
Survey of Web Security Mitigations in Modern
Browsers

1st Ludvig Öberg
Linköping University
Linköping, Sweden

ludob894@student.liu.se

2nd Tommy Johansson
Linköping University
Linköping, Sweden

tomjo891@student.liu.se

3rd Ulf Kargén
Department of Computer and Information Science

Linköping University
Linköping, Sweden

ulf.kargen@liu.se

Abstract—Web applications have a growing importance in
the modern society. These applications are built on the HTTP
protocol. Many web applications have vulnerabilities that modern
browsers aim to mitigate through security extensions to HTTP. In
this paper a survey of these mitigations are presented. This report
prioritizes a subset of the mitigations based on the effectiveness of
the mitigation, the ease of implementation as well as the severity
and prevalence of the vulnerability it mitigates, and describe
these in detail.

In this report the selection of vulnerabilities was based on The
Ten Most Critical Web Application Security Risks report published
by OWASP. The vulnerabilities are ranked based on the four
criteria presented in OWASPs report: Exploitability, Prevelance,
Detectability and Technical Impact. Similarly mitigations were
selected from Mozilla’s Web Security Guidelines which ranks web
application mitigations based on security benefits and ease of
implementation.

I. INTRODUCTION

The number of websites has grown rapidly since the birth
of the modern internet in 1991, and there are currently 1,7
billion websites[1]. These websites provide services ranging
from streaming movies and music, to reading newspapers
and downloading applications. These are all different types
of web application and it is a common occurrence that
they are insecure. As the internet becomes a larger part of
many companies operations, web applications is becoming an
important infrastructure which needs to be defended against
attackers. For example in 2019 156 billion USD was spent
on cyber-security[2]. The industry is set to grow at an annual
rate of 10%[2]. This is partly due to stricter regulations around
customer data such as GDPR.

In 1994 Netscape created SSL 1.0 which was a se-
cure protocol by with two networked peers could encrypt
communications[3]. The adoptions of HTTPS has been slow
but in recent years it has increased in popularity, currently
71,5% of all websites have HTTPS as their default protocol[4].
HTTPS is built on HTTP, which means that many of the same
security problems that are present in HTTP are also present
in HTTPS. It is up to the developer to implement mitigations
to these HTTP Web Application vulnerabilities. In order to
remedy common vulnerabilities many modern browsers have
also implemented security extensions to HTTP.

This paper aims to survey these HTTP/1.1 mitigations.
Selecting the most important mitigations based on the effec-
tiveness of the mitigation as well as the severity and prevalence

of the vulnerability, and describe the highest prioritized mit-
igations in more detail. The selection of vulnerabilities were
based on The Ten Most Critical Web Application Security Risks
report which is published by OWASP, a non-profit for better
IT-Security. Mitigations were selected using Mozilla’s Web
Security Guidelines which ranks web application mitigations
and is created by the Mozilla Foundation, which create and
maintain the Mozilla Firefox web-browser.

A. Delimitation

This paper does not cover mitigations implemented in the
web application source code, instead this paper will focus
on security extensions to HTTP. The type of vulnerabilities
that can be mitigated by HTTP security extensions are those
that interact directly with the HTML document and resource
policies for the web application. The types of vulnerabilities
that cannot be mitigated by HTTP security extension are the
ones that involve the web application logic, and the storage
and retrieval of data.

Not all mitigations will be covered in depth, instead the
mitigations that offer the most protection against the most
severe vulnerabilities will be prioritized.

II. BACKGROUND

In this section the background of HTTP’s development and
features are presented.

A. HTTP

HTTP was developed by Tim Berners-Lee and his team
at CERN during 1989-1991[5]. The protocol evolved from a
file exchange protocol to now being the underlying protocol
of the modern internet[5]. The first version (later called 0.9)
was simple with only one request, GET which retrieved a
resource based on the path sent. HTTP version 1.0 was
used between 1991-1995, with version HTTP/1.1 being the
version most used and the leading protocol between 1999-2015
when HTTP/2 was released. HTTP/1.1 contains the methods
OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE and
CONNECT.

As shown in Figure 1 each HTTP request contains a request
header and a request body. The request header contains a
method, path and version of the protocol.



Fig. 1. HTTP Request parts[6]

B. HTTP Header Fields

HTTP headers is a way for the client and server to send
additional information between each other. This happens using
a HTTP request and HTTP response[7]. The header con-
tains four different fields: General-header, Request-header,
Response-header and Entity-header[8]. General headers are
used to send requests and responses but with no connection
to the data sent in the body[7]. Request headers contain
information about the resources being fetched or information
about the source requesting information[7]. Response headers
contain information about the response such as information
about the origin of the response[7]. Entity headers contain
contents regarding the body of the response, this can be
information such as content type or length[7]. Each field
contains a name followed by a ”:” and then the value of the
field[8].

1) HTTP Security Extensions: HTTP security extensions
comes in the form of HTTP response headers that is returned
as a response from a HTTP request[8], instructing the browser
how to behave when loading the website and its resources[9].
When it comes to security, the more important fields are the
ones that handles scripts and what resources to allow[9].

2) Directives: Some HTTP headers have more than one
operational mode. Directives instruct on which operational
mode to use for that header. These directives are defined by
the header and handle one specific task for the header and can
therefore be used in conjunction with other directives for that
header[8]. Directives can either enforce certain aspects of a
header or relax its restrictions[8].

C. HTTPS

HTTPS is the protocol to use TLS to secure a HTTP
connection. A connection is initiated via a TLS handshake[10].
Once the handshake is finished the client can then send the
first HTTP request, all HTTP data is sent over TLS. TLS
was previously called SSL and is based on asymmetric public
key infrastructure[11]. By encrypting traffic HTTPs prevents
anyone from snooping on network traffic even if the packets
are intercepted[11]. HTTPs uses the URI ’https’ instead of
’http’ and the domain needs to match that on the certificate
presented. If it does not the client needs to present an error
page or close the connection[10].

III. METHOD

There are many vulnerabilities in web applications and
many mitigations are done only in the web application’s source
code[12]. It is therefore necessary to do a prioritization of the
currently most prevalent and severe vulnerabilities and limit
this prioritization list to the most relevant for this survey. Each
vulnerability and mitigation will be presented in order based
on the ranking system described below.

A. Vulnerability and Mitigation Prioritization

In order to prioritize the vulnerabilities for this paper it is
not sufficient enough to just pick the most prevalent and severe
vulnerabilities. The vulnerability must have a mitigation in a
security extension to HTTP, which is not always the case for
the OWASP Top 10 vulnerabilities in Web Applications[12]. In
order to find relevant HTTP security extensions and the vulner-
abilities they mitigate, Mozilla’s Web Security Guidelines[13]
was used. These mitigations were prioritized based on security
benefit and ease of implementation.

Vulnerabilities were selected based on the OWASP Top
10 Web Application Security Risks 2013[14] and 2017[12].
OWASPs rank these vulnerabilities on a scale of 1-3 on four
different aspects; exploitability, weakness prevalence, weak-
ness detectability and technical impacts[12]. These aspects are
added together to produce the final ranking[12]. This paper
will add the number given by OWASP for the four aspects
together to create an overall ranking number, ranging from 0-
12. This ranking system takes into account both the likelihood
of an attack succeeding and the damage of the potential
attack[12].

Mitigations were selected based on Mozilla Web Security
Cheat Sheet[13], which ranks the mitigations based on their
security benefit and implementation difficulty[13]. Each miti-
gation is given a score on the two aspect ranging from Maxi-
mum, High, Medium and Low[13]. To give the mitigations an
overall ranking, they are assigned a value from 1-4 for each
of the aspects which is then added to produce the ranking.
This gives a final ranking value between 1-8. Which means
that the mitigation that produces the highest security benefit
and which is the easiest to implement ranks at the highest.

B. Paper Selection Method

After identifying which vulnerabilities and mitigations that
were relevant for this report, searches on Google Scholar was
done to identify relevant sources and scientific articles for each
vulnerability and mitigation. Beyond scientific articles, a range
of industry guidelines and documentation was used.

IV. SURVEY OVERVIEW

In this section an overview of the currently most prevalent
and severe vulnerabilities as well as the most effective miti-
gation are presented in an ordered list. The list is then limited
to vulnerabilities and mitigations that are within the scope of
this paper.



Vulnerability Exploitability Prevalence Detectability Technical Impact Total Score
Injection 3 2 3 3 11

Security Misconfiguration 3 3 3 2 11
Cross-Site Scripting 3 3 3 2 11

Sensitive Data Exposure 2 3 2 3 10
XML External Entities 2 2 3 3 10
Broken Authentication 3 2 2 3 10

Using Components with known vulnerabilities 2 3 2 2 9
Cross-Site Request Forgery 2 2 3 2 9

Broken Access Control 2 2 2 2 9
Insufficient Logging & Monitoring 2 3 1 2 8

Insecure Deserialization 1 2 2 3 8
Clickjacking - - - - -

TABLE I
RANKING AND RANKING CRITERIA FOR EACH VULNERABILITY.

A. Web Application Vulnerabilities

In this section the currently most prevalent and severe
web application vulnerabilities are listed based on prevalence
and severity of the exploits they enable, see Table I. The
vulnerabilities are presented in order of severity based on the
ranking of The Ten Most Critical Web Application Security
Risks from 2017[12] and 2013[14], combined with two addi-
tional vulnerabilities that are not among the top 10 but still
relatively prevalent and severe. Each vulnerability is described
briefly and what consequences the vulnerability might cause.
The ranking and the ranking criteria for each vulnerabilitiy is
presented above, see table I.

1) Injection: Injection covers vulnerabilities that exploit
different injection methods such as SQL, OS, NoSQL and
LDAP Injections. An injection is when data is sent to a server
which interprets it as a query or a command which can trick
the server into executing commands or accessing data[12].

2) Security Misconfiguration: The Security Misconfigura-
tion vulnerability involves using more permissive configura-
tion than necessary for the web application. This can be the
use of more network ports than what the web application
uses, old unused pages that lack updates and full print-outs of
stack traces when a component on the web application crashes.
These misconfigurations could be used to gain unauthorized
access or knowledge of the system[12].

3) Cross-site Scripting (XSS): Cross-site Scripting (XSS) is
a vulnerability which allows arbitrary JavaScript-code execu-
tion in the domain of the web application run on the browser
of the user. There exists three variations of XSS; reflected, per-
sistent and DOM-based. Through XSS it is possible to obtain
user’s session cookies and credentials to name a few[12].

4) Sensitive Data Exposure: Sensitive Data Exposure in-
volves the exposure of sensitive data such as healthcare,
financial or other personal data. This data can be used to
commit identity theft and other crimes.

This vulnerability involves poorly secured sensitive data.
This can be due to lack of or weak encryption, leaked
passwords or failure to protect against compromises of data.
The data can either be compromised in transit or at rest[12].

One aspect of Sensitive Data Exposure is that data should
not be sent unencrypted and this can be achieved by enforcing

HTTPS. Thereby disabling the possibility of accessing the data
unencrypted.

5) XML External Entitites (XXE): XML Eternal Entities
(XXE) vulnerabilities exists in web applications that accepts
XML-documents from untrusted sources, either through up-
loads or directly linked. The XXE vulnerability enables data
extractions, mapping of the internal network as well as ex-
ploitation of vulnerable code[12].

6) Broken Authentication: Broken Authentication is a vul-
nerability where general authentication policies for a web ap-
plication is misconfigured. This can involve session tokens that
last much longer than needed, as well as allowing dictionary
attacks on the web application. One major flaw is having
default admin login credentials and showing the session ID
in the url[12].

7) Using Components With Known Vulnerabilities: When
developing a web application many different frameworks and
components are used. Over time, these components and frame-
works could be discovered to contain severe vulnerabilities
and if not continuously checked could act as a way to attack
the web application. Not knowing which components and
framework are in use in the web application is a great security
risk[12].

8) Cross-site Request Forgery (CSRF): Cross-site Request
Forgery (CSRF) is an vulnerability where the attacker tricks a
user into sending a HTTP request without the users knowledge
which bypasses the authentication methods. This can be done
through social engineering or through executing scripts in
a web application. This attack can be achieved by create a
fake link, form or image which when interacted with sends a
request on the users behalf. The attacker can force a user into
performing a request to transfer funds, change their password
etc[14].

9) Broken Access Control: Broken access control involves
poorly enforced restrictions on what authenticated users are
allowed to do. An attack can use this to access unauthorized
data, retrieving data from other users accounts or changing
access rights. This can for example involve accessing an URL
that only admins should have access to[12].

10) Insufficient Logging & Monitoring: This security risk
is due to insufficient logging and monitoring combined with
no or poor incident response. This enables the attacker to



move further into systems and tamper or destroy data. Often
companies do not know that they have had an intrusion until
several months after the initial attack, in 2016 the average was
191 days between an attack was started and when it was found
out [12].

11) Insecure Deserialization: Insecure deserialization can
be used to perform several different attacks such as injection
attacks, replay attacks and privilege escalation attacks as well
as general remote code executions. These flaws are hard to
discover and often need human assistance to identify and
validate the issues[12].

12) Clickjacking: When a web application does not restrict
UI Layers or frame objects from other domains or applications,
the user can be lead to interact with something different
than what is displayed on the web application[15, 16]. This
vulnerability is called iFrame Overlay, or Clickjacking, and
result in the user undesirably executing a task for which the
user is authenticated for[17, 18].

B. Mitigations

In this section common mitigations for web applications
are listed based on the selection from Mozilla’s Web Security
Guidelines[13]. These mitigations are briefly described and
ranked based on their security benefit, and ease of implemen-
tation, see Table II,

Mitigation Security Implication Ease of implementation Total Score
Resource Loading 4 4 8

HTTP Redirect 3 4 7
X-Frame Option 3 4 7

HSTS 3 4 7
CSP 3 2 5

Cookies 3 2 5
Subresource Integrity 2 3 5

Referrer Policy 1 4 5
X-Content-Type 1 4 5

X-XSS Protection 1 3 4
Public Key pinning 1 1 2
CSRF Tokenization 3 - -

TABLE II
RANKING AND RANKING CRITERIA FOR EACH MITIGATION.

1) Resource Loading: This mitigation is about preventing
resources from being loaded over insecure channels, for ex-
ample JavaScript being loaded via http instead of https[13].
Attempts to load JavaScript insecurely on a HTTPS website
will result in the browser blocking the resource[13]. This can
lead to incomplete UI and a ”mixed content” warning from
the browser[13]. To prevent this from happening developers
should make sure that all resources are loaded securely before
deploying the website.

2) HTTP Redirections: Most websites listen on port 80
(HTTP) to connect clients than type url into the address bar,
since all browser connect over HTTP for the first request. Web
sites that listen on port 80 should immediately redirect the
client to use HTTPS instead. Redirections should only be done
within the domain to ensure that HSTS is set properly[13].

3) X-Frame Options: The HTTP header X-Frame Options
allows sites to control how a site may be framed within a an
iframe. This helps to prevent Clickjacking and is expected
to be supported by all web sites to allow protection for

browsers that do not support Content Security Policy (CSP).
The recommended setting for X-Frame Options is to deny any
external sites to framed within an iframe[13].

4) Strict Transport Security (HSTS): This mitigation tells
the client to only connect to the web site through HTTPS even
if the chosen protocol was HTTP. The HTTP Strict Transport
Security (HSTS) header will transparently upgrade the request
to HTTPS and tell the browser to handle TLS certificates more
strictly[13]. This takes effect next time the client connect to
web site again but HSTS has a directive to enable browsers
to have a list of domains to enforce HSTS before the initial
visit. This results in the browser never using HTTP for these
domains and their subdomains[13].

5) Content Security Policy: This mitigation allows the
developer of a website to have control over where resources on
the site can be loaded from and is one of the best ways to pre-
vent Cross-Site-Scripting[13]. Content Security Policy (CSP)
is standard for all new websites and is highly recommended,
especially for high risk websites[13]. CSP disables the use
of unsafe inline JavaScript, preventing user input from being
interpreted by a web browser as JavaScript[13]. One downside
of CSP is that all JavaScript needs to be loaded from within
a script tag and style attributes may fail to load.

6) Subresource Integrity: By ensuring the integrity of exter-
nal JavaScript resource, hosted on content delivery networks,
the mitigation prevents attacks against web site using this
resource. The way this is done is by locking the known
contents of JavaScript resource at a specific time, if this is
changed in some way the browser will refuse to load it. This
distinction is determined by a cryptographic hash[13].

7) Cookies: Cookies often contain sensitive information
and session identifiers which could be collected in a Cross-
site Scripting (XSS) attack. In order minimize the damage
the cookies should be set to expire as soon as possible and
to be forced to only be sent over HTTPS. By prepending

secure- you ensures that the cookies cannot be overwritten
by untrusted sources. By making it forbidden to include
cookies in cross-site requests it is a strong Cross-site Request
Forgery (CSRF) prevention[13].

8) Referrer Policy: This mitigation improves the privacy
of users by allowing for the control of when the referrer
header is transmitted. This referrer header is used to inform
the destination site of the origin of the request, for example
when using a hyperlink or an external resource is loaded on a
website. Referrer policy allows the developer to control how
and when a HTTP referrer header is used[13].

9) X-Content-Type Options: This mitigation allows for the
control of MIME sniffing, which protects against XSS when
the browser incorrectly detect file types and then executes the
files[19]. X-CONTENT-TYPE-Options allows the developer
to set which MIME types of files that they use and explicitly
only allow those, or even set the header to ”nosniff” to disable
MIME sniffing completely[13].

10) X-XSS-Protection: This mitigations prevents pages
from loaded if a Cross-Site-Scripting attack is detected. This
mitigation is enabled in Internet Explorer and Chrome though



it is mostly unnecessary, as a well implemented CSP provides
similar protection. For users with older web browsers that do
not support CSP, X-XSS-Proection can still be relevant.[13]

11) HTTP Public Key Pinning: This mitigation is mostly
relevant for high risk sites. It works by binding a site to
specific root certificate authority or end-entity public key, this
prevents any certificate authority from issuing an unauthorized
certificate for a given domain[13]. The certificate authority
may issue a certificate maliciously or through an social engi-
neering attack which this mitigation prevents. This mitigation
further prevents Man-in-the-middle attacks or impersonations
of a website by disabling any unauthorized certificate[13].

12) Cross-site Request Forgery Tokenization: A common
mitigation against CSRF is the use of an unpredictable token
for any sensitive actions on the web site. This token is then
passed around in a cookie in a secure way and only allowing
same-site requests[13].

C. Selected Vulnerabilities and Mitigations

In this section list the vulnerabilities that has mitigations in
a HTTP security extension and the HTTP security extensions
that mitigate one or more of these vulnerabilities.

The vulnerabilities that were in the scope of this survey are
the following:

• Cross-site Scripting (XSS)
• Cross-site Request Forgery (CSRF)
• Clickjacking
• Sensitive Data Exposure
These vulnerabilities are mitigated by these security exten-

sions:
• Content Security Policy
• Strict Transport Security (HSTS)
• X-Content-Type Options
• X-Frame Options

V. VULNERABILITIES

This section will describe the different vulnerabilities that
were selected in-depth in order of severity and prevalence.

A. Cross-site Scripting (XSS)

Cross-site Scripting (XSS) is a type of code injection attack
where malicious JavaScript code is injected through an user-
supplied input[20].

When performing an XSS attack the malicious JavaScript
code is executed within the domain of the website which
makes it possible to steal users cookies, and log users key
strokes[20]. Since JavaScript is usually used to make website
more dynamic it is possible to construct XSS-attacks that
create fake login forms[20]. This is used to stage phishing
attacks by exploiting the the fact that the website is treating
the XSS-payload as part of the website[20]. There exists three
different kinds of XSS-attacks, reflected, persistent and DOM-
based XSS attacks[20].

A persistent XSS-attack exploits the websites ability to store
user-generated data in a database which is visible to anyone on
the website. Whenever the user-generated data is loaded the

malicious JavaScript within that data is executed, resulting in a
XSS-attack for any user who visits that part of the website[20].
A reflected XSS-attack exploits the ability to copy a link to
the website where the XSS-attack has been performed, usually
a link to a search result, and having the user click on that
link[20]. When the user clicks the link the XSS-attack is
carried out as the website execute the search request which
include the XSS-payload, resulting in a XSS-attack on anyone
who clicks the link[20].

DOM-based XSS-attacks are similar to reflected XSS-
attacks in that it requires a user to click on a link that carries
out the attack. What is different with DOM-based XSS-attacks
is that the XSS-payload is placed in the url, not in the input
field on the website[21, 22]. This is harder to do and harder
for the website to detect but make it possible to execute XSS-
attacks on websites that do not have any input fields, resulting
in enabling XSS-attacks on arbitrary websites[22]. It is also
possible to put a # in the url before the XSS-payload to stop
the XSS-payload reaching the server[21, 22]. This makes the
XSS-attack completely local making it even harder for the
website to detect the attack[21, 22].

B. Sensitive Data Exposure

Data exposure is becoming more critical as there are more
regulations and requirements such as EU’s GDPR which could
result in fines for companies who fail to protect their customers
data. It is mitigated mostly through client-side changes and
through salting and encrypting the database and through
cryptographic key management[13]. It can be related to HTTP
Security Extensions through HTTP Strict Transport Security
(HSTS) as a way to mitigate man-in-the-middle attacks by
enforcing encryption.

C. Cross-site Request Forgery (CSRF)

CSRF (Cross-Site-Request-Forgery) is an attack that enables
the attacker to initiate arbitrary HTTP requests from the victim
of the attack[23]

According to OWASP Top 10 - 2013 CSRF was ranked
8 based on that the exploitability was average, prevalence
common, detection easy and impact moderate[14]. It was
removed in the OWASP Top 10 - 2017 and added as an
”honorable mention” as mitigations and preventions of the
vulnerability has gotten better and it is no longer as large
of a problem. CSRF can be mitigated using a SameSite
configuration for cookies, which forbids the sending of cookies
via cross-origin requests[13].

When performing a CSRF attack, if the victim of the attack
is authenticated against a service, it could allow the attacker
to bypass any underlying authentication mechanics[23]. This
could enable the attacker to post messages, send emails or even
change the login information of the user[23]. In comparison
to many other attacks, this attack is not aimed at trying to
steal the users session ID, instead this attack tries to exploit
the fact that the web application can not differentiate between
an intended user request and a request that an attacker tricked
the user into doing[23]. This can for example be achieved by



an HTML form which assembles a POST request which is in
turn sent by a short JavaScript code or the attacker can embed
a request into an image which will automatically be executed
when a user enters the page[23].

D. Clickjacking

Clickjacking is a type of web framing attack in which an
iframe is used to hijack a user’s web session[24]. By hijacking
the users clicks the attacker can perform undesired actions
which can benefit the attacker[25]. As the attack is performed
using an invisible iframe which leaves the user unaware that
their clicks are going to a malicious website that sits on top
of the users page[25]. One example of a use of Clickjacking
is to hijack a users click and forward it to a social media to
like or follow pages, such as a like on a Facebook page, this
is sometimes called ”Likejacking”[26, 27].

This vulnerability is not in the OWASP Top Ten list for
either 2017 or 2013, however it is mentioned in the section
”additional risks to consider”[14]. Due to it’s mention in the
OWASP 2013 report and due to that the vulnerability is widely
mitigated using HTTP Security Extensions, the vulnerability
was included in the selection.

VI. MITIGATIONS

This section will describe the different mitigations avail-
able, what vulnerabilities they mitigate and how they are
implemented. The mitigations will be prioritized based on the
effectiveness of the mitigation and the prevalence of the attack.

A. X-Frame Options

X-Frame options is one way of defending against Click-
jacking attacks. This works by introducing a X-Frame-Options
HTTP Response header to indicate that the browser should
not allow the rendering of Iframe and similar page in frame
solution[25]. X-Frame Options was first introduced in In-
ternet explorer 8 and is an HTTP header sent on HTTP
response, which has two different values either DENY or
SAMEORIGIN[24]. When DENY is provided the browser
does not render the requested site if it is within a frame, while
in SAMEORIGIN only sites from the same origin as the rest
of the site is rendered[24].

X-FRAME options is very effective at protecting the user
from Clickjacking[24]. X-Frame option has several downsides
such as that the policy need to be specified per page[24].
X-Frame options also struggles with multi-domain sites as
current implementation does not allow for a ”whitelist” of
domains when using the SAMEORIGIN response[24]. X-
FRAME option is also vulnerable to proxies, as proxies are
known to strip headers which would mean that the user would
lose their protection[24]. Another issue is that X-FRAME
options was not standardized and were therefor implemented
in several different ways leading to attacks of double framing
against some browsers[28]. Certain browsers allow for a third
value ”ALLOW-FROM” which specifies the origin of which
frames are allowed, this feature are not supported in Chromium
browsers[28]. Despite these shortcomings X-Frame Options is

one of the most used HTTP Headers, with 11% of the top 1
million websites using it in May 2017 [29].

B. Strict-Transport-Security (HSTS)

HSTS is a HTTP header which tells the browser to only
connect to a site over HTTPS even if the intial connection was
HTTP. Browsers that support HSTS will upgrade all requests
from a site to HTTPS if that site sends a HSTS header. HSTS
also tells the browser to handle TLS and certificate errors
more strictly by disabling the user from bypassing the error
page.[13]

HSTS can be used to prevent threats from bookmarks
or manually entered addresses which uses HTTP instead
of HTTPS or from webapplications accidentally containing
HTTP links or content which is served through HTTP. HSTS
will redirect the HTTP traffic to the HTTPS for the target
domain of the request. HSTS can also prevent Man-in-the-
middle attacks where the attack has an invalid certificate. If the
user attempts to bypass the error page for the bad certificate,
HSTS will not allow this and therefor negates the attack.[30]

Sensitive data can be protected using a HTTP header
HTTP Strict Transport Security to ensure secure encryption
in transit[12].

HSTS is implemented in 5,4 % of the top one million web-
sites and is one of the most widely used HTTP headers[29].

C. Content Security Policy (CSP)

The Content Security Policy (CSP) is a HTTP response
header that allows server admins to supply white-lists of
trusted sources to be loaded on the web application. Any other
resources that is not listed in the white-lists is blocked from
loading, relieving the need to implementing a filtering of input
which is prone to flaws[31].

The main goals of CSP is to mitigate XSS with as little
modification of the source code of the web application. CSP
even stops a loophole that exists in a typical web application
security model, the same origin policy (SOP) that only permits
scripts running on the same site[31]. Even if an attacker
manages to inject a XSS payload onto a SOP-trusted site, the
payload would be rejected if the site uses CSP and has not
listed the resource the XSS attack used[31].

By default CSP blocks any use of inline scripts thus
blocking XSS attacks that make use of inline scripts. CSP
has many different directives to allow customization of what
resources to allow on the web site. These include sources to
load within the same origin, script sources to load, Cascading
Style Sheets (CSS), fonts and images[31] etc.

One more directive is the frame-src directive which is a list
of sources that are allowed to be rendered inside frames on
the website. This mitigates Clickjacking since a list of trusted
of sources to be rendered in frames are listed, such as Youtube
for example, and all other sources are blocked[32].

CSP also has a report directive to save instances of web
sites and resources that has violated the CSP directives of the
web site has therefore been blocked from executing[31].



In May 2017 around 1,6 % of all Alexa top one million
websites had implemented Content Security Policy headers
making it one of the lesser used HTTP headers[29]. CSP is
growing quickly in adoption as in August 2015 only 0,15 %
of top one million websites had it implemented[29].

D. X-Content-Type Options

X-Content-Type-Options is a HTTP header which tells the
browser if it should use MIME Sniffing or not[19]. MIME
Sniffing vulnerability is a type of XSS where a user uploads
content to a website but disguises the file as something
else[19]. For example if a browser requests a media file and
it is served with an incorrect media type. The browser will
still detect and execute the file which may contain scripts that
are also executed. This opens up for different XSS attacks[33].
The way that X-Content-Type-Options mitigates these types of
script attacks is by passing on a header ”nosniff” which tells
the browser not to MIME Sniff and hence no scripts hidden
in incorrect file types will be executed[33]. This is an easy
mitigation to implement as all it requires is to activate the
header, however it only protect against some XSS attacks[33].
In May 2017 around 10,5 % of all Alexa top one million
websites had implemented X-Content-Type-Options headers
making it one of the most used HTTP headers[29].

VII. DISCUSSION

This section will discuss the different vulnerabilities and
mitigations that exist in web applications.

A. Source Criticism

A discussion and evaluation of the sources use will also be
presented here. This report primarily used scientific articles
and proceedings from well known journals. Apart from these
sources industry guidelines and documentation were used. For
background information general statistics databases and books
were used to place the topic in context.

Among our sources were Mozilla’s Web Security Guide-
lines[13] which is web security documentation that is pub-
lished under Creative Commons by the Mozilla Foundation a
nonprofit organisation. Mozilla Foundation has deep industry
knowledge about Web application security and development
and can be considered a reliable source. However, they are
the developers and owners of Mozilla Firefox which is a
popular browser. This could incentivize Mozilla Foundation
to publish mitigation rankings and information that favors
Mozilla Firefox browser to give the appearance that their
browser is more secure than their competitors. To ensure
that the information presented in the report is unbiased, other
sources, such as OWASP industry documentation, have been
used to confirm the general classification of the mitigations
presented by Mozilla.

OWASP Top Ten Security Risks[12] report from 2013 and
2017 were used to select and rank the vulnerabilities presented
in this report. The Open Web Application Security Project
(OWASP) is a nonprofit foundation founded in 2001 that works
to improve software security[34]. OWASP does not have any

incentive to misinform and can be considered a reliable source
when it comes to web security.

To further improve the quality of the sources the information
presented in the report could use source triangulation by
having multiple sources to confirm the same information.
This is especially important in the ranking and ordering of
vulnerabilities and mitigations as this report is limited in its
ranking methodology.

B. Method Criticism

The method currently used to rank and select vulnerabil-
ities and mitigations are primarily based on the opinions of
OWASP and Mozilla Foundation, which while reliable may
be biased or misinformed. Ideally the method would involve
independent data gathering from industry sources, to create
a quantitative method for ranking the prevalence and impact
of vulnerabilities as well as the security benefit and ease of
implementation of mitigations. This is beyond the scope of
this report but would produce a more certain ranking.

The selection of sources used for this report may have been
biased as no large data gathering was made. Data was only
gathered through Google Scholar and other relevant search
engines, looking for relevant scientific articles, as well as in-
dustry guideline and documentation sources. It is possible that
there are other sources that would provide more information on
the topic that was not used or covered in this report. Similarly
there could be vulnerabilities and mitigations that were not
covered or prioritized in the report, that could be relevant,
which have been missed.

The number of relevant mitigations through HTTP Security
Extensions were limited as many HTTP headers are deprecated
and many modern mitigations were implemented through
source code. Some mitigations are so prevalent and effective
that the vulnerability is no longer relevant, these mitigations
are required for all websites and are implemented in almost all
new websites. Due to the low number of relevant mitigations
the prioritization was mostly based on the scope of the report
instead of the ranking of the vulnerabilities and mitigations.

C. Future Studies

Future research could focus on creating a quantitative
method which does not rely on the opinions of other sources
but which analyses industry data to select and rank vulnera-
bilities and mitigations. Some aspects to include in such an
analysis could be the prevalence of mitigations by looking at
which headers are used in the top ranking websites in the
world.

Gathering information about the prevalence and impact of
vulnerabilities is more difficult as victims of attacks often
do not publicly disclose the details of an attack, however
it could be possible to conduct a survey to try to gather
information from security experts. Using such a survey you
could gather information regarding what vulnerabilities and
mitigations industry experts would prioritize. Alternatively a
survey of large corporations could be made to try to identify



which vulnerabilties are exploited to perform attacks in the
real world.

Another avenue of further research would be to conduct
an analysis of the most used browsers and compare the
mitigations offered by these browsers to the list of mitiga-
tions presented in this report. HTTP Security Extensions are
implemented differently in each browser which offers different
protection and different vulnerabilities, it would be valuable to
have an overview on which browsers offers what protection.

One topic of further research would be to look at different
implementation mistakes or misconfigurations, while many
mitigations offer sufficient protection against vulnerabilities if
configured correctly. If they are misconfigured, they often offer
no protection or even open up new vulnerabilities. It would be
interesting to see a report which takes the listed mitigations in
this report and surveys the top websites for misconfigurations
of these mitigations and presents the consequences of these
misconfigurations.

VIII. CONCLUSION

HTTP Security Extensions are still relevant and some of the
most prevalent and impactful vulnerabilities can be mitigated
using HTTP Headers. Even though many mitigations are im-
plemented in source code, HTTP Security Extension can often
be an easier way of mitigating vulnerabilities. For example
Cross-site Scripting can be mitigated using the powerful tool
of Content Security Policies. With the correct configuration,
there may not be a need for any mitigations in the source
code, instead you can rely on the CSP to protect the website
against XSS attacks. However as old browsers often do not
support CSP, it is still industry standard to use both CSP
and mitigations in the source code, to provide a full coverage
mitigation.

Unfortunately several of the mitigations prioritized in this
report can be difficult to implement correctly and requires
understanding of how the headers work. This initial difficulty
may be part of why developers shy away from mitigating
attacks through HTTP Security Extensions and instead opt
for the familiar and safe way of implementing mitigations
in source code. The best outcome would be to use both
alternatives to offer the best protection possible and prevent
vulnerabilities in the case of misconfiguration of either security
extension or mitigations in the source code.

One example of a mitigations that is simple to implement
yet powerful is X-Frame-Options which is another HTTP
Header that can prevent Click-jacking attacks and is consid-
ered mandatory by many. X-Frame-Options is by some mea-
sures the most implemented mitigation using HTTP headers
and this may be due to the ease of implementation.

In summary HTTP Security Extensions are often neglected,
but they are an important tool in the mitigations against web
attacks and should receive more attention from developers.
With the correct HTTP Header configurations many of the
modern vulnerabilities can be mitigated. The industry should
work to make HTTP Security Extensions more available to

developers and help spread the knowledge about this often
forgotten way of mitigating vulnerabilities.

SOURCES:

[1] Martin Armstrong. Infographic: How many websites are
there?, Oct 2019. URL https://www.statista.com/chart/
19058/how-many-websites-are-there/.

[2] Cyber security market size & share report, 2020-2027,
Jun 2020. URL https://www.grandviewresearch.com/
industry-analysis/cyber-security-market.

[3] Colin Walls. Introduction to SSL, page 344–344. Else-
vier, 2006.

[4] Usage statistics of default protocol https for web-
sites, Apr 2021. URL https://w3techs.com/technologies/
details/ce-httpsdefault.

[5] Evolution of http, 2021. URL https://developer.
mozilla.org/en-US/docs/Web/HTTP/Basics of HTTP/
Evolution of HTTP.

[6] An overview of http, 2021. URL https://developer.
mozilla.org/en-US/docs/Web/HTTP/Overview.

[7] Web technology for developers - http headers, 2021.
URL https://developer.mozilla.org/en-US/docs/Web/
HTTP/Headers.

[8] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext transfer protocol
– http/1.1. rfc 2616 (standards track), 1999. URL https:
//www.ietf.org/rfc/rfc2616.txt.

[9] Lilyana Petkova. Http security headers. Knowledge
International Journal, 30(3):701–706, 2019.

[10] Eric Rescorla. Http over tls, 2000. URL https://tools.ietf.
org/html/rfc2818t.

[11] Clourflare Inc. What is https?, 2021. URL https://www.
cloudflare.com/learning/ssl/what-is-https/.

[12] The Open Web Application Security Project (OWASP)
foundation. Owasp top 10, 2017. URL https://owasp.
org/www-project-top-ten/2017.

[13] Mozilla. Mozilla web security guidelines, 2021. URL
https://infosec.mozilla.org/guidelines/web security.

[14] The Open Web Application Security Project (OWASP)
foundation. Owasp top 10, 2013. URL https://owasp.
org/www-pdf-archive/OWASP Top 10 - 2013.pdf.

[15] PLOVER. User interface (ui) misrepresentation of criti-
cal information (cwe-451), 2006. URL https://cwe.mitre.
org/data/definitions/451.html.

[16] CWE Content Team. Improper restriction of rendered
ui layers or frames (cwe-1021), 2017. URL https://cwe.
mitre.org/data/definitions/1021.html.

[17] CAPEC Content Team. Clickjacking (capec-103), 2014.
URL http://capec.mitre.org/data/definitions/103.html.

[18] CAPEC Content Team. iframe overlay (capec-222),
2014. URL http://capec.mitre.org/data/definitions/222.
html.

[19] X-content-type-options http header - keycdn sup-
port, 2018. URL https://www.keycdn.com/support/
x-content-type-options.

https://www.statista.com/chart/19058/how-many-websites-are-there/
https://www.statista.com/chart/19058/how-many-websites-are-there/
https://www.grandviewresearch.com/industry-analysis/cyber-security-market
https://www.grandviewresearch.com/industry-analysis/cyber-security-market
https://w3techs.com/technologies/details/ce-httpsdefault
https://w3techs.com/technologies/details/ce-httpsdefault
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc2616.txt
https://tools.ietf.org/html/rfc2818t
https://tools.ietf.org/html/rfc2818t
https://www.cloudflare.com/learning/ssl/what-is-https/
https://www.cloudflare.com/learning/ssl/what-is-https/
https://owasp.org/www-project-top-ten/2017
https://owasp.org/www-project-top-ten/2017
https://infosec.mozilla.org/guidelines/web_security
https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf
https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf
https://cwe.mitre.org/data/definitions/451.html
https://cwe.mitre.org/data/definitions/451.html
https://cwe.mitre.org/data/definitions/1021.html
https://cwe.mitre.org/data/definitions/1021.html
http://capec.mitre.org/data/definitions/103.html
http://capec.mitre.org/data/definitions/222.html
http://capec.mitre.org/data/definitions/222.html
https://www.keycdn.com/support/x-content-type-options
https://www.keycdn.com/support/x-content-type-options


[20] Shashank Gupta and Brij Bhooshan Gupta. Cross-site
scripting (xss) attacks and defense mechanisms: clas-
sification and state-of-the-art. International Journal of
System Assurance Engineering and Management, 8(1):
512–530, 2017.

[21] Germán E Rodrı́guez, Jenny G Torres, Pamela Flores, and
Diego E Benavides. Cross-site scripting (xss) attacks and
mitigation: A survey. Computer Networks, 166:106960,
2020.

[22] Amit Klein. Dom based cross site scripting or xss of
the third kind. Web Application Security Consortium,
Articles, 4:365–372, 2005.

[23] Nenad Jovanovic, Engin Kirda, and Christopher Kruegel.
Preventing cross site request forgery attacks. In 2006
Securecomm and Workshops, pages 1–10. IEEE, 2006.

[24] Gustav Rydstedt, Elie Bursztein, Dan Boneh, and Collin
Jackson. Busting frame busting: a study of clickjacking
vulnerabilities at popular sites. IEEE Oakland Web, 2(6),
2010.

[25] D Kavitha and S Ravikumar. Click jacking vulnerability
analysis and providing security against web attacks using
white listing url analyzer. International Journal of
Computer Techniques, 2015.

[26] Lin-Shung Huang, Alex Moshchuk, Helen J Wang, Stuart
Schecter, and Collin Jackson. Clickjacking: Attacks
and defenses. In 21st {USENIX} Security Symposium
({USENIX} Security 12), pages 413–428, 2012.

[27] Stefano Calzavara, Sebastian Roth, Alvise Rabitti,
Michael Backes, and Ben Stock. A tale of two
headers: A formal analysis of inconsistent click-jacking
protection on the web. In 29th USENIX Security
Symposium (USENIX Security 20), pages 683–697.
USENIX Association, August 2020. ISBN 978-1-
939133-17-5. URL https://www.usenix.org/conference/
usenixsecurity20/presentation/calzavara.

[28] Stefano Calzavara, Sebastian Roth, Alvise Rabitti,
Michael Backes, and Ben Stock. A tale of two headers:
a formal analysis of inconsistent click-jacking protection
on the web. In 29th {USENIX} Security Symposium
({USENIX} Security 20), pages 683–697, 2020.

[29] William Buchanan, Scott Helme, and Alan Woodward.
Analysis of the adoption of security headers in http. IET
Information Security, 12, 10 2017. doi: 10.1049/iet-ifs.
2016.0621.

[30] Http strict transport security cheat sheet¶, 2021. URL
https://cheatsheetseries.owasp.org/cheatsheets/HTTP
Strict Transport Security Cheat Sheet.html.

[31] Imran Yusof and Al-Sakib Khan Pathan. Mitigating
cross-site scripting attacks with a content security policy.
Computer, 49(3):56–63, 2016.

[32] Sid Stamm, Brandon Sterne, and Gervase Markham.
Reining in the web with content security policy. In
Proceedings of the 19th international conference on
World wide web, pages 921–930, 2010.

[33] Use ‘x-content-type-options‘ header, 2021.
URL https://webhint.io/docs/user-guide/hints/

hint-x-content-type-options/.
[34] About the owasp foundation, 2021. URL https://owasp.

org/about/.

https://www.usenix.org/conference/usenixsecurity20/presentation/calzavara
https://www.usenix.org/conference/usenixsecurity20/presentation/calzavara
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.html
https://webhint.io/docs/user-guide/hints/hint-x-content-type-options/
https://webhint.io/docs/user-guide/hints/hint-x-content-type-options/
https://owasp.org/about/
https://owasp.org/about/

	Introduction
	Delimitation

	Background
	HTTP
	HTTP Header Fields
	HTTP Security Extensions
	Directives

	HTTPS

	Method
	Vulnerability and Mitigation Prioritization
	Paper Selection Method

	Survey Overview
	Web Application Vulnerabilities
	Injection
	Security Misconfiguration
	Cross-site Scripting (XSS)
	Sensitive Data Exposure
	XML External Entitites (XXE)
	Broken Authentication
	Using Components With Known Vulnerabilities
	Cross-site Request Forgery (CSRF)
	Broken Access Control
	Insufficient Logging & Monitoring
	Insecure Deserialization
	Clickjacking

	Mitigations
	Resource Loading
	HTTP Redirections
	X-Frame Options
	Strict Transport Security (HSTS)
	Content Security Policy
	Subresource Integrity
	Cookies
	Referrer Policy
	X-Content-Type Options
	X-XSS-Protection
	HTTP Public Key Pinning
	Cross-site Request Forgery Tokenization

	Selected Vulnerabilities and Mitigations

	Vulnerabilities
	Cross-site Scripting (XSS)
	Sensitive Data Exposure
	Cross-site Request Forgery (CSRF)
	Clickjacking

	Mitigations
	X-Frame Options
	Strict-Transport-Security (HSTS)
	Content Security Policy (CSP)
	X-Content-Type Options

	Discussion
	Source Criticism
	Method Criticism
	Future Studies

	Conclusion

