
Multilevel Security for Graph Databases
Martin Christensson
Linköping University
Linköping, Sweden

march230@student.liu.se

Oscar Järpehult
Linköping University
Linköping, Sweden

oscja033@student.liu.se

Abstract—With the ever increasing size and complexity of
data sets, alternatives to storing data in traditional tabular SQL
databases has been on the rise. One popular way of doing this is
using a graph database. However, implementing previously preva-
lent methods of managing access control for tabular databases
poses challenges of implementation to graph databases. In this
report we present an implementation of multilevel security in
a graph database using Neo4j. The exact implementation are
generated with Cypher queries and different example queries
are presented. Furthermore, we discuss the difficulties of our
implementation of multilevel security and the possible uses of
the implementation.

Index Terms—graph database, Cypher, multilevel security,
Neo4j

I. INTRODUCTION

In every IT system that is built today there is some form
of secret information or data that should be accessible while
still remaining hidden for other users. Traditional relational
databases which have been the ruling way of storing data for
decades have solved this by implementing multilevel security
where each entry in the database is assigned a security class
that determines who can access it and edit it.

With the ever increasing size and complexity of modern
data sets, the time it takes for an SQL query to search and
traverse a modern database is not in line with the speed of
other application processes. These processes will be slowed
down waiting for the results of these queries. To combat this
problem, new methods of storing data have been researched
called NoSQL. One of these methods is the graph database
which excels when there are a lot of relations between entries
in the database.

With graph databases still being a relatively new concept
there is no well defined standard for implementing multilevel
security.

This report aims to come up with an idea for how multilevel
security can be implemented in a graph database. This will
be done by providing specification for how this should be
implemented as well as providing an analysis of this idea.

This report will introduce the reader to the relevant topics
in section II. In section III we describe the implementation.
Section IV and V outline our results as well as a general
discussion of the aforementioned results. In section VI we
discuss related work and in section VII we present conclusion
derived from this study and the presented related work.

II. BACKGROUND

In order to understand the contents of this report this
section will provide a short introduction to three topics. The
first subsection explains what a graph database is and what
separates it from a traditional relational database. The second
subsection explains what multilevel security is as well as how
it is implemented in relational databases. The final subsection
present the environments used for the implementation.

A. Graph Databases

A graph database consist of nodes which are connected with
edges called relationships. A node can contain any number of
key-value pairs which is called properties. Every node may
also be tagged with one or more labels which is used to
determine what role the node have in the graph network.
A relationship connect two nodes with a directed edge and
a name describing the type of connection between the two
nodes. Similar to nodes, relationships can also have multiple
properties. [1]

In Fig. 1, an arbitrary graph database is displayed. The
circles in the figure is the nodes, with the associated text
boxes representing the properties of those nodes and the arrows
representing the relationships between those nodes. In this
specific example, a person has the property “name” which
in this case is “Peter”. We can also see that “Peter” has
two inbound relations ”owned by” which he does to nodes
”Document”, called “Doc1” and “Doc2”. These Documents
both contain a property “Content” which is “some text”.

Fig. 1. Example of Graph Database.

B. Multilevel Security

Protecting confidential or sensitive data which is stored
in a database is paramount in many instances. To manage
access control, a set of multilevel security classes can be



implemented to allow the classification of data and of users
on a system of hierarchical security levels. This will allow a
distinct separation of the rights a certain user might have to
access data and what those rights entail. This is referred to as
clearance. A user has clearance for data if it has a clearance
level equal to or higher than the security level of the requested
data. To maintain confidentiality in the system, identification
for all users is enforced. This ensures accountability in the
system by linking a user to a physical person or an application.
[5]

The users specific access to data can be separated to
permissions to describe the specific access they have to data.
This allows the access control to be fine-grained in stating not
only the access of data by a user, but which actions can be
taken by that user for the object. These actions are typically
Create, Read, Write (Update) and Delete but can range from
any defined actions desirable. In this report, only Read and
Write access privileges will be utilized. The main aims of these
finer granular hierarchical security levels is not only to ensure
the prevention of unauthorized individuals from accessing
data, but also preventing individuals from declassing data or
information. By restricting the action to write, information
is able to be read but not changed, altered or declassified
by a user. This preserves the integrity and confidentiality of
information. [2]

Fig. 2 shows an example implementation of multilevel
security. For this example a “no read up, no write down”-
model is implemented. This allows for data to only be read
which has a lower security classification and to write to a
higher classification. Data with security classifications equal
to that of the User in this case can both read and write to
data. This examples illustrates how both information and users
can be assigned classifications and based on this, restricted to
access to the system.

Fig. 2. Example of Multilevel security.

C. Neo4j & Cypher

Neo4j is a graph database management system (GDBMS)
developed by Neo4j, Inc and made publicly available since
2007. It is the most popular GDBMS and is the 21st most pop-
ular database management system (DBMS) overall according
to DB-Engines 2020 ranking. [3] Neo4j uses its own query
language called Cypher. The language uses a SQL-like syntax
and is also open source. [4]

III. METHOD

This section shows how multilevel security for a graph
database in Neo4j was implemented. A small graph database
example without any security classification will be created to
begin with and then expanded upon.

A. Setup Neo4j Graph Database

Fig. 3. Initial Graph Database.

The initial graph is shown in Fig. 3. The graph contains
two types of entities which is labeled either “Person”, here
labelled “Peter”, or “Document”. There is also a type of
relation “OWNED BY” which shows who own a document.
In this case we have a simple database that has two documents
owned by the person Peter.

Code to generate graph in Fig. 3:

CREATE
(p:Person {name: ’Peter’, ssn:

’123456-7890’}),
(d1:Document {name: ’doc1’, content: ’some

text’}), (d2:Document {name: ’doc2’,
content: ’some text’}),

(d1)-[:OWNED_BY]->(p), (d2)-[:OWNED_BY]->(p)

This database can now be queried for all documents with
the following code:

MATCH (n:Document) return n

B. Setup Security Levels

The current database has no way of granting or denying
access to single entities based on user. If someone has access
to the database that person will be allowed read and edit

2



Fig. 4. Security Classes Graph.

everything in the database. This will change by setting up
security levels.

Fig. 4 shows a graph that contains three different security
levels: Low, Medium and High. They are chained together with
the relation type “IS LOWER THAN” in order to determine
which security levels is above or below the others. By using
these relations we will be able to give a higher security level
the same privileges as the lower ones.

Code to generate graph in Fig. 4.

CREATE (low:SecurityLevel {name: ’low’}),
(med:SecurityLevel {name: ’medium’}),
(high:SecurityLevel {name: ’high’}),

(low)-[:IS_LOWER_THAN]->(med),
(med)-[:IS_LOWER_THAN]->(high)

C. Set Security Level of Nodes

In order to set security levels of nodes in the database the
graphs in Fig. 3 & Fig. 4 will be combined by adding relations
between the security levels and the other nodes.

Fig. 5. Security Level on Nodes.

Fig. 5 shows the two subgraphs merged with the new
relation type “ACCESSIBLE BY” which connects a node to
one of the three security levels. A user with the low security
level will only be able to access the node labeled “Person”
while the other two security levels will grant access to one
document each as well as inherit all content with a lower
security level.

Code to add the new relations:

MATCH (p:Person {name: ’Peter’}),

(low:SecurityLevel {name: ’low’}),
(med:SecurityLevel {name: ’medium’}),
(high:SecurityLevel {name: ’high’}),

(d1:Document {name: ’doc1’}),
(d2:Document {name: ’doc2’})
CREATE (p)-[:ACCESSIBLE_BY]->(low),

(d1)-[:ACCESSIBLE_BY]->(med),
(d2)-[:ACCESSIBLE_BY]->(high)

Instead of accessing a node directly we can now take the
security level into account to get all nodes we should be able
to access with a given security level by using the following
syntax:

(Normal MATCH query) -[:ACCESSIBLE_BY]->
(objsec:SecurityLevel)
-[:IS_LOWER_THAN*0..2]->
(subsec:SecurityLevel {name: ’low’ or
’medium’ or ’high’}) (normal RETURN
syntax)

For example we can access all nodes with a security level
of medium or lower with the code:

MATCH (n) -[:ACCESSIBLE_BY]->
(objsec:SecurityLevel)
-[:IS_LOWER_THAN*0..2]->
(subsec:SecurityLevel {name: ’medium’})
return n

D. Separate Read and Write Access

In the current model we do not differentiate on read
and write access. This can be done by replacing the “AC-
CESSIBLE BY” relationship with “READABLE´ BY” and
“WRITABLE BY”.

Fig. 6. Write & Read Access

In Fig. 6 the “READABLE BY” relation has the same con-
nections as “ACCESSIBLE BY” had in the previous model
and a new relation with the type “WRITABLE BY” has been
added.

Code to remove “ACCESSIBLE BY”:

3



MATCH ()-[a:ACCESSIBLE_BY]->()
DELETE a

Code to add read and write relations:

MATCH (p:Person {name: ’Peter’}),
(low:SecurityLevel {name: ’low’}),

(med:SecurityLevel {name: ’medium’}),
(high:SecurityLevel {name: ’high’}),

(d1:Document {name: ’doc1’}),
(d2:Document {name: ’doc2’})
CREATE (p)-[:READABLE_BY]->(low),

(d1)-[:READABLE_BY]->(med),
(d2)-[:READABLE_BY]->(high),

(d1)-[:WRITABLE_BY]->(high)

Nodes will now be matched with the same syntax stated in
[C] by replacing “ACCESSED BY” with “READABLE BY”.
In order to edit a node we will use the following syntax:

(Normal MATCH query) -[:WRITABLE_BY]->
(objsec:SecurityLevel)
-[:IS_LOWER_THAN*0..2]->
(subsec:SecurityLevel {name: ’low’ or
’medium’ or ’high’})

(normal SET syntax)

For example a user with the high security level can edit the
content of Doc1 with the following code:

MATCH (d:Document {name: ’doc1’})
-[:WRITABLE_BY]-> (objsec:SecurityLevel)
-[:IS_LOWER_THAN*0..2]->
(subsec:SecurityLevel {name: ’high’})

SET d.content = ’new text’

E. Security Level on Single Attributes

What if we want to set a security levels for a single attribute?
A node may have properties that needs to have separate
security levels and that is currently not possible since the
whole node is assigned a security level. We will solve this
by separating some of the properties into new attribute nodes.

Fig. 7. Security Level on Attributes

Fig. 7 shows the modification to the graph. There are three
new attribute nodes connected to their parent node with the
relationship “HAS ATTRIBUTE”. Ssn can now only be read
with a medium security level or higher and Doc2 will now
be visible for medium security level while the content of it is
only being visible to high security level.

Code to generate graph in fig. 7 from scratch:

CREATE
(p:Person {name: ’Peter’}), (a1:Attribute

{ssn: ’123456-7890’}),
(d1:Document {name: ’doc1’}), (a2:Attribute

{content: ’some text’}),
(d2:Document {name: ’doc2’}), (a3:Attribute

{content: ’some text’}),
(low:SecurityLevel {name: ’low’}),

(med:SecurityLevel {name: ’medium’}),
(high:SecurityLevel {name: ’high’}),

(low)-[:IS_LOWER_THAN]->(med),
(med)-[:IS_LOWER_THAN]->(high),

(d1)-[:OWNED_BY]->(p), (d2)-[:OWNED_BY]->(p),
(p)-[:HAS_ATTRIBUTE]->(a1),

(d1)-[:HAS_ATTRIBUTE]->(a2),
(d2)-[:HAS_ATTRIBUTE]->(a3),

(p)-[:READABLE_BY]->(low),
(a1)-[:READABLE_BY]->(med),
(d1)-[:READABLE_BY]->(med),

(a2)-[:READABLE_BY]->(med),
(a2)-[:WRITABLE_BY]->(high),
(d2)-[:READABLE_BY]->(med),

(a3)-[:READABLE_BY]->(high)

IV. ANALYSIS

In this section we will test the database model and make
sure the security levels works as intended. This will be done
by executing queries using the syntax given in section III. We
will test both read and write access.

A. Read Access

In order to make sure read access works as intended, a query
that returns all nodes will be executed for each security level.
This is done be running the following query three times with
every security level inserted into the name field:

MATCH (n) -[:READABLE_BY]->
(objsec:SecurityLevel)
-[:IS_LOWER_THAN*0..2]->
(subsec:SecurityLevel {name: ’low’})
return n

Fig. 8 shows the results when returning all nodes for a given
security level. Nodes with a lower security level is also visible
for the higher security levels. This indicates that the security
levels inherit nodes with a lower security level correctly. When
comparing fig. 8 to Fig. 7 it can also be confirmed that a node
is only visible if it has a relation of type “READABLE BY”
to a security level equal to or lower than the security level
used in the query.

4



Fig. 8. Readable Nodes Depending On Security Level

B. Write Access

Determining if a user have permission to edit a node is
done similar to read access with the difference of checking
for the “WRITABLE BY” relation instead. All editable nodes
for every security level is returned by running the following
query for each security level:

MATCH (n) -[:WRITABLE_BY]->
(objsec:SecurityLevel)
-[:IS_LOWER_THAN*0..2]->
(subsec:SecurityLevel {name: ’low’})
return n

When querying for writable nodes for low and medium
security level, no nodes are returned. For high security level
only the node with content for Doc1 is returned since this is
the only node with a “WRITABLE BY” relation.

C. Complex Queries

So far the implementation has only been tested for simple
queries that only ask for one type of nodes but Cypher supports
a lot more types of queries. If we want to match all persons
along with their attribute nodes this can be done with the
following query:

OPTIONAL MATCH (p:Person) -[:READABLE_BY]->
(:SecurityLevel) -[:IS_LOWER_THAN*0..2]->
(:SecurityLevel {name: ’medium’})

OPTIONAL MATCH (p) -[:HAS_ATTRIBUTE]->
(a:Attribute)-[:READABLE_BY]->
(:SecurityLevel) -[:IS_LOWER_THAN*0..2]->
(:SecurityLevel {name: ’medium’})

return p, a

Since both Persons and Attributes have a security level we
must check the “READABLE BY” relation for both types of
nodes, making the query a lot more complex.

Fig. 9 shows the results when returning all persons with
their connected attributes based on security level. Everyone
can see Peter while his ssn is only visible for medium and
high security levels. Comparing this to Fig. 7 the query seems
to work as intended.

Fig. 9. Readable Attributes for Persons Depending On Security Level

V. DISCUSSION

The method used in this report to create a graph database
with multilevel security has been proven to work as intended
in section IV. However, only basic query syntax have been
used for testing this implementation and there may still be
some query operations that wont work. We found that writing
working queries becomes very complex as soon as more than
one type of node should be included in the result since we
need to check the security level for every single node. While
it is still possible it is very easy to make a mistake when
writing these queries which in the end may result in someone
being able to exploit the database.

The current implementation assumes that users who wish to
access the database do not have direct access to the database
but instead accessing it through an additional application that
enforces the access control policies. This means that someone
must write queries for all use cases and make sure they work
as intended before serving these queries to a user.

Another limitation of the proposed solution is the rapidly
increasing size and complexity of the database. With the
implementation of representing properties of nodes as nodes
we inevitably add relations previously not represented as data.
Even for a very minimal data set this is obvious, but for a
larger data set, with multiple users having multiple properties
attached and having finer grain access control, this could lead
to a far more complex database. This size and complexity
entails difficulties for both querying the database as well as the
readability, but could also result in both a increase in required
storage of the database and the performance of the database
management system.

Our solution does only provide multilevel security for nodes
and not for relationships. This means that it is not possible to
hide the relationship between two nodes while still keeping
both nodes visible. It would still be possible to create a
workaround for this issue by adding replacing the relationship
with a new node that is connected to both initial nodes. This
new node can be assigned a security level which will make
it possible to hide the connection of the initial nodes. This
would further increase the size of the database.

5



VI. RELATED WORK

Ahmadi Small [6] present work regarding the introduction
of conditions predicates to an attribute based access control
system in a graph database representation. Their research
offers universal graph traversal algorithms for policy condi-
tions. Crawford [7] offers a thorough introduction to granular
security in graph databases. His work present a wide variety
of possible implementations and discussions for introducing
granular security on a graph database using Neo4j.

VII. CONCLUSION

The main goal with this report was to present a way
to implement mandatory access control through multilevel
security on a graph database. From the performed analysis
of the implementation, we can conclude that we have suc-
cessfully found a way to do this for the most common type of
Cypher queries. From the presented result the implementation
is suitable only for basic queries. The implementation lacks
scalability for more complex data sets, and queries for these
becomes increasingly difficult to construct. The implementa-
tion also bloats the size of the database, increasing the number
of nodes and relations in the database which might have an
effect on the performance of the implementation.

REFERENCES

[1] Neo4j, What is a Graph Database? https://neo4j.com/developer/graph-
database/ [Online; accessed 19-04-2020]. 2020.

[2] Ma, Kun Zhang, Weijuan & Tang, Zijie. (2014). Toward Fine-grained
Data-level Access Control Model for Multi-tenant Applications. In-
ternational Journal of Database Theory and Application. 7. 79-88.
10.14257/ijdta.2014.7.2.08.

[3] DB-Engines, DB-Engines Ranking https://db-engines.com/en/ranking
[Online; accessed 19-04-2020]. 2020.

[4] Neo4j, Cypher Query Language https://neo4j.com/developer/cypher-
query-language/ [Online; accessed 19-04-2020]. 2020.

[5] Red Hat Inc. Multi-Level Security (MLS). Red Hat Enterprises
Linux Deployment Guide, 43.6. https://web.mit.edu/rhel-doc/5/RHEL-
5-manual/DeploymentGuide-en-US/sec-mls-ov.html [Online; accessed
2020-04-16]. 2006.

[6] Hadi Ahmadi Derek Small. Graph Model Implementation of Attribute-
Based Access Control Policies. Nulli-Identity managment. 2019.9.21.

[7] Brian Crawford. Granular security in a graph database. Naval postgrad-
uate school. 2016.03.27.

6


