactions and there was a limit of 200 requests per hour.

Another thing that proved to be difficult was the
amount of data that every transaction consisted of. As
well as Filtering through that data to pick the things that
were needed to do the task. To solve this problem the
Data Filtering Module was introduced, this gives the user
options on what information should be filtered from the
full transaction history. The different filters implemented
are described in section 3.1.2.

4.1 Graphical results
In Appendix A the graphical representations are dis-
played. Figure 3, shows the graphical result for a specific
address using the interval filtering. This filter gives a
good overview on which bitcoin amounts are the most
transferred for that specific address. In section 3.2 this
graph is represented as tabular data, it is clearly seen in
these tables that the majority of the transactions both in-
and outgoing are in the lower intervals. One thing that
the graphical representation of the interval filtering lack
is the addresses listed in the graphs. A thing that could be
done about this is listing the addresses for every interval
on a separate paper. Putting the addresses directly in the
graphs, just makes things cluttery.

In Appendix A, figure 4, a graphical example of the
Blockchain filter can be seen. This filter is presented such
that every transaction is a node and the amount sent to
the specified address is written on the edges. This type of
filter is good if the user is interested in seeing the specific
amounts received and sent from a specified address for

4



a few transactions. What is lacking is the same thing as
for the interval filter and this could be solved in a similar
way as mentioned before.

Appendix A also includes a graphical example of
no filter being applied, which can be seen in figure 5.
What is clear is that to get a readable view on an ”address
to address” level, the number of transactions can not
reach a level higher than just a few transactions. The
reason for this is simply that every Bitcoin transaction
can consist of different amounts of addresses, in the
transactions for this project the amount could reach 200.
This means that the size of the graph grows really fast
when the number of transactions gets higher.

4.2 Future work
It can be said with a clear conscience that this project
can be improved on in multiple ways. During the project
we encountered various problems and hurdles that led us
to rethink our strategy of implementing the transaction
mapping tool in the most efficient way.

Future work could be done on the Data Collection
Module, 3.1.1, by solving the issue with the 200
request/hour limitation which the Blockcypher API
enforces on its free-tier users. This issue strongly limits
the amount of data which can be gathered and analysed,
and solving it should therefore be of a higher priority for
those who may want to analyze addresses with longer
transaction history.

In this project much work and effort was put on
creating a code base on which it was easy to implement
more filter types. Future work could implement more
filter types allowing more information to be gathered,
perhaps shedding some further light on how criminal
and fraudulent activities are conducted with the help of
cryptocurrencies.

The modularity of the code base also allows for
changing parts of the program. These new parts can be in
other programming languages due to the fact that the json
protocol is used to communicate between the modules.

Alternatively work could be done on the Data Graphing

Module, 3.1.3. Creating intuitive and easily under-
stood graphs proved to be more difficult than we in
the beginning anticipated, as it became clear that the
overabundance of data collected made it harder to create
small graphs that still accurately reflected the data they
were representing. Future work could perhaps find new
and better ways of representing the huge amounts of
data that is collected. Graphs that accurately depict
the transaction history but is still understandable to the
viewer.

5 Conclusions
In this section conclusions will be drawn from the project
and discussed their impact and relevance to the subject.

5.1 How do we create a visualization tool to
follow bitcoin transactions?

There is not a ”one” way of creating a visualization tool
that follows bitcoin transactions. There are various ways
of creating such a tool, each with its own benefits and
weaknesses. In this project we have created a tool with
the help of third-party libraries and API’s. Although not
necessary for creating a visualization tool, third-party li-
braries and API’s greatly reduce the work amount and
completion time for a tool. Furthermore a dynamic fil-
ter system is perhaps not vital for the task but is strongly
recommended in order to create more diverse visualiza-
tions. With a dynamic filtering system which is not ”hard-
coded” the same data can be presented in multiple ways,
allowing for more analysis which in turn leads to better
understanding.

5.2 Which type of information is possible to
extract from a bitcoin address?

The type and amount of information which is possible to
extract from a bitcoin address is dependant on how much
work and effort one wants to put on analyzing the ad-
dress. Trivial information such as address name, amount
of BTC in account and number of transactions made is
obviously not very hard to extract with the help of a third-
party API like Blockcypher API, which was used in this

5



project. The transaction history is possibly the most in-
teresting and valuable information which can be gathered
from a bitcoin address, as it includes all the transaction
details, outgoing as well as incoming money to the ac-
count. By analyzing and categorising the transaction his-
tory it is possible to extract even more data from the bit-
coin address. It is possible to see in which BTC range
the majority of transactions sent money or when in time
most transactions were made. It is possible to see if there
are any reoccuring transactions made to specific addresses
and if the BTC amount is reoccuring also.

References
[1] Sheldon Mark D Binance Academy Jenkins J Gre-

gory. Bitcoin and Blockchain: Audit Implications
of the Killer Bs. URL: https : / / search .
ebscohost.com/login.aspx?direct=
true&db=buh&AN=149147359&site=eds-
live&scope=site. (visited on 06/04/2020).

[2] Blockcypher.com. BlockCypher’s API documenta-
tion. URL: https : / / www . blockcypher .
com/dev/bitcoin/#introduction (visited
on 05/05/2020).

[3] Blockcypher.com. Official Python library for Block-
cypher web services. URL: https://github.
com/blockcypher/blockcypher-python
(visited on 05/05/2020).

[4] https://graphviz.org/. Welcome to Graphviz. URL:
https : / / graphviz . org/ (visited on
03/05/2020).

[5] https://www.python.org/. Python 3.9.5 documenta-
tion. URL: https://docs.python.org/3/
(visited on 02/05/2020).

[6] json.org. ECMA-404 The JSON Data Interchange
Standard. URL: https://www.json.org/
json-en.html (visited on 06/05/2020).

6



Appendix A
This appendix is a list of different graphical representation of a bitcoin transaction.

Figure 3: Interval filtering on a specified address.

7



Figure 4: Blockchain filtering with 50 blockchains.

8



Figure 5: Sample from graph without filtering

9


