
1

Solve Nixu challenges

Felix Goding Jacob Almrot

Email: {felgo673, jacal517}@student.liu.se

Supervisor: Andrei Gurtov, {andrei.gurtov@liu.se}

Project Report for Information Security Course

Linköpings universitetet, Sweden

Abstract – In this report we present some problems

taken from the Nixu Challenges from 2020 and 2021.

The main focuses of the report are reverse engineering

and steganography as well as scripts. The report

introduces each problem and discusses the interesting

topics that the problems revolve around.

Reverse engineering is a possible attack for almost every

program and works by analyzing a program to

understand how it operates by for instance reading the

code. Therefore, it is important to make it hard for the

attackers to attempt such an attack. One way to

accomplish this is to obfuscate the code to make it

difficult to read.

Steganography is a difficult attack to prevent as it is

hard to know when it is present. An example of a

steganography attack is hiding malicious code in images

where the image looks like an ordinary image. For that

reason, it is important to not forget that these attacks

are possible and be mindful of what to download from

the Internet.

I. INTRODUCTION

 Our project goal is to solve the Nixu challenges for year

2020 and 2021. The Nixu challenges are made by the

company Nixu and the challenges revolve around

cybersecurity and ranges from simple to very complex

problems. The challenges are of a Capture the Flag (CTF)

nature which means to solve the problem you need to find a

flag (token) hidden in the problem files. The problems vary

in different areas of cybersecurity, from cryptography to

memory analysis.

In this report we will go through what challenges we solved

and how we solved them. We aim to solve as many

challenges as we can, but we prioritize problems of different

nature. We believe this will give us a broader understanding

of different concepts in cybersecurity and be more interesting

to read about.

II. BACKGROUND

In this section we will go through some important terms

to know about and the theoretical areas that the problems

revolve around.

A. Terms

In this subsection we will describe terms necessary to

understand the report without disrupting the flow of the

text, such as SHA or port.

Port – Is an identifier on a computer network used when

communicating with a specific process on the network [1].

Netcat – A program for reading and writing to network

connections [2].

IDA Freeware – A program used for reverse engineering.

It disassembles a binary into assembly and then shows

relations between parts of the code. It also analyzes the

programs memory for data like strings [3].

Base64 – An encoding used to represent binary data to text

[4].

SHA – A cryptographic hash algorithm [5].

Salt – Random data added to the information that will be

hashed to make the result more secure [6].

Stack-smashing attack – When an attacker overwrites

stored data on the stack [7].

B. Theory

Here we will explain the theory behind the problem types,

such as what steganography is or how reverse engineering

typically works.

Reverse engineering – Analyze a program to understand

how it works. For example, turn a binary file into a series

of assembly instructions. This makes it possible to see the

2

execution of the program during runtime. It is also possible

to view strings written in the program and analyze the flow

of the program [8].

Steganography – This is a technique where you hide some

confidential information in message in a way that only the

receiver of the message can retrieve this information. The

most common ways this information is hidden are in an

image, a file, or a video. The advantage of this is that you

can exchange messages that will seem normal when they

in fact hide some confidential information [9].

Cryptographic hash functions – These functions are really

useful when you want to transform data of an arbitrary size

into data of a fixed length. These functions has multiple

different properties, but the main ones are that the same

message will always map to the same hash and it’s almost

impossible to find two different messages that has equal

hash value. It is also very difficult to find the original

message if the hash value is known, which makes

cryptographic hash functions a great tool for storing

passwords where if the hashed passwords are leaked it

would take a long time to get the original password [5].

III. RESULTS

Here we will present the problems and then go through

how we solved them, but without any reflections. We will

aim to present each problem in a way so that the reader

can follow along each step of the solution.

A. Numb3rs

The exercise gave the instruction to connect to the server

address “numb3rs.thenixuchallenge.com” on port 1337.

Fig. 1 show the initial response from the server if we

connect using the program netcat. We can interact with the

program running on the server using the terminal window.

The exercise instructions told us that to get the flag we

needed to enter one specific combination of numbers to get

the flag.

Fig. 1: The initial server response.

We tried to enter a random number to see how the program

would respond. The response can be seen in Fig. 2 After

entering the wrong number, the connection would be

terminated. We tried to establish a new connection entering

the right number given to us by the server. This prompted

a new question for a number which gave us also the correct

number if we entered the wrong one.

Fig. 2: The server response after sending a number.

It would be very inefficient for us to manually connect to

the server to write numbers to find out the correct sequence.

Instead, we wrote a script that would handle this for us. We

tried different approaches for how the script would

communicate with the server. Our first idea was to use

sockets in python to communicate with the server. Neither

of us had experience using sockets and we had problems

with sockets blocking and not sending data correctly.

When we got stuck with sockets, we tried to start a child

process using python that the program could communicate

with. This worked better for us but eventually we got a

problem using this method and we then realized that we

could instead create a very simple script to achieve our

goal. We piped the input into the command “nc

numb3rs.thenixuchallenge.com 1337” and then piped the

output into a file. Then we wrote a script that used to output

file to increase the input sequence and then rerun the

process until we find the whole sequence. One problem that

we found was that the input could not be too fast or too

slow otherwise the server would not give us the next

number. We used sleeps in our script to circumvent the

problem and after letting the script run for a while, we got

the output shown in Fig. 3.

Fig. 3: The server response with the flag

B. PEazy

The exercise gave us a windows binary and the challenge

are to reverse engineer this binary. We also got a .pdb file

that contains debugging information about the program.

After executing the program, we got the following prompt

which can be seen in Fig. 4.

3

Fig. 4: The prompt when running the PEazy exe.

We tried different inputs that gave us different responses,

but never got any new information that could lead to the

flag. To disassemble the binary, we needed an application

that could interact with the program and let us look at the

instructions and stop the program during execution. We

tried a few different programs that did not work or gave us

too much information that made it difficult to analyze.

During a presentation of our progress the examiner gave us

some recommendations for tools we could use. The

program that was most suitable for us was IDA Freeware.

In Fig. 5 you can see the resulting disassembly of the

program using IDA.

Fig. 5: View of the disassembled program in IDA Freeware.

Fig. 5 shows blocks of assembly code of different

execution paths in the program. IDA made it possible to

step through the execution showing us each instruction the

program runs and how different inputs executes different

parts of the program. When we got a good understanding

of the flow of the program, we started to analyze the code

and different variables in the program. We found a lot of

different interesting parts that could help us find the flag,

for instance a variable containing a base64 string.

Decoding the string gave us a text about how CTF works,

but unfortunately nothing about the flag.

Looking at the different blocks of code we found a block

with a function called “nothing_to_see_here”, see Fig. 6.

The program had no execution path resulting in that this

function was called. To make the program execute this part

of the code we needed to influence the execution of the

program. We checked the code to see if there are any

conditional jumps that we could influence by changing

flags during execution, but we only found absolute jumps.

Fig. 6: A code block representing a function in the program.

A way for us to change the execution path of the program

is to change the return pointer on the stack. When the

program calls a function, it pushes a pointer to the stack

indicating where the program should return to after

executing the function it called. We can modify this value

and make the program execute whatever part of the code

we want. When we changed the execution to call the

function called “nothing_to_see_here” the program printed

the ascii values of the flag to the console. All that was left

was to decode the ascii characters to text which resulted in

the flag.

C. Stegoböögö

In this exercise we were given a .jpg file which was a

picture of some hamburgers. The picture can be seen in Fig

7. At first glance the picture looked like an ordinary

picture, but the exercise gave us the hint that the problem

revolved around steganography. Therefore, we believed

there was hidden information encrypted in the file.

Fig 7: The picture of hamburgers we were given.

The first step we took was to open the .jpg file in a text

editor to investigate if there was some information

appended at the end of the file. Our suspicion was

confirmed as there were some characters that looked like

Base64 encoding at the end. The characters can be seen in

Fig. 8.

Fig. 8: The characters at the end of the .jpg file.

The result of the decoding can be seen in Fig. 9.

Fig. 9: The Base64 decoded characters.

With this information it was clear how the file was

encrypted i.e., with AES-256-CBC with a salted password

and then the salted password was hashed with SHA-256.

After this we begun the search for the password to begin

the steganography extraction process. We could not find

any hints of the password in the .jpg file, but with some

further inspection of the image itself we saw some

4

suspicious looking characters at the top left corner of the

image. After studying the characters, we saw that they were

Braille characters. These can be seen in Fig. 10.

Fig. 10: The Braille characters in the image.

After translating these using the Braille alphabet, we got

the following text:

BURGERSAREGOODWITHBRAILLE

This seemed to us likely to be the password used to encrypt

the file, but with that said we were never able to decrypt

the file. We tried several of the known steganography tools

available such as Steghide [10], OpenPuff [11] and

OpenSSL [12] but with no success.

After some further investigation for tools, we used Binwalk

[13] which is a tool to search binary files for information.

This gave use another hint on how the image was

encrypted:

OpenSSL encryption, salted, salt:0x609AFF3F2C08EB8D

This confirmed the use of OpenSSL to encrypt the file.

With this new information we tried decrypting using

OpenSSL yet again, but we could still not decrypt the file.

IV. DISCUSSION

In this section we will discuss each problem and the

interesting things behind each of them. We will describe

what area of cybersecurity it belongs to and how the

problem relates to real world problems such as well-known

attacks or how this area is necessary for the security.

A. Numb3rs

We used python to write a script to automate a repetitive

task and, in the script, we also needed to manipulate time.

When communicating with the server we needed to adjust

the communication speed to get the next number. If we sent

data too fast or too slow it would send a message warning

us about that.

When creating the script, we tried different solutions that

gave us different problems. In the end we went with the

simplest. Instead of writing code that handled socket

communication we used the fact that we can write and read

data from programs using the terminal. We can send input

data for a program and then read the response. We used

netcat to communicate with the server and gave it input to

use when communicating with the server. The response

was stored in a file and then the script could use the

response to add new data to the input it sent. Then repeat

the process until we found the flag.

B. Reverse Engineering

Most programs are vulnerable to reverse engineering. This

is because most programming languages use a lot of

metadata that greatly helps programmers to debug an

application. This could also be used by an attacker to

understand how the program works. According to OWASP

a program is vulnerable to reverse engineering if any of the

following applies:

• Clearly understand the contents of a binary’s

string table.

• Accurately perform cross-functional analysis.

• Derive a reasonably accurate recreation of the

source code from the binary. Although most

apps are susceptible to reverse engineering, it is

important to examine the potential business

impact of reverse engineering when considering

whether or not to mitigate this risk. See the

examples below for a small sampling of what

can be done with reverse engineering on its own

[14].

a) Prevent reverse engineering

To prevent reverse engineering, you can use a code

obfuscation tool. This makes the program difficult for

decompilers to interpret and makes it hard for an attacker

to understand the code [14].

b) Possible attacks

One possible attack is that an attacker could analyze the

strings written in the code. These strings could be

credentials for connecting to the backend or find out other

information about how the program works.

An attacker could use a decompiler to modify parts of the

program to run malicious code designed by the attacker.

According to OWASP the technical and business impacts

of reverse engineering are to:

• Reveal information about back end servers;

• Reveal cryptographic constants and ciphers;

• Steal intellectual property;

• Perform attacks against back end systems; or

• Gain intelligence needed to perform subsequent

code modification.

• Intellectual Property theft;

• Reputational Damage;

• Identity Theft; or

• Compromise of Backend Systems [14].

5

c) PEazy

The binary given in the exercise did not contain any code

obfuscation which made it possible for us to easily analyze

the code i.e., we could clearly see different labels for

variables. If you are not used to read assembly it’s hard

because it’s very different from programming languages

used today. IDA has a feature that tries to reconstruct the

C-code that could be compiled to the given assembly. This

helps attackers that are more accustomed to reading and

writing in high level languages.

In this exercise we could also examine all content of the

binary’s string table. In this case we did not find anything

specific to solve the challenge, but it helped us understand

the program. IDA gave us an overview of the program and

the execution path, see Fig. 5. This view helped us identify

a function that was never executed, which with the help of

a stack-smashing attack enables us to execute the function

that was never called. We achieved this by changing the

return pointer from a function call. This in turn made the

program execute code from the pointer we added to the

stack.

There are some different ways to defend a program from a

stack-smashing attack. You could use tools when

compiling like IBM’s ProPolice [15] or Stackguard [16].

Another option is LibSafe [17] which is a dynamic runtime

solution. A none-compiler-based solution is placing a

canary on the stack preventing the attacker from modifying

the stack without the program knowing it. The canary is a

random value that the program can verify and when an

attacker overwrites the stack this value will also get

overwritten. Because the value is random the attack does

not know what value of the canary is and cannot add in the

value. When the program reads from the stack and does not

find the canary it knows the stack has been altered [7].

C. Stegoböögö

Stegoböögö was as previously stated a problem related to

steganography. Even though we did not manage to solve

the problem we learned some things that we can take with

us. The most important thing is probably how we perceive

data that is sent over the Internet, mainly images. For

instance, if a website allows you to upload images it could

be exploited with steganography by hiding malicious code

inside that will be run by the website’s server if they have

a poorly designed image loader.

Steganography attacks are according to McAfee “…easy to

implement and hard to detect” [18]. For example, on the

outside two images can look the same but one of them

contains malicious code which will not be noticed since the

image is not scanned for tampering. McAfee continues

with explaining what organizations should do to prevent

steganography attacks. For instance, they recommend that

you have a clear path for the user to download your

applications instead of them downloading your application

from a third-party site where the content can contain

steganographic code.

V. CONCLUSIONS

The challenges we have attempted have given us a lot of

new information and insight to possible cyberattacks and

how to prevent them.

It is impossible to make a program completely protected

against reverse engineering, but you can make it hard to

attempt it. The impacts of reverse engineering could be big

and that is why it is important to implement protection

accordingly. From PEazy we learned that you can never

trust the stack and that a user can circumvent if statements

and even function calls. This can have a catastrophic impact

on the program depending on its functionality. It could help

the attacker to get valuable information about a server or

even talk to the server using high level credentials. That is

why it is important to secure your application accordingly

to the potential impact an attacker can gain from your

binary.

Steganography attacks are difficult to notice, but they are

easy to implement. A common way for a steganography

attack to happen is to include malicious code in images

since antimalware software seldom scan for threats in

images. Therefore, attackers can utilize a bug in the image

loader to make it execute the code hidden in the image. This

has broadened our perspective on how we perceive data on

the Internet and to take caution by which data we download

to our computers.

From the Numb3rs task we learned that sometimes the easy

solution is the best. Use programs and solutions other have

already made. You do not need to rewrite everything

yourself. We also learned how powerful it can be to

combine the terminal (bash) with python. Automation is an

important role when looking for security risks because you

cannot do everything manually. Learning the skill to write

your own small scripts to help you out when you find no

other option is a valuable skill. That is something we take

with us that learning to write small scripts and making

different programs interact with each other to get the result

is important for security analysis.

6

REFERENCES

[1] Cloudflare, "What is a port?,"

https://www.cloudflare.com/learning/network-

layer/what-is-a-computer-port/.

[2] Sourceforge, "Netcat 1.10,"

https://nc110.sourceforge.io/.

[3] Hex-Rays, "IDA Free," https://www.hex-

rays.com/ida-free/.

[4] Mozilla, "Base64,"

https://developer.mozilla.org/en-

US/docs/Glossary/Base64, 2021.

[5] Brilliant.org, "Secure Hash Algorithms,"

https://brilliant.org/wiki/secure-hashing-

algorithms/.

[6] Defuse Security, "Salted Password Hashing - Doing

it Right," https://crackstation.net/hashing-

security.htm#salt.

[7] O'REILLY, "Prevent Stack-Smashing Attacks,"

https://www.oreilly.com/library/view/network-

security-hacks/0596006438/ch01s13.html.

[8] T. Cipresso and M. Stamp, Software Reverse

Engineering, Heidelberg: Springer, 2010.

[9] M. Semilof and C. Clark, "steganography,"

https://searchsecurity.techtarget.com/definition/ste

ganography, 2018.

[10] S. Hetzl, "Steghide,"

http://steghide.sourceforge.net/.

[11] Embedded SW, "OpenPuff - Yet not another

steganography SW,"

https://embeddedsw.net/OpenPuff_Steganography_

Home.html.

[12] OpenSSL Software Foundation, "Welcome to

OpenSSL!," https://www.openssl.org/.

[13] refirmlabs, "Binwalk,"

https://github.com/ReFirmLabs/binwalk.

[14] OWASP, "M9: Reverse Engineering,"

https://i.redd.it/yaixm7mbj0x61.jpg.

[15] E. Hiroaki and Y. Kunikazu, "ProPolice: Protecting

from stack-smashing attack,"

https://dominoweb.draco.res.ibm.com/eea6d413c7

9a5ccc85256b89002dde70.html, 2002.

[16] H. Sidhpurwala, "Security Technologies: Stack

Smashing Protection,"

https://access.redhat.com/blogs/766093/posts/3548

631, 2018.

[17] SecurityFocus, "Libsafe Multi-threaded Process

Race Condition Security Bypass Weakness,"

https://www.securityfocus.com/bid/13190/info,

2009.

[18] McAfee, "Protecting Against,"

https://www.mcafee.com/enterprise/en-

us/assets/solution-briefs/sb-quarterly-threats-jun-

2017-2.pdf, 2017.

