
Automating insertion of disassembly
desynchronization points into an arbitrary program

A research tool for developing obfuscation detection techniques

Evelina Holmgren
Linköpings universitet
Linköping, Sweden

eveho444@student.liu.se

Gustav Eriksson
Linköpings universitet
Linköping, Sweden

guser908@student.liu.se

Abstract—Due to digitization, malware is an ever increasing
threat. To train antivirus programs to recognize malicious bi-
naries, an automated tool for desynchronizing the disassembly
process for arbitrary programs have been produced. It mimics
the disassembly desynchronization technique that malware often
implements in order to change the control flow and hide its
intentions from the AV program. The problem is how this is done,
both regarding insertion of desynchronization points and finding
free registers for use in so-called opaque predicates. The result of
this report is that randomly generated junk bytes, together with
a standardized predicate, is able to desynchronize binaries at call
instructions. However, the effectiveness and the performance of
this technique could be improved.

I. INTRODUCTION

In an increasingly digitalized world, malware is a constantly
growing threat. To protect ourselves against this, antivirus
software is developed. One of the many important tasks these
antivirus programs do is analyzing the malicious binaries in
order to find ways to identify them and to help the analysts
understand their behaviour. One way they do this is by disas-
sembling the malicious executables back into human-readable
assembly code. Malware authors are aware of this strategy
though, and can disrupt the process by using an anti-reverse-
engineering technique called disassembler desynchronization.
This works by obfuscating the assembly code by inserting junk
bytes before a certain code block that the author wants to hide
[5]. By inserting a predicate that makes sure these junk bytes
are never actually executed, the behaviour of the program can
be kept unchanged. However, a disassembler would attempt
to disassemble the junk bytes, which desynchronizes the
instruction stream so that the contents of the code block is
obscured [5].

To be able to develop better defenses against disassembler
desynchronization, a tool will be created that can obfuscate
code at given locations and mark these, in order to produce
binaries that can be used to study techniques to counter this
kind of obfuscation.

This brings a few problems that need solving when creating
this disassembler desynchronization tool. Firstly, the disas-
sembler must produce valid assembly code from the altered
binary file. If a disassembler can not interpret everything in the

binary file as valid instructions, it would not be far-fetched to
think that someone would realise that an attempt to obfuscate
the code have been made. This in turn makes the process of
restoring it to its original state much easier.

Secondly, the predicate responsible for making sure that the
junk data is actually never executed, uses registers. Depending
on what predicate is used, there must exist one or more
registers that is currently not in use by the program, i.e. a
register which with certainty is written to before it is read
from after the desynchronization point. Note that there is no
guarantee that such a register exists at any given time.

These two key problems have been formulated as the main
research questions of this project:

1) How to choose the junk bytes that should be inserted at
a certain desynchronization point?

2) How can it be determined which registers that
can be modified at a certain desynchronization point
without compromising the functionality of the program?

The research questions have been handled separately by
two groups working concurrently on the project as a whole.
Therefore, this report will focus more heavily on research
question one, which corresponds to the problem that was
handled by the authors.

A. Delimitations

The delimitations on the tool is that it will only target 64-
bit x86 Linux systems. Another delimitation is the limited
time assigned to this project, which affect the scope and the
refinement of the tool.

II. BACKGROUND

This section provides the necessary background information
about the concepts and about the problems that needs to
be solved. It focuses on the tools and libraries used and
provides an in-depths description of the underlying concepts
of disassembly desynchronization.

A. External Tools and Frameworks

Some technical details about the external tools and frame-
works are provided below.

1) GCC - GNU Compiler Collection: GCC is the compiler
that is used by this tool, and it is important to understand the
basics of how it works. The process of creating an executable
from source code is approximately the same as most compilers
and can be split into four distinct steps, where step two and
three are particularly important for this project. [4]

1) Preprocessing - The first step in the GCC-compilation
process is to expand macros and included files, remove
comments, etc. If it encounters a #include in a C pro-
gram for example, it copies the code from the included
file into the current one.

2) Compiling - The compiler produces human readable
intermediary code in the form of processor specific
assembly code.

3) Assembly - The assembly code produced in the pre-
vious step is assembled into object code, which is a
sequence of bytes determined specific to the processor
the compiler is currently running on. This is structured
in a way such that there is no ambiguity, i.e. a complete
instruction can not act as a suffix to another one.

4) Linking - In the final step the linker will merge all
object code from different modules into one, creating
a complete executable file.

An important part of the entire compilation process is the
symbol table. The table stores the locations of variables and
functions by name, called symbols. The symbol table is mostly
used internally by the compiler and operating system, but can
be stored in the executable which allows for external access
as well. It is possible to declare symbols manually in the
assembly file. [3]

2) Pyelftools: Pyelftools is a Python library that can be
used to analyze ELF-files and debugging information in
DWARF format [1]. ELF stands for Executable and Linkable
Format and is a standard format for executables [2].

3) Capstone: Capstone is a lightweight disassembly frame-
work that can be used to analyze binaries. It is compatible
many hardware architectures and has support for multiple
programming languages. [6]

B. Disassembly Desynchronization

As briefly explained in the introduction, disassembly desyn-
chronization is a technique used to obstruct the process of
reverse-engineering source code from an executable file. There
are a few different ways to do it, but the one technique this
tool will implement is the use of junk bytes and predicates.
The core strategy is to plant junk data into the compiled
assembly file, and then ensure that segment is never executed.
Since the disassembler cannot deduce that these junk bytes
are unreachable by the program, it will try to interpret them
as instructions. Depending on the data, the disassembler may
use the subsequent real instructions as arguments or op-code
suffixes and thus fail to recreate the original assembly code.

It is in theory possible for the disassembler to continue to
interpret the bytes incorrectly and remain desynchronized for
the rest of the program, but in practice they have been shown to
resynchronize quite quickly. This usually happens 2-3 instruc-
tions after where the desynchronization initially happened,
hereby referred to as the desynchronization point. This entails
that if the user wants to ensure that a specific function call
or another instruction will be hidden, the desynchronization
point will have to be placed right before this instruction in the
assembly file. [5]

In order to locate the desynchronization points in the
binary, a uniquely named new symbol is placed right after
the predicate and before the junk bytes in the assembly file.
When the assembler assembles the file it stores the location
of that symbol in the symbol table, making it relatively easy
to access it with pyelftools. This allows for easy modification
of the junk bytes directly in the binary.

As stated in the introduction, in order to reliably insert
effective desynchronization points into an existing program
without altering the behaviour of that program, the two prob-
lems formulated as research questions will have to be solved.

1) Research question 1: The main goal of the junk data is to
disrupt the disassembler and tricking it into incorrectly
interpret the program. However, it must also produce
code that could be believed to be an actual program, and
make the desynchronization points blend in. This raises
some extra criteria for the junk bytes to be accepted.
First and foremost, they must result in valid assembly
code. Otherwise it would be easy for someone to realize
that the code have been modified. Secondly, there should
be some level of randomness present in order to hide the
deynchronization points, and to make it harder to predict
their locations.

2) Research question 2: The predicate is the part of this
solution that is responsible for making sure the junk
bytes are never actually executed when the program is
running. Since many of the more effective predicates
needs to modify a register in order to work, it is critical
to make sure that this register is not currently in use
by the program. Otherwise the program may crash or
stop functioning properly. This problem is handled by
the other group. For more information, see their report.

III. METHOD

The method used during the project is partly a literature
study where information were gathered and a development
phase where the software were produced. The development
tasks were divided between the groups in order to speed up
the process.

A. Literature Study

To gather the necessary information needed for the imple-
mentations and for the development of this report, a literature
study has been conducted. The majority of the articles that
have been used was recommended as a reading starting point
in the beginning of the project. Aside from these, the majority

of the material used is the official documentation for relevant
libraries and software.

B. Development

The development strategy that has been conducted during
the project consist of weekly meetings with the assigned
project supervisor. In these meetings the current implementa-
tion have been discussed and studied in order to produce new
tasks for the upcoming week in an iterative way. During this
time the team members have collected the necessary informa-
tion and worked on implementing the tasks. When problems
have been encountered, discussions with the supervisor have
taken place in order to clarify and explain the problem and
find suitable solutions.

All programming has been conducted in pairs in order to
enable discussion. During the sessions one in the pair writes
the code and the other dictates. This allows for cooperation
and opens up for discussion where both in the pair are involved
in the design decisions and design compromises.

C. Cooperation

The project have been divided into two sub projects, where
two groups have taken one research question each. This
report focuses on the first research question. The cooperation
between the groups have consisted of joint meetings where the
progression on both fronts have been discussed as well as the
design of the interface between the tools.

IV. SOLUTION AND ANALYSIS

This section describes implementation of the tools and the
design decisions taken. It also contains the results from some
benchmark tests. Lastly it discusses the results and gives
suggestions for future improvements.

A. Design and Implementation

The part of the project that revolves around finding suitable
junk bytes was implemented in Python. It is divided into two
parts: a prototype for inserting desynchronization points, and a
junk byte generator which contains the important functionality
for the desynchronization of the binary.

1) Prototype: The first step in the development phase was
to create a simple prototype for inserting assembly code into
an assembly file. This was done in a very simple way; the same
predicate and junk bytes were inserted at every function call.
At the start of each desynchronization point, symbols named
incrementally was inserted to point out their position in the
file. This is done by inserting a simple line of code at the given
position of the format ”desynchpoint[index] [size]:”, where
index is the number of the desynchronization point and the
size is the number of junk bytes that follows. The symbols are
initialized as global in the beginning of binary, before the start
of the main function. This initialization is done by inserting
the string ”.globl desynchpoint[index [size]”. This enables us
to find the symbol in the symbol table at a later stage.

The original file was read line by line, and concatenated
with the predicates and symbols and stored in a string. At

the end, when the whole file had been processed, the original
file was overwritten with the new string. The purpose of the
prototype was to find a way to easily insert desynchronization
points into a already existing file.

Pseudo code for prototype.py
for file in files

line = file.readline
while line

if "call" in line
generate junk bytes of given

length↪→

create predicate
add predicate to file string
add symbol to string with

symbol declarations↪→

else if "main:" in line
save index of "main:"

add line to file string
line = file.readline

add symbol string at index of "main:"
overwrite file with file string

Later on new features to the prototype was implemented.
Instead on inserting the same junk bytes at each desynchro-
nization point, single byte-instructions were chosen randomly
from a list and inserted. The prototype now supports both fixed
number of junk bytes and random number of junk bytes. This
is controlled via the terminal when the prototype is run. The
user can choose a fixed number of junk bytes between one
and three, or letting the prototype randomly choose a number
between one and three at each desynchronization point.

However, all desynchronization point will have the same
form and will be located at each call instruction.

2) Desynchronization tool: When the prototype was devel-
oped, the junk byte generator was created. This tool finds and
generates new junk bytes to the binary and inserts them into
the file at the same location as the placeholder junk bytes that
the prototype inserted.

The desynchronization tool works by reading the binary
as an ELF file and accessing the symbol table of the binary
using the pyelftools library. From this table the symbols of the
desynchronization points that were inserted by the prototype
can be accessed. The list with the desynchronization symbols
can then be used to get the byte offset to where the symbols
are located in the binary. This list is sorted in reverse order,
so we start in the end of the file and go backwards. This is
done in order to ensure that no desynchronization alters the
behaviour of the next desynchronization point, which could be
the case if we iterate over it from the beginning to the end.

Then we iterate over the symbols in the list and use the
offsets to extract a code snippet from the binary starting from
that point. The length of this code snippet can be changed to
any number of bytes, but is now set to 50 bytes.

The first step is to disassemble this original code snippet
that have the inserted single-byte instructions in the beginning.

The reason for this is to see how far the disassembler can
disassemble and use this length to compare with the length it
can disassemble after junk bytes used for desynchronization
have been inserted. The tool that is used to do this disas-
sembling is Capstone. A list containing the original assembly
instructions of the code snippet is also saved to be used after
the desynchronization have been done.

Then we enter a while-loop that runs until the code is
desynchronized. Inside the loop we try to find junk bytes
that creates a disassembly output that have the same number
of bytes as the original code snippet, which means that
the disassembler should be able to disassemble to the same
address. Additionally, we check that the call instruction that
we want to hide is not present at the same address as before,
which is how we confirms that the code has been successfully
desynchronized.

When the junk bytes are generated, the tool always starts
by trying to insert the maximum number of junk bytes. For
example, if there are three junk bytes inserted into the code,
it starts by trying to find working combinations of three junk
byte. However, when it has tried a given amount of times, set
to 1000 in the code, it goes on by trying combinations of two
bytes and after another 1000 tries it test one byte instead.

The first junk byte in the combination of two or three
cannot be a working single byte op-code because that will
not desynchronize the code. The byte cannot be a x86-prefix
either since those only alters the functionality of the following
instruction, thereby failing to hide it. For this reason, all single
byte op-codes and prefixes are read in from two text files and
are used to create a list of single bytes that are not present in
one of these, and therefore might work to insert. So when the
first junk bytes, no matter if the number of junk bytes that are
generated are one, two or three, it must be chosen from this
list of bytes. The other one or two bytes that are generated are
randomly chosen from the interval 0-255, which is the size of
a single byte.

When a combination of junk bytes that desynchronizes
the code have been found, it is inserted into the file at the
corresponding symbol’s offset. When doing this we must take
into account the number of placeholder bytes that are present
and the number of junk bytes that have been generated. In the
case where no combination of the same number of bytes could
be found, we must insert the desynchronizing junk bytes just
before the call instruction and leave the other placeholder byte
or bytes that the prototype inserted.

Then it continues with the next desynchronization point’s
symbol in the symbol list until the whole code have been
obfuscated.

Pseudo code for desync_jb_generator.py
open binary
fetch desynchronization symbols from

symbol table↪→

get symbol offesets
while symbol in symbol list

extract code snippet starting from
offset of symbol↪→

disassemble code snippet and get
length and instruction list↪→

while(not desynchronized)
find junk bytes
if junk bytes

insert junk bytes to code
snippet↪→

disassemble code snippet
get disassemble length
if desync length == original

length AND different
instructions at "call"

↪→

↪→

desynchronized = TRUE
else

break
if junk bytes

insert junk bytes in original file

B. Performance

In order to ensure that the program is efficient enough, some
benchmark tests were performed. This includes measurements
for the amount of time, in milliseconds, consumed by each
desynchronization loop for each desynchronization point, the
amount of loops that were required to find suitable junk
bytes, and the amount of desynchronization points the were
succesfully or unsuccessfully desynchronized. The tests were
run five times for each junk byte configuration available in the
prototype, on a C-program called bzip2. The configurations
include a fixed number of junk bytes between one and three,
or random amount of junk bytes in the same interval. The
results are presented in Table I. All desynchronization points
were always successfully desynchronized.

TABLE I
BENCHMARK TESTS FOR DIFFERENT BINARIES AND CONFIGURATIONS.

Config Run Max ms Min ms Avg ms Max (#) Avg (#)
Fixed 1 Run 1 42.28 1.80 7.53 106 35.17

Run 2 48.44 1.79 7.31 106 35.17
Run 3 43.58 1.80 7.65 106 35.17
Run 4 36.79 1.96 7.42 106 35.17
Run 5 217.33 1.82 8.61 106 35.17
Avg 77.69 1.83 7.70 106 35.17

Fixed 2 Run 1 27.12 1.69 4.15 96 9.85
Run 2 32.59 1.78 3.73 94 9.91
Run 3 25.31 1.66 3.51 77 9.46
Run 4 21.64 1.66 3.48 98 9.38
Run 5 22.15 1.63 3.69 104 9.52
Avg 25.76 1.68 3.71 93.8 9.63

Fixed 3 Run 1 15.86 1.65 3.37 74 8.20
Run 2 19.68 1.84 3.73 99 8.44
Run 3 29.38 1.80 3.72 71 8.64
Run 4 17.01 1.80 3.48 98 9.08
Run 5 19.20 1.61 3.63 103 8.50
Avg 20.19 1.74 3.59 89 8.57

Rand Run 1 43.65 1.61 4.68 106 16.1
Run 2 28.61 1.53 5.30 106 17.67
Run 3 25.37 1.59 4.15 152 16.17
Run 4 22.40 1.64 4.66 112 17.64
Run 5 38.83 1.66 4.62 106 17.30
Avg 31.77 1.61 4.68 116.4 16.97

C. Evaluation
Judging by the benchmark tests, the junk byte generator

seems very reliable. Out of twenty runs on different configu-
rations, each involving 474 desynchronization points, it never
failed to find suitable junk bytes. When the amount of junk
bytes were fixed to two and three it only took approximately
9 and 10 loops respectively. There is little difference in the
minimum amount of time taken since all of them needed just
one loop at best. In summary, the tool seems to perform at
best when the number of junk bytes are fixed to three, as it
has the best results in every category. When the configuration
is set to random, it predictably performs at a level comparable
to an average of all the fixed configurations combined.

Interestingly, it seemed to perform at worst when there was
only one junk byte to change, as seen from the comparatively
high execution times and large amount of loops needed when
the number of junk bytes were fixed to a single one. A possible
explanation for this would be that the op-code for the call
instruction is less frequent as a suffix than a random byte.
If this is the case, the strikening difference in performance
by the different configurations would not be present if the
desynchronization points were inserted at random or at a
specific interval, rather than before every call-instruction.

A potential problem that currently exists in the junk byte
generation tool is that it uses two precomputed lists containing
single byte op-codes and prefixes. The problem with these
lists is that there is no guarantee that they are complete or do
not contain any miscategorized bytes. This could potentially
give junk byte sequences that do not result in effectively
desynchronized code. As the implementation is done today, the
desynchronization check mechanism could potentially miss if
a prefix is inserted before the call instruction and still believe
this is desynchronized when in fact it is not.

D. Possible improvements

Possible improvements that could be implemented in future
projects is to check how far the code have been desynchronized
and choose junk bytes that gives the longest desynchroniza-
tion. This would give better results because it would be
harder to find the desynchronization points and understand the
original control flow.

Another improvement regarding the junk byte generation,
is to use some sort of machine learning to find which junk
bytes gives the best results in which case and learn a model
to faster find these and insert them to lower the execution time
and increase the performance.

One last improvement is to change the programming lan-
guage to for example C++ in order to speed up the computa-
tions and thereby increase the performance.

V. CONCLUSION

Choosing the junk bytes randomly in Python reliably pro-
duces desynchronized code in a fairly efficient manner. By
fixating the amount of junk bytes inserted at each desyn-
chronization point to three it will perform at best, assuming
that every desynchronization point is inserted before a call
instruction. However there are room for optimization, possibly
by using a faster language such as C++ or by using machine
learning techniques.

REFERENCES

[1] Eli Bendersky. pyelftools. https://github.com/eliben/pyelftools, 2011.
[2] Wikipedia contributors. Executable and linkable format.

https://en.wikipedia.org/wiki/Executable and Linkable Format, 2021.
[Online; accessed 8-May-2021].

[3] Brian Gough. An introduction to GCC. Network Theory Limited, 2004.
[4] Vikash Kumar. Compiling a c program:- behind the scenes.

https://www.geeksforgeeks.org/compiling-a-c-program-behind-the-
scenes/, 2021.

[5] Cullen Linn and Saumya Debray. Obfuscation of executable code to
improve resistance to static disassembly. In Proceedings of the 10th
ACM Conference on Computer and Communications Security, CCS ’03,
page 290–299, New York, NY, USA, 2003. Association for Computing
Machinery.

[6] Nguyen Anh Quynh. Capstone. https://github.com/aquynh/capstone,
2013.

