
Implementing a Disassembly Desynchronization
Obfuscator

Ivar Härnqvist Johannes Wilson
Email: {ivaha717, johwi801}@student.liu.se

Supervisor: Ulf Kargén, ulf.kargen@liu.se
Project Report for Information Security Course

Linköping University, Sweden

ABSTRACT

This report presents an implementation of a code obfuscator
that works on the assembly stages of code compilation, using
so called disassembly desynchronization. This type of obfus-
cation is aimed at making the disassembly of a program yield
code that is different from the code that is executed. This type
of obfuscation is of special interest because it allows entire
instructions to be potentially hidden from static disassembly.

The presented implementation works automatically on ar-
bitrary codebases that use GCC and GNU Make. It can
successfully insert a large number of opaque predicates in
a large codebase while preserving the expected program
behavior, though it may introduce errors in certain programs.

1. INTRODUCTION

Obfuscation of code is an important tool in discouraging
reverse engineering of code [1]. It is used in order to protect a
program from malicious reverse engineering [2], but can also
be used by malware authors to hide malicious code [6].

Reverse engineering binary code is normally done through
the use of a disassembler to extract readable assembly code
from the binary [5]. Disassembly of binary code is however not
a trivial problem when instructions are of variable length, since
the disassembler needs to stay in sync with the instructions
[4]. One obfuscation technique that exploits this difficulty is
disassembly desynchronization, which tries to disrupt disas-
sembly of the machine code [4]. This form of obfuscation
prevents disassemblers from producing correct assembly code,
and can even be used to hide function calls entirely from the
disassembly. In the case of malware, this can be especially
dangerous, as some malware detection techniques rely on
searching disassembly for potentially malicious code [3].

In order to study the effects of disassembly desynchroniza-
tion there is a need for tools that programmatically introduce
disassembly desynchronization during compilation of code.
This report describes the development of such a tool.

1.1. Disassembly Desynchronization

The purpose of an assembler is to translate human-readable
assembly code into binary code that is executable by the
CPU. A disassembler attempts to do this process in reverse,
producing human-readable assembly code from binary code.
If the underlying architecture uses a variable length instruction

format, the disassembler needs to correctly identify the begin-
ning of each instruction. Failure to do so will result in the
disassembler attempting to translate non-instruction code into
instructions, resulting in an incorrect disassembly. Because a
program can jump to arbitrary points in the code there is
ambiguity in whether to interpret code as instruction or as
data. This ambiguity must be resolved by the disassembler.

A recursive disassembler will resolve the ambiguity by
interpreting the instructions in order, and if branching instruc-
tions are encountered the disassembler will begin disassem-
bling from the new location, interpreting those parts of the
memory as instructions [4]. Not all branches have to be taken
however, yet such a disassembler would still interpret all code
in those locations as instructions.

Disassembly desynchronization works by adding a branch
condition that is always evaluated to be either true or false,
known as an opaque predicate. Assembly code can be inserted
into the branch that is not taken without altering the execution
of the program. This will cause the disassembler to interpret
said code as instructions, causing it to end up out of phase
with the actual code. This can be exploited in order to hide
certain instructions completely from the disassembled result.

Figure 1 and Figure 2 give an example of hiding the first
call to function “foo” using disassembly desynchronization.

In Figure 2, the original instruction still remains (high-
lighted in orange) but because the disassembler gets out of
phase with the code it will interpret different instructions. Also
note that the instructions eventually line up again, showing
correct instructions from instruction lea onward. This is often
desirable when obfuscating as it helps hide the presence of
obfuscation from the reader.

1.2. Problems/Questions

This report describes the development of a program for
automatic obfuscation in the form of disassembly desyn-
chronization. The disassembly desynchronization is performed
using opaque predicates resulting in an inserted branch always
being taken. The code immediately following the jump is then
never executed, allowing insertion of arbitrary ”junk bytes”.
These junk bytes are then selected in such a way that the
disassembled instructions form different instructions that are
still valid, in an attempt to hide the presence of disassembly
desynchronization.



Fig. 1. Original program without modification disassembled using GNU Project Debugger (GDB). The first call to function foo is on line two, with its binary
code highlighted in orange.

Fig. 2. Disassembled code after modification. The green bytes add an opaque predicate that will cause the program to always jump to line +22. The bytes
in blue are unused by the program but will cause the disassembler to interpret different instructions after the jump.

This project aims to find solutions to the following prob-
lems:

1) How to determine which registers can be safely used
to construct opaque predicates at a given part of the
intermediate assembly for an arbitrary C program.

2) How to determine the optimal number of junk bytes, and
their contents, to insert at the desynchronization point to
produce valid x86 instructions.

This report focuses on how to insert opaque predicates into
assembly code in order to create disassembly desynchroniza-
tion points. It only briefly discusses how to insert junk bytes
to produce valid but incorrect instructions in the fake branch.
This is instead covered in a report by a different group working
on the same project.

1.3. Scope and Limitations
The project assumes that the code to be obfuscated is for a

64-bit x86 architecture, and can be compiled using GCC and
GNU Make.

1.4. Method
To find solutions to the given problems and facilitate auto-

mated disassembly-desynchronization of arbitrary C programs,
a command-line tool is developed which operates on the
intermediate x86 assembly files of the compilation process as
well as the final binary program executable.

Different parts of the tool are developed in parallel by two
groups of two people each. The tool is tested using a wrapper

for the GNU Compiler Collection (GCC) through a test script
which assumes the project that is to be tested can be built and
have its test suite run using the build automation tool GNU
Make.

The general procedure for implementing and testing the
tool is to add a new stage or feature and then test it against
existing open-source C projects while fixing regressions until
all projects produce the same observable behavior as they did
before obfuscation and thus make all test suites pass.

The finished tool is benchmarked against performance-
intensive tests of different projects to determine what impact
the obfuscation has on runtime execution speed. The time to
compile and obfuscate the code is also measured to see if the
tool adds significant overhead to the compilation process.

2. BACKGROUND

This section covers background knowledge that may be
useful for understanding the rest of the report.

2.1. GNU Compiler Collection

The tool developed for this project assumes that the pro-
grams on which it operates are normally compiled using the
GNU Compiler Collection (GCC). The main GCC program
runs different sub-programs such as the compiler, assembler
and linker during compilation. For example, during compila-
tion of C code, GCC may run cc1, as and collect2 for the
compilation, assembly and linking steps respectively.



There is built-in support in GCC for directing these sub-
program commands to another executable using the -wrapper
argument. This way it is possible to intercept the compilation
process and perform operations on the intermediary compila-
tion results.

2.2. GNU Assembler

When GCC compiles using cc1 it will output assembly
code in the GNU Assembler language. GNU Assembler or
GAS uses AT&T assembly syntax by default, meaning the
instructions follow the order mnemonic, source and destination
last. As well as instructions, the assembly files contain labels
marking the targets for branch instructions.

2.3. Keystone / Capstone

Keystone and Capstone are two open-source frameworks
capable of performing assembly and disassembly respectively.
In addition to performing disassembly, Capstone also provide
information about the registers and flags used by the disas-
sembled instructions.

2.4. Liveness analysis

To determine which registers are available for use at a
certain point in the assembly without direct communication
from the compiler, the tool needs to parse the generated
assembly code and generate a control flow graph (CFG) in
order to perform liveness analysis. The control flow graph is
a directed graph of the code’s possible execution paths where
the nodes are snippets of code called basic blocks which do not
contain any branches. Liveness analysis traverses the control
flow graph to find registers which are not needed by future
instructions and which can therefore be safely used by our
tool when inserting opaque predicates.

2.5. State of the art

The paper by Cullen Linn and Saumya Debray [4] de-
scribes a successful implementation of a program performing
disassembly desynchronization with junk byte insertion using
two methods. One method inserts bytes before suitable basic
blocks, while the other modifies unconditional branches to
jump to a different target, allowing junk byte insertion. Our
project instead attempts to produce disassembly desynchro-
nization at arbitrary points in the code.

3. DESIGN AND IMPLEMENTATION

The desynchronization tool consists of two stages - predi-
cate insertion and junk byte selection. The first stage performs
liveness analysis on the given assembly code and uses that
information to determine which registers it can use to insert
opaque predicates at random locations in the code. After each
inserted predicate, it also appends some placeholder junk bytes
which will be skipped during execution. The second stage is
run after the assembly code has been assembled and linked to
binary machine code, and its job is to modify the placeholder
bytes in the binary such that they form valid instructions that
merge with the subsequent code and thus cause disassemblers
to misinterpret them. This report only covers the first stage of

the tool, since the second stage was implemented by a different
group.

3.1. Implementation

The program for inserting predicates is implemented using
C++20. It takes a number of assembly file names as command-
line arguments and works as specified by a configuration file
containing templates for opaque predicates. An example of
such a predicate template is given in Figure 3. It then reads
each assembly file and constructs CFGs from the instructions.
The CFGs are used to perform the liveness analysis, which
provides possible locations for insertion of predicates. The
program then randomly selects predicates based on the given
configuration and inserts them at random intervals in each file,
also specified by the configuration.

Fig. 3. Example of a predicate template. The code within the brackets will be
what is inserted, with the register names replaced by registers of appropriate
size, and with DESYNC replaced by a target label after the junk bytes.

3.2. Liveness Analysis

Liveness analysis is performed based on information given
by the disassembly library Capstone. To obtain this informa-
tion, each instruction is first assembled using the assembly
library Keystone, so that they can then be disassembled using
Capstone. The information provided by Capstone is used to
identify branching instructions, which separate basic blocks in
the CFG. The branch instructions are then matched with their
respective destination labels to generate the list of potential
successors of the basic block. Labels are always treated
as possible branch targets, regardless of whether there is a
corresponding branch or not. This is because the label could
for example mark a function that is called from a different
file. Similarly, branch instructions for which the target label
cannot be found are treated as if every register and flag is live,
since the branch could be referencing a function in a different
file that could read any register or flag.

Capstone is also used to provide information regarding
register liveness and flag usage. For each instruction, the
liveness of each register and each flag is tracked using two
bit vectors, where a bit is set if the corresponding register or
flag is live. Liveness is calculated iteratively starting from the
bottom of each basic block going to the top, with the bottom
instruction being calculated from the union of live registers
from the successors of the basic block. If the basic block has
no successors, or if one of the successors are an unknown
location it is assumed that any register or flag can be live at
the end of the basic block.

Instructions that write to a register provide an available
register for instructions before it, while registers that are read



need to maintain their value from their previous write, and
are thus not available for instructions before it. Using this
rule, each basic block is updated bottom to top, and if the
first instruction had its liveness updated, the predecessors of
the basic block must also be updated. This continues until the
liveness for each basic block has converged.

3.3. Predicate Insertion

The user specifies the opaque predicates to be used as tem-
plates. A template contains all instructions needed to guarantee
that a branching instruction is performed. The required bit
lengths of the registers are specified in the template, but in
order to know which flags a given predicate will modify the
program needs to process them using Keystone and Capstone.

Knowing which registers a predicate needs, which flags
it will modify, along with the liveness analysis for each
instruction, it is possible to tell whether a given predicate
can be inserted into the assembly code without altering the
execution of the program. The predicates are inserted by
traversing the assembly code in the file from top to bottom,
picking a predicate at random, selecting candidate locations
based on the interval specified in the configuration and, if
possible, adding the modified template using any free registers.

3.4. GCC wrapper

To automate the process of desynchronizing large code-
bases, the tool provides a Bash script that compiles a given
project using GCC and intercepts the different compilation
steps in order to interleave the two stages of the desynchro-
nization tool appropriately. It also provides a test script which
uses GNU Make to compile a given project with the GCC
wrapper and run its test suite to verify that no errors were
introduced by the predicates.

4. RESULTS

The desynchronization tool was tested by using it to compile
two C projects and then running the tests for each project. The
projects selected for testing were coreutils and libpng. Two
different configurations were used for each project, and for
each test the following information was collected:

1) Time to compile
2) Number of instructions processed
3) Number of predicates inserted
4) Number of tests passing or failing
5) Execution time of tests
The configurations used to desynchronize the projects both

used the Mersenne Twister 19937 pseudo-random number
generator with a seed of 493119347, a uniform junk byte count
distribution between 1 and 3 bytes and a normal predicate
interval distribution with a standard deviation of 10, clamped
using the formula ”round(max(x, 1))”, where x is the generated
value from the distribution. The mean value of the predicate
interval normal distribution was set to 20 and 100 instructions
for the respective configurations. The type of predicate to be
inserted was always an ”xorl” instruction of a single 32-bit

register followed by a ”jz” branch instruction that skips past
the junk bytes.

The number of predicates successfully inserted and number
of tests passing after insertion is shown in Table 1 and Table
2.

4.1. Benchmarks

To test what effect the predicate insertion has on compilation
and execution time, the two test projects were compiled with
the configuration specified above using a mean predicate
interval of 20 instructions. The projects were recompiled with
the command ”make -j 12 clean && make -j 12” and had their
test suites run with ”make -j 12 check”. Note that for coreutils,
the tests for gnulib were not included. This is because, by
default, the tests for gnulib will not run automatically unless
all the tests for coreutils pass. The gnulib tests were excluded
by passing the option ”SUBDIRS=.” to the ”check” target. The
compilation and test execution times were measured using the
GNU Time program. Each benchmark was repeated at least 5
times. The average relative results are shown in Figure 4.

The following system was used to run the benchmarks:
• Kernel: Linux 5.12.1
• GCC version: 10.2.0
• GCC optimization level: -O3
• CPU: Intel Core i7-8700K
• RAM: 16 GB, 3200 MHz

Fig. 4. Bar graph showing relative time to compile and test libpng and
coreutils using the program. Bars in orange show the factor by which it is
slower to compile and test using our program compared to normal compilation.

5. DISCUSSION

Figure 4 shows that the desynchronization tool increases
compilation time by approximately 30 % and execution time
by approximately 8 %. Table 2 shows that using the tool may
cause some tests to fail.

5.1. Evaluation of Results

The insertion of opaque predicates occasionally causes the
tests to fail. The tool would be more useful if it could
guarantee that inserted predicates will not introduce errors.



TABLE 1
LIBPNG, TOTAL INSTRUCTIONS: 108302, TOTAL TESTS: 32

Mean Interval Distribution Predicates Inserted Average Interval Tests Passed Tests Failed Tests Skipped
20 3310 33.02 32 0 0

100 1001 109.19 32 0 0
None - - 32 0 0

TABLE 2
COREUTILS, TOTAL INSTRUCTIONS: 215505, TOTAL TESTS: 626

Mean Interval Distribution Predicates Inserted Average Interval Tests Passed Tests Failed Tests Skipped
20 1753 47.14 495 13 116

100 1001 215.29 508 2 116
None - - 509 0 117

The increase in execution time for the obfuscated program
does not seem significant as indicated by the small difference
in testing time.

There is a significant difference in the desired mean pred-
icate interval requested by the user and the resulting average
interval. This is due to the insertion being delayed until a
suitable location is encountered, even after exceeding the target
interval. The program will not compensate for these missing
predicates, resulting in a lower than expected average number
of predicates.

5.2. Sources of Error

The errors introduced by the predicates indicate an incorrect
liveness analysis, since errors only appear when using a
predicate that modifies a register. These errors could be caused
by errors during the construction of the control flow graph
since it forms the basis of the liveness analysis. There could
also be bugs in the implementation of the liveness analysis
algorithm itself. A few implementation bugs were discovered
during the development process, so it is possible that some
still remain.

Because the program relies on the register and flag informa-
tion provided by Capstone through disassembly of instructions,
Keystone and Capstone could be possible error sources as
any errors in either framework will propagate to the program,
resulting in incorrect liveness analysis.

We only analyze each predicate once on program startup, us-
ing a placeholder register. It is possible that some instructions
behave differently depending on the register provided in the
operand, in which case our initial analysis of a predicate may
not be correct for every choice of register. A possible remedy
could be to always analyze the predicate again when registers
have been chosen, in order to ensure that the instructions won’t
use additional flags.

During liveness analysis, the program ignores any non-
instruction assembly directives in the file. It is possible that
some of these directives play a role in the liveness of some
flags or register, in which case this will be missed by the
program. They could also play a role in the control flow of
the program.

5.3. Future Work

Once the liveness analysis has been adjusted to perform
the insertion of predicates with full accuracy, a few additional
features may be desired. One such feature may be to perform
the selection of registers from the available ones at random.
The current implementation is to select the first register
available, but some other selection method may be desirable.

Another improvement is to adjust the interval selection so
that the resulting average interval more closely reflects the one
specified by the configuration. This could be accomplished by
selecting the predicate locations while allowing backtracking
and then sorting the locations by their position in the assembly
file before writing the predicates to the output in order. The
current implementation relies on the predicates being written
from top to bottom.

Because this type of obfuscation can be used in malware, a
possible future use for this program could be to generate test
examples of disassembly desynchronization. Those examples
can then be used to train machine learning algorithms to
automatically detect the presence of disassembly desynchro-
nization.

6. CONCLUSIONS

Our program has shown that this method of automatically
inserting disassembly desynchronization is feasible. Though
before the tool is to be used in any sensitive application, there
are some errors that need to be corrected.

REFERENCES

[1] Christian Collberg, Clark Thomborson, and Douglas
Low. “Manufacturing Cheap, Resilient, and Stealthy
Opaque Constructs”. In: Proceedings of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. POPL ’98. San Diego, Califor-
nia, USA: Association for Computing Machinery, 1998,
pp. 184–196. ISBN: 0897919793. DOI: 10.1145/268946.
268962. URL: https : / / doi - org . e . bibl . liu . se / 10 .1145 /
268946.268962.



[2] Jun Ge, Soma Chaudhuri, and Akhilesh Tyagi. “Control
Flow Based Obfuscation”. In: DRM ’05. Alexandria,
VA, USA: Association for Computing Machinery, 2005,
pp. 83–92. ISBN: 1595932305. DOI: 10.1145/1102546.
1102561. URL: https: / /doi- org.e .bibl . liu .se/10.1145/
1102546.1102561.

[3] R. Isawa et al. “Evaluating Disassembly-Code Based
Similarity between IoT Malware Samples”. In: 2018 13th
Asia Joint Conference on Information Security (AsiaJ-
CIS). 2018, pp. 89–94. DOI: 10 .1109/AsiaJCIS .2018 .
00023.

[4] Cullen Linn and Saumya Debray. “Obfuscation of Ex-
ecutable Code to Improve Resistance to Static Disas-
sembly”. In: Proceedings of the 10th ACM Conference
on Computer and Communications Security. CCS ’03.
Washington D.C., USA: Association for Computing Ma-
chinery, 2003, pp. 290–299. ISBN: 1581137389. DOI: 10.
1145/948109.948149. URL: https://doi-org.e.bibl.liu.se/
10.1145/948109.948149.

[5] Chengbin Pang et al. SoK: All You Ever Wanted to Know
About x86/x64 Binary Disassembly But Were Afraid to
Ask. 2020. arXiv: 2007.14266 [cs.CR].

[6] B. Wanswett and H. K. Kalita. “The Threat of Obfus-
cated Zero Day Polymorphic Malwares: An Analysis”.
In: 2015 International Conference on Computational
Intelligence and Communication Networks (CICN). 2015,
pp. 1188–1193. DOI: 10.1109/CICN.2015.230.


