
Browser implementation of certificate revocation
checks in practice

Viktor Wahlberg
Department of Computer and Information Science

Linköping University
Linköping, Sweden
viktor@wahlberg.dev

Abstract—In order to browse the web securely most websites
will issue so called SSL certificates, however, how do we know
that these certificates have not been revoked by the issuer?
Through code analysis, experiments and research the paper
shows how the popular browsers Firefox and Chromium handle
certificate revocation and explore the benefits and drawbacks of
the different approaches. It asserts that none of these systems
are perfect today, however, it also refer to other proposed
systems that are emerging and may soon be ready for production
environments.

Index Terms—Certificate revocation, CRL, OCSP

I. INTRODUCTION

This paper shows how browsers deal with the possibility of
a website certificate being revoked. I demonstrate the notable
differences between the two browsers Firefox and Chromium
on a theoretical level and through experiments. Furthermore,
this report highlights the desirable characteristics of good
certificate revocation checks and compares them with the
currently used systems and future technologies.

A. Purpose

With this paper I seek to answer the following questions:
• How do different web browsers handle certificate revo-

cation checks? (Firefox and Chromium)
• Is certificate revocation always checked and is there a

relation between revocation checks and certificate type?
• What are key features of good certificate revocation

checks?
• How do CRLSet and OneCRL compare to an actual list

of revoked certificates?

B. Background

This paper is conducted as part of the university course
TDDD17: Information Security, second course at Linköping
University. I was tasked with examining how modern browsers
handle certificate revocations.

C. Scope and limitations

As this article is written as part of a university course, the
time for the assignment is roughly estimated from the number
of points awarded upon completion. I expect to spend about
53 hours working on this report, including all the meetings,
seminars and the actual writing, researching, analysing and
experimenting

The scope is limited to only include Firefox and Chromium.
Firefox and Chromium are readily available on all major
computer platforms and when accounting for forks it makes up
a vast majority of desktop web-browser usage. They are also
both open-source and their code is available for download and
compilation instructions are available.

This article will focus on desktop users. Mobile devices will
not be considered.

II. THEORY

A. OCSP

Online Certificate Status Protocol (OCSP) is a standard that
allows querying to see if a specific certificate has been revoked.
[1]

B. OCSP stapling

OCSP stapling allows for a web server to attach a recent
record of a OCSP query, removing the need for every user to
perform the OCSP request themselves. This is beneficial for
user integrity and reduces the load for OCSP servers. [1]

C. CRL

Certificate Revocation Lists (CRLs) are lists that contain
information about a large amount of revoked certificates. [1]

D. OneCRL

OneCRL is a CRL that is maintained and curated by Mozilla
and used in their Firefox web browser. Whenever an update
is made to the list it is pushed to all Firefox users. [1]

E. CRLSet

CRLSet is a CRL maintained, curated and implemented by
Chromium. Whenever an update is made to the list it is pushed
to all Chromium users. [2]

F. Firefox revocation checks

Firefox is an open-source web browser and implements
OneCRL. If no record is found Firefox instead uses OCSP
querying in order to determine its revocation status. These
checks are made at least once for every domain you visit
during each session. [1]



G. Chromium revocation checks
Chromium is an open-source web browser. Chromium im-

plements CRLSet. If no record is found in CRLSet Chromium
will assume the certificate is not revoked. [2] If the certificate
is a so called Extended Validation Certificate Chromium will
send an OCSP-request to ensure it has not been revoked.

H. CRLite
CRLite, first proposed by J. Larisch et al, is a technology

that would allow for a complete CRL to be stored locally
for every user without any significant storage and download
requirements. By crawling already publicly available and cer-
tified certificate revocation sources and creating a cascading
bloom filter, it is estimated the total storage requirements
would be around 10MB. [3]

As of early 2019 Mozilla is evaluating CRLite as a replace-
ment for OCSP and OneCRL. Currently the Nightly version of
Firefox has CRLite implemented, however, it is not yet relied
upon by the browser and still uses OneCRL and OCSP. [1]
[4]

III. METHOD

This article will primarily be based on my own analysis of
code and experiments that I conduct. It will, however, also be
based on already existing scientific literature.

A. Experiments
Experiments were conducted partly by using already exist-

ing and freely available tools, specifically to gather data. New
scripts were also written in order to collect, analyse and sort
data.

See Appendix A.

B. Code Analysis
Code analysis will be performed on the browsers, following

a few simple and repeatable steps:
• Search online to try and find the functions responsible

for certificate verification. If that fails, continue.
• Browse the documentation and determine the code struc-

tures that are implemented
• Download the code
• Try to identify files of interest, manually finding files with

interesting names. Also look inside these files to see what
dependencies they have and if any of them are interesting

• Check all interesting functions and hopefully find what
was desired

See Appendix B.

IV. RESULT

A. Key features
There are a few key features of certificate revocation checks

that are important to most users: [1]
• You want to be certain that the certificate received is not

revoked
• Checks must be done fast and should not impact user

experience
• User integrity must be preserved

Fig. 1. To scale Venn Diagram of OneCRL and CRLSet revoked certificates

Fig. 2. OCSP-request timings

B. Experiments

The three CRLs CRLSet, OneCRL and CRLite were com-
pared and tests were performed in Firefox, Firefox Nightly
and Chromium. For extensive reading, see Appendix A.

1) Data comparison: CRLSet contained 928 revoked cer-
tificates and OneCRL contained 1373. As is made clear in
Figure 1 the two sets are fairly homogeneous, however, they
both have many certificate revocations that were not included
in the other set. Their intersection were 638 certificates, mean-
ing OneCRL contains 68.75% of CRLSets revoked certificates
and CRLSet contains only 46.50%.

2) OCSP timings: Experiments were conducted in Firefox
where a number of websites were visited and the OCSP-
requests were captured. Firefox is supposed to send an OCSP-
request every time OneCRL does not contain the certificate
and there is not OCSP-stapling employed by the website.

As can be seen in Figure 2, OCSP-requests were generally
completed fairly quickly. We can note from the raw data
that all but 4 requests were completed in less than 0.29s.
There were also 83 packets that were considered dropped or
otherwise containing errors.



3) CRLite: The effectiveness of CRLite was tested and
meta-data from the set was gathered. CRLite was able to
handle all websites that were visited, always producing a hit in
the filter. CRLite contains about 125 million valid and almost
4 million revoked certificates. It will be used as a benchmark
for a complete list of valid and revoked certificate, as that is
what it strives to be.

C. Code Analysis

The code for two browsers Chromium and Firefox was
analyzed to get a better understanding of how they both
function. For extensive reading, see Appendix B.

Both browsers acted very similarly when examining the
code. Notable things that were looked for were that both
browsers had synchronous functions for validation of certifi-
cates and revocation checks and no website data was trans-
mitted from either browser before the functions had returned.
Notable differences were that Firefox always sent an OCSP-
request, unless cached, and Chromium sent OCSP-requests for
EV-certificates, unless cached.

V. EVALUATION

The experiments that were conducted could have been made
using more sophisticated tools. Having a setup where the
system could not interfere with the data collection would have
been preferable. The list of websites visited could also have
been better. The list was acquired by a Google-search and for
this report it was considered good enough.

The code analysis portion was handled fairly well, however,
there were several shortcuts that had to be made. Firstly, it was
not feasible to become familiarized with the entire code base
and therefore most of the code went overlooked. Therefore
there could have been portions of the code that were of interest
that were ultimately not identified. It would probably have
been preferred to contact someone who has worked on the
project and ask.

VI. DISCUSSION

It is clear to me that OneCRL and CRLSet are both
incomplete. I find OneCRL as being entirely unnecessary as
it contains so few certificates and in every other case Firefox
sends OCSP-requests. The use of CRLSet on the other hand
is in no way enough to secure users from potential attacks,
yet, it is better than having nothing.

The proposed CRLite, implementing a cascading bloom
filter, is to me a good concept. The general characteristics
of cascading bloom filters allows for relatively quick and
extremely storage-effective are both very good for a CRL
implementation. Having the actual certificate meta-data is, as
far as I can see, not necessary; a filter is sufficient.

Firefox with its OneCRL and OCSP-request system cur-
rently protects its users, and based on the experiments con-
ducted, does it in a timely manner. It does, however, leave
open the possibility of integrity violations by OCSP-servers.
Since OCSP-requests are sent for every new website, internet
usage could be monitored.

CRLite would be a good solution as it enables integrity
to be preserved, storage requirements are fairly equivalent to
current implementations, checks are relatively fast and you can
be confident in the validation process as CRLite contains both
valid and revoked certificates.

VII. CONCLUSION

Chromium and Firefox are very different in handling certifi-
cate revocations. Firefox will always check so that the domain
you visits have a certificate that has not been revoked. It
does this partly by relying on its OneCRL list and pertly by
performing OCSP queries. Chromium only ever employ OCSP
checks when a domain has an extended validation certificate.
Chromium implements a list called CRLSet which is always
checked.

In order to employ good certificate revocation checking a
browser should care for all the users needs. It needs to be fast,
it needs to protect the user and it needs to care for the users
integrity. Performing OCSP checks in the way that Firefox
does impacts the user integrity by potentially allowing for
your traffic to be tracked. Chromium on the other hand could
potentially serve websites that use a certificate that is revoked,
exposing users to man-in-the-middle attacks.

CRLSet and OneCRL are both very incomplete. They each
have about 1000 entries and the total number of revoked
certificates are, at the very least, in the tens of millions.

In conclusion there is still much work to be done in the field
of browser revocation checks. No major browser implements
a solution that is entirely satisfactory, even though there are
proposed new technologies that may soon change this.

REFERENCES

[1] “CA/Revocation Checking in Firefox - MozillaWiki”.
Accessed on: Apr. 18, 2021. [Online]. Available:
https://wiki.mozilla.org/CA/Revocation Checking in Firefox

[2] “CRLSets - The Chromium Projects”. Accessed on: Apr. 18,
2021. [Online]. Available: https://dev.chromium.org/Home/chromium-
security/crlsets

[3] J. Larisch, D. Choffnes, D. Levin, B. M. Maggs, A. Mislove and C.
Wilson, ”CRLite: A Scalable System for Pushing All TLS Revocations
to All Browsers,” 2017 IEEE Symposium on Security and Privacy (SP),
San Jose, CA, USA, 2017, pp. 539-556, doi: 10.1109/SP.2017.17.

[4] “The End-to-End Design of CRLite - Mozilla Security
Blog” ”. Accessed on: Apr. 19, 2021. [Online]. Available:
https://blog.mozilla.org/security/2020/01/09/crlite-part-2-end-to-end-
design/

[5] https://searchfox.org/mozilla-central/source/browser

APPENDIX A
EXPERIMENTS AND DATA ANALYSIS

This document will contain data relating to CRLSet,
OneCRL and CRLite as well as results from experiments
conducted regarding CRLs and relating technologies.

Data collection will be conducted by utilizing already
existing and publicly available tools. Further analysis will
be made using specialized scripts written specifically for the
analysis. Under each subtitle for the result will be first the
means of data-collection, followed by the data, followed by
notable attributes of the data collected.



TABLE I
NUMBER OF CERTIFICATES CONTAINED IN EACH LIST

CRLSet OneCRL CRLite
Revoked 928 1,372 3,911,734
Valid - - 125,075,740
Disk Size <1MB <1MB <6MB

TABLE II
COMPARISON OF CRLSET AND ONECRL CERTIFICATE REVOCATIONS

CRLSet OneCRL
Total Revoked 928 1,372
Overlapping 638 638
Unique 290 678

A. Metadata

In the following data collection, each of the 3 CRLs were
compared based on disk size, the number of contained known
revoked certificates and the number of contained confirmed
not revoked certificates. The disk size was measured in whole
megabytes (MB). Notably, only CRLite allows for checking
confirmed not revoked.

Data collected on the 13th of April 2021 and data is found
in Table I.

B. Data-comparison of OneCRL and CRLSet

In the following analysis I looked at how many overlapping
certificates were found in each of the currently implemented
CRLs. This was done by first extracting the data from each
CRL and then comparing them using a script.

The comparison was made on serial numbers. This makes
for the possibility of false positives since there could be
duplicate serial numbers. This was made in the interest of
time.

Data was collected on the 13th of April 2021 and data is
found in Table II.

C. OCSP request timings

Firefox send OCSP-requests for all certificates that are
not contained in OneCRL or has OCSP-stapling. 500 web-
sites were visited and traffic analysed in Wireshark with the
OCSP filter turned on. The websites were gathered from
http://moz.com/top500. Of the 500 websites, with the OCSP-
filter enabled, there were 937 HTTP OCSP-requests needed.
There were a total of 658 OCSP staplings. The average
time for the HTTP OCSP-requests were 0.041s. The aver-
age extra time per website required for OCSP-requests were
0.077s, given the response was not dropped. The longest
OCSP-request took 0.828s, however, all but 4 requests were
completed in less than 0.29s. 83 packages were marked by
Wireshark with ”TCP Previous segment not captured” or ”TCP
Spurious Retransmission”, these were assumed to be timed out
or otherwise dropped packages.

D. OCSP requests needed with CRLite

Accessing the same 500 websites with Firefox Nightly
found that all certificates were available from CRLite and no

OCSP-request would have been necessary. Firefox Nightly still
sends OCSP-requests, however, and I can access the hits and
misses to CRLite from its Telemetry feature.

APPENDIX B
CODE ANALYSIS

A. Methodology

I first browsed the official websites related to each browser
in order to find out what general structural guidelines were
implemented for the code. I specifically looked for anything
that would be related to security, certificates or connectivity.
From there I downloaded the code and looked for files in the
appropriate folders with names suggesting it would be relevant
to the analysis.

In order to get a better understanding of how the code
operated, and to make sure that it was indeed doing what I
thought it was, I compiled the project and began testing. Con-
sole output and time delays were implemented to determine
what code ran when and if it was running on the same thread.

B. Firefox

I noted a file called /security/certverifier/CertVerifier.cpp as
probably being responsible for general checking of certificates.
In order to verify this I added a delay and console print to the
execution of the function VerifyCert. Building and running the
browser revealed a significant delay for every website loaded.

In testing I found that all none-cached requests were caught
in the VerifyCert function and were executed synchronously.
It was also noted that no actual website data was sent before
the function was returned. This was checked using Wireshark
and loading a website that were under my control.

C. Chromium

I noted a file called /net/cert/internal/cert verify proc.cc as
probably being responsible for general checking of certificates.
It notably includes OCSP checks and CRLSet checks. In the
beginning of the related h-file, I can read that the purpose is to
“perform certificate path building and verification for various
certificate use”. In order to verify its use I added a time delay
with console output to the Verify function, compiled the code
and ran the browser. I noted a significant delay before the page
loaded and a console output marking that our time delay was
running. I also noted, by using Wireshark, that the transmission
of website data seems to be delayed until the Verify function
is completed.

In testing I found all new requests I sent were caught in the
Verify function and were always synchronous. The only time
I noted it was not executed was when a previously visited
website with an extended validation certificate was accessed,
presumably because it is now cached.

Make note that I have confirmed that Chromium indeed
performs an OCSP check to validate EV certificates. This
is different from what I were able to read online on the
Chromium website.

I added a single console output at the start of the Verify
function and one at the very end. I visited sites I had control



over that only contained a single domain and accompanying
certificate. The typical time between these console outputs
was 30-50ms. This was similar, although notably always
slightly more or less, to the SSL loading time I found when
checking the browser console’s networking tab. This result
was captured on a debuggable version of Chromium, which is
notably slower than a production version. Running the official
distributed binary of Chromium and checking SSL times in
the networking tab showed a significantly faster response,
typically 15-20ms.


