How to secure GraphQL APIs

Mans F. Franzén

Nils Tyrén

Email: manfr689,nilty573 @ student.liu.se
Supervisor: Olaf Hartig, olaf.hartig@liu.se
Project Report for Information Security Course
Linkoping university, Sweden

Abstract—GraphQL is a relatively new technology that allows
for a more dynamic approach when it comes to sending queries
to the back end of a web application. With new technologies
comes new threats and this requires mitigations and control
measures in order to secure an application that uses this API.
The focus of this study has been to find threats to applications
that uses GraphQL in the context of database security and how to
mitigate these threats. The control measures found in this study
can be divided into four different categories: Access control,
data encryption, query analysis and input sanitizing. Some of
these control measures are required in most web applications
independent of what API is used and some are unique to
GraphQL. Even though these control measure exist and can
be used to secure an application that uses GraphQL, it is still
up to the developer to make the right decisions and implement
these measures depending on the security requirements of the
application.

I. INTRODUCTION

One of the most common web service APIs for communication
between server and client is REST. REST is an architectural
style that defines constraints for creating web services. One
of the major problems with REST is that the endpoints are
static in regard to what they return. This means that over
and under fetching of data happens frequently. In 2015 a
new web service API called GraphQL was released. GraphQL
handles communication between client and server differently
from REST. It was developed to be a more dynamic alternative
to other web service APIs. Clients can write more complex
queries and the GraphQL server will always return exactly
what the client asked for.

Something that is still being examined is whether GraphQL is
vulnerable to the same type of threats as other APIs. Perhaps
some vulnerabilities are mitigated, and some new ones emerge.
The goal of this project is to create a survey of approaches
and techniques for securing GraphQL APIs against the typical
threats of database security, which is loss of confidentiality,
loss of integrity and loss of availability. Different threats and
their respective mitigations are examined. Control measures
to secure a GraphQL API are discussed. we also compare
GraphQL with REST in terms of structure and security and
discuss the use of GraphQL over HTTP and how the Apollo
platform can be used with GraphQL.

II. BACKGROUND

In order to understand the content of this report, short
introductions to relevant concepts and techniques are presented
in this section.

A. Database security

Database security refers to the techniques and measures taken
in order to protect the contents of the database from being
exposed or changed by unauthorized users. There are three
main threats when it comes to database security:

B. Threats

1) Integrity
Loss of integrity can be described as unauthorized
modification of data, meaning data in the database is
changed without this being the intention. An example could
be a criminal changing his criminal record in a database in
order to receive a lesser punishment.

2) Confidentiality

Loss of confidentiality is the unauthorized disclosure of
data. This means that data is exposed to someone that should
not have access to that specific information. An example
could be medical records being exposed to the public by
someone taking advantage of a vulnerability in the database.

3) Availability

Loss of availability is when information that is supposed
to be available for authorized users or programs cannot be
displayed. This can happen for example if the server of an
application shuts down due to some technical problem or if
the server is overwhelmed by requests.

C. GraphQL

GraphQL is a query language for APIs that was released by
Facebook as open-source in 2015. GraphQL was developed to
provide a more efficient, powerful and flexible alternative to
REST [1]. To be able to understand approaches and techniques
for securing GraphQL APIs against the typical threats of
database security we need to understand some core concepts
and fundamental language constructs of GraphQL.
1) Query

A query begins with a field called root field. This root field
can be seen as the entry point to the data graph. The following
part of the query is the payload. In the payload you specify
what information you want to request. In Figure 1 (a) authors
is the root field and the only specified field in the payload is
name. The response to this query will return the name of all
the authors. Even though data of the authors age exists, this
is not included in the response since it isn’t specified in the

query {

authors {
name query {
age authors(id: 1){
query { Books{ Books(first: 2){
authors { title name
name } }
} } }
} } }
(a) Query (b) Nested query (c) Query with arguments

Figure 1: Query

payload. It is also possible to send multiple GraphQL queries
with different root fields in one single request. By default, if
you request the same root field twice in one single request
the API will only respond with one response message with
the requested information from both queries. It is however
possible to send multiple queries in one single request and set
them to be handled serially by GraphQL and by that if you
send the same root field twice in a request the response will
include two response messages from the same root field. This
is referred to as batching [2] [3].

By having relations between types, you can query nested

information. In Figure 1 (b) there is a relation between type
author and type book. By that you can request the name of
the author and the title of the authors books. With relations
like this you can traverse through the data graph.
Queries can include arguments which makes it possible to
request objects more specifically. In Figure 1 (c) the query
will return a author with the id 1 and the authors first two
books.

2) Mutation
Beside requesting information from a server, applications may
need to add, update or delete information in the database.
These changes can be made by using mutations. The structure
of mutations is very similar to regular queries but the
“mutation” keyword is used instead.

3) Introspection queries in GraphQL
Given an API, it is possible to ask a GraphQL schema for
information about what queries it supports. By this the API
somehow creates its own documentation [6] [7]. A real case
example of introspection can be provided by using the tool
GraphiQL and the Github API at https://developer.github.com
[4].

D. GraphQL versus REST

Representational state transfer (REST) is a design architecture
that is used in many web applications. With REST, data fetch-
ing is typically done by accessing multiple endpoints. These
endpoints return a predetermined data set and is accessed
by using different URLs. The data returned from a specific
endpoint cannot be changed depending on the request.

In GraphQL on the other hand, the query sent to the GraphQL
server would include all data requirements necessary. The data
returned from the server depends highly on the structure of the
query itself and can by that be sent to one single endpoint.
A common problem with REST is so called over/under-
fetching. This means that the client receives more or less
information than actually needed. If the client only needs
a single data point and the only endpoint that returns the
requested information also gives the client other data points,
the client will receive more information than needed. This may
not be a big problem in terms of functionality but will most
likely decrease the efficiency of the program. It might also
affect some aspects of security since more data is transmitted
which could be intercepted by a potential attacker.

Another difference between REST and GraphQL is that in-
trospecting is provided by default by GraphQL APIs. This
feature is not available by REST APIs. Introspecting may be
very useful for developers if the documentation of the API is
defective [7].

Since GraphQL only uses one endpoint a failure of that
endpoint will result in total failure to access data from the API.
However, since this failure will occur due to server failure a
REST API which uses multiple endpoints would have the same
failure. By this no new security threat will emerge by using
GraphQL compared to REST if the endpoint is well formed.

E. Server construction

At the core of every GraphQL-server is a so called ”schema”.
The schema describes functionality that is available to the
client application that connects to the GraphQL-server [11].
A schema can for example describe GraphQL-Object-types,
define relations between these types and define root queries.
In an application that handles books and authors a GraphQL-
Object-type could for example be called a “book type”. The
creator of the application can define exactly what fields a book
type should contain and the general structure of the data. An
example of a book type written in JavaScript is shown in
Figure 2. This type is called "Book” and contains four fields.
An id, a name, a genre and an author which corresponds to an
author ID. An author is in turn another GraphQL-Object-type
that must also be defined. A resolve function is executed every
time a query is used. This GraphQL-Object-type also defines a
relation between a book and an author. When a user requests a
book and also want to see the author of that book, the resolve
function will look at the author ID from the requested book
and find the correct author from where the authors are stored.
A root query can be defined as query that is directly available
to the client when starting the application. If we continue with
the previous example with books and authors, a root query
could enable a client to fetch a specific book and a specific
author based on certain arguments. An example written in
JavaScript is shown in Figure 3. Here the only argument
required for these queries is an ID. When a query is created
with a correct ID, the resolve function will grab the object
from where it is stored and return it.

const BookType = new GraphQLObjectType({
name: ‘Book®,
fields: {) == ({
id: { type: GraphQLID 1,
name: { type: GraphQLStrimg },
genre: { type: GraphQLString },
author: {
type: AuthorType,
resolve({parent, args){
return _.find(authors, { id: parent.authorId });
1

b
I3H

Figure 2: Book type

const RootQuery = new GraphQLObjectType({
name: 'RootQueryType',
fields: {
book: {
type: BookType,
args: { id: { type: GraphQLID } },
resolve(parent, args){
// code to get data from db / other source
return _.find(books, { id: args.id });

}
1,
author: {
type: AuthorType,
args: { id: { type: GraphQLID } },
resolve(parent, args){
return _.find(authors, { id: args.id });

}
I

Figure 3: Root Query

F. GraphQL over HTTP

For communication between client and server HTTP is the
most common protocol when using GraphQL. A GraphQL
server operates over one single endpoint and should handle
GET requests for queries and POST requests for queries or
other operations [12] [13].

For HTTP to provide integrity and confidentiality it serves
over TLS or SSL (HTTPS). These protocols provide com-
munications security over the internet between client/server
applications [8]. By using digital certificates client/server
applications can authenticate each other and by that establish
a secure connection [18].

G. GraphQL with Apollo

Apollo platform can be used to build a full-stack application
by using GraphQL. On the server side you can set up a
Apollo server which is a JavaScript GraphQL server and on
the client side you can use Apollo client which is a complete
state management library for JavaScript apps that will make
it easier to fetch data via GraphQL [23]. Apollo also offers
Apollo Link which makes it possible to manage over the net-
work architecture [24]. Different techniques for authentication
and authorization is offered when using Apollo [25]. These

techniques are not implemented by default when using Apollo
and shall therefore be implemented by the developer.

III. METHOD

In order to complete the goal described in Section I we
followed a three-step approach when collecting and analyzing
information.

The first step was to identify sources of information. We
looked at blog posts, tutorials and documentation. All of the
sources deemed to be relevant where collected in a shared
document with a short description. This made it easier to
track what information came from what source and finding
information on a particular subject without having to perform
another search.

The next step was to process the information. This step
involved checking for validity, relevance and how intuitive the
information was. It was at this step that much of the actual
learning took place. Collaboration within in the project group
was done by having multiple discussions about uncertainties
in some of the topics and sharing information between project
members.

The final step was to summarize the information. The report
was structured in such a way that the goal of creating a survey
of approaches and techniques for securing GraphQL APIs
against the typical threats in the context of database security
was met. Information was added successively along with their
corresponding sources. Sources of information that may be
relevant to the topic but not used as reference in this survey
can be found in Appendix B.

IV. RESULT

One of the differences between REST and GraphQL is the
possibility to do introspection queries. Even if this could
be very useful for developers it also exposes GraphQL
implementation details. This may not by itself be a threat, but
indirectly, attackers could use these details to find exploits
and cause loss of confidentiality, integrity and availability.
For this reason it is sometimes recommended to disable
introspection as a security measure [5] [10] [15].

One of the most common threats specific to GraphQL is the
ability to send large nested queries [14]. Since GraphQL
allows users to construct their own queries with a lot more
flexibility than other APIs, this enables security threats that
developers need to be aware of.

A. Confidentiality

1) Threats

Brute forcing. As in many applications, brute forcing can be
used in GraphQL to send multiple mutations with different
data to, for example, a login [10]. An attacker could send
mutations to the GraphQL-server until the desired result is
returned and the attacker could potentially compromise both
confidentiality and integrity of the system.

Brute forcing can also be done specifically for GraphQL with
batching attacks [19]. As mentioned previously this allows the

attacker to send multiple queries or mutations with the same
root field within one request which can bypass some security
checks.

If the GraphQL application uses an SQL-database and does
not perform sufficient input-sanitizing it may be vulnerable to
SQL-injections [22]. At some point the GraphQL server will
communicate with the SQL-database after processing queries
from users. An attacker could write an SQL-query where
the program expects another argument. This could lead to
information disclosure if the query ends up being sent to the
database.

2) Mitigations
Data rate limiting. A solution to the problem of brute forcing
is to implement some rate limit on the queries [10]. This
could be a limit on the amount of queries a user can send
over a specified time window. Rate limiting is used by the
GitHub API. Each user has a rate limit of number of points
the client is permitted to consume in a 60-minute window
[26]. The more complex query or mutation a user makes the
more points it costs. It is possible to query information about
this limit and receive remaining points for the user. To get a
better understanding of how effective GitHubs rate limiting is
we created some test queries and mutations. As excepted the
more complex queries resulted in a higher cost and using the
same root field twice in a single request resulted in one single
response message. We also tried batching multiple mutations
in one request. We used the same root field for the mutations
but different arguments. The response included one response
message for each mutation as expected but the cost of the
request was the same as for a request with a mutation with
only one root field. This shows that the rate limit mitigation
in this case wasn’t effective against a batching attack.

When it comes to SQL-injections, the same mechanisms are
involved in GraphQL as in other APIs. Input from users must
be controlled and sanitized. This could be done by checking
if common SQL-related symbols are used before processing a

query.

B. Integrity

When it comes to integrity, the same kind of threats and
mitigations that were presented in the confidentiality section
applies. However, integrity is about ensuring data is not
changed rather than unauthorized disclosure of data.

1) Threats

Batching attacks are also threats to the integrity of the
application. If an attacker is able to access the system by brute
forcing a login mutation for example, the validity of data may
be compromised.

The same goes for SQL-injections. They can be used to send
queries to change existing data in the database.

To maintain integrity some kind of authentication is often
needed in the process of claiming an identity. Some kind of
authorization that describes permission rules that specify users
access right are also needed. Without these two there is a threat
against integrity as well as against confidentiality.

While data is being transmitted between client/server ap-
plications it may be exposed to threats. Data can be read
and modified by a third party via for example man-in-the-
middle attack and by that be a threat against integrity and
confidentiality.

2) Mitigations
The same mitigations for batching attacks and SQL-injection
that where mentioned under confidentiality also apply here.
GraphQL by itself does not provide any authentication mech-
anism. Authentication can be done in different ways and how
authentication should be done is up to the developer. The same
situation arises when it comes to authorization. The GraphQL
foundation recommends that all authorization logic should be
delegated to the business logic layer and by that all entry
points, no matter if it is REST or GraphQL, should be handled
with the same authorization [17]. Suggestions and examples
of how to implement authentication and authorization are
provided by developer communities, documentation and blogs
at for example Prisma, Apollo, Medium and the GraphQL
foundation and can be found in Appendix A.
To securely transmit data between client and server HTTPS
should be used as protocol. By using HTTP over TLS or
SSL integrity is provided by calculating message digest and
confidentiality is provided by data encryption. The client and
server should have a digital certificate for authentication [8].

C. Availability

1) Threats
A potential attacker can make deeply nested queries that
require extensive computations and large payloads. This can
disrupt the network quality and lead to impaired performance
[10]. This can be seen as a denial of service attack and affects
the availability of the system.
Batching can also be used to perform denial of service attacks.
The attacker can send multiple queries within one request and
if the program processes these queries in parallel it can result
in degradation of performance or even a complete shutdown
of the server.
Another threat to the availability of the system is simply
fetching many instances of an object. This will be an expensive
operation regardless of the type of object [20].

2) Mitigations
A commonly used mitigation for deeply nested queries is depth
limiting. A solution to this problem is to implement a limit on
how deeply nested queries can be. There are several libraries
that can perform this task, GraphQL Depth Limit is an example
that let’s the developer set their own depth limit.
Another mitigation for the use of complex queries is timeout.
This strategy is fairly simple since it does not require the server
to know anything about the structure of the arriving queries.
All the server has to know is the maximum time that is allowed
for a query [16].
To mitigate denial of service attacks performed using batching
it is important to process all queries in one request serially
(one after another). This will treat each query in the request
as separate and will prevent overloading of the server.

A mitigation for the threat of queries that ask for multiple
instances of an object is called amount limiting. Which can be
implemented by setting the input argument to a custom scalar
rather than an arbitrary integer. This scalar can be restricted
to have a maximum value which would only allow a user to
ask for a set number of instances of an object [20].

Despite the mitigations mentioned above there are still
queries that could overwhelm the server by being right on
the border of to deep or requesting too many objects. They
would still be computationally expensive but would bypass the
security checks. To solve this, you would have to analyze the
complexity of the queries before running them. There are sev-
eral ways of constructing complexity-calculating algorithms
[21] [20].

V. ANALYSIS

Since GraphQL is a relatively new technology on the
market, new attacks and mitigations will most likely appear
in the near future. However as discussed in the section IV
a substantial number of threats and mitigations already exist.
Some of these threats are not unique to GraphQL such as SQL-
injections or Brute forcing. These kinds of threats are present
in most web technologies. Some of the threats that are more
or less unique to GraphQL includes deeply nested queries and
batching attacks. These attacks take advantage of the fact that
the queries in GraphQL are more dynamic and the user has
more options when it comes to forming requests.

Despite the recent nature of these threats, many mitigations
already exist as discussed in section IV. Mitigations such
as rate limiting or timeout also exist for other web-APIs
which may be the reason it was implemented so quickly.
One mitigation that is fairly unique to GraphQL is the idea
of calculating complexity of the incoming queries before
processing them. This is a highly effective mitigation against
several threats, such as ’deeply nested queries” or queries that
request many instances of an object. An interesting point is
that many of the functions that are implemented to increase
usability and utility often lead to more threats. This is a point
that is central in the field of database security. There has to be
a balance between measures taken to increase security and the
ease of use of the system. If security measures are to stringent,
people will hesitate to implement them or find ways to avoid
them. Introspection is an example of this where it exists
to make things easier for developers but in turn introduces
security vulnerabilities where potential attackers can get a
better understanding of the underlying structure of the APIL
That is why the option to be able to disable introspection is
important. This means that developers can make a conscious
choice to either increase usability with the risk of introducing
threats or to have a more confined system with less threats.

GraphQL is always used in the same context of other tech-
niques. This survey has mentioned HTTP and Apollo. It is
important to understand that such techniques may have its own
security threats and other are used to mitigate these threats.
Compared to database management systems (DBMS), which
also provide database security, GraphQL is a relative new

technology and by that there is no established control measures
with approaches and techniques for securing GraphQL APIs
that has been tested to provide the same protection as DBMS
do.

VI. CONCLUSION

From the results and analysis of this survey these control
measures are provided to maintain confidentiality, integrity
and availability when using GraphQL.

e Access control:

— Authentication and authorization of users to limit the
access to the database or parts thereof

— Authentication of client/server to establish a secure
connection.

« Data encryption:

— Preventing sensitive data when transmitting over the
network.

e Query analysis:
— Protecting your GraphQL API from malicious
queries
— Understanding the use of introspecting.

« Input sanitizing:
— Protect against injections.

One of the most important conclusions drawn from this project
is that the security of the application highly depends on the
choices of the developer. GraphQL can be fairly secure com-
pared to other technologies if the right measures are taken. The
list above shows some of the most important control measures
to avoid many of the most common security threats against
GraphQL according to this study. To limit the access of the
database some kind of authentication and authorization should
be implemented. There are numerous ways of implementing
this and new techniques may be developed in the future.
HTTPS can provide authentication of clients/servers and also
provides encryption of data when being transmitted over the
network.

When it comes to query analysis, developers should at least
use depth limiting and amount limiting as minimum protection
since these measures are very easy to implement and still
protects against many attacks. If the application has higher
security requirements, query cost analysis can be used. It is a
bit more difficult to implement but provides better coverage.
Input sanitizing is required for most web applications that
takes user input. It involves checking for common symbols and
characters used in languages such as SQL to prevent malicious
code from executing.

In conclusion, GraphQL is a new and promising technology
with many advantages.However, the simple fact that a technol-
ogy is new and exciting does not mean developers can ignore
to take necessary precautions. It is important to use the right
control measures and be aware of the different risks to keep
the application safe from security threats.

REFERENCES

[1] Prisma.io The Fullstack Tutorial for
https://www.howtographql.com/

[2] Dawkins, Jake. “Batching Client GraphQL Queries”. Sept 19,
2018. https://blog.apollographql.com/batching-client-graphql-queries-
a685f5bcd41b

[3] Facebook, Inc. 2020. GraphQL. Working Draft, Mar. 2020. Online at http:
http://facebook.github.io/graphql/June2018/, retrieved on Apr. 24, 2020.
(Mar. 2020).

[4] Github GraphQL API v4 2020. https://developer.github.com/v4/. (2020).
[S] Wallarm Inc. Introspection. Dec 5, 2019. 2020-04-13.
https://lab.wallarm.com/why-and-how-to-disable-introspection-query-

for-graphql-apis/

[6] Graphqgl.org. "Why and how to disable introspection query for GraphQL
APIs”. 2020-04-12. https://graphql.org/learn/introspection/

[7] Chiazzo, Ignacio. in GrapQL”. Medium, Feb 28,

GraphQL 2020-04-10.

”Introspection

2019. https://medium.com/@ignaciochiazzo/introspection-in-graphql-
a5a5bd744a66

[8] IBM ”Cryptographic security protocols: TLS and SSL”. 2020-04-
17 https://www.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/

com.ibm.mgq.sec.doc/q009910_.htm

[9] Krawczyk, Hugo. “The order of encryption and authentication for pro-
tecting communications (or: How secure is SSL?).” Annual International
Cryptology Conference. Springer, Berlin, Heidelberg, 2001.

[10] Nage, Tom. "Protecting Your GraphQL API From Security Vulnerabil-
ities”. Medium, Dec 5, 2019. https://medium.com/swlh/protecting-your-
graphql-api-from-security-vulnerabilities-e8afdfa6fbe4

[11] Tutorialspoint. GraphQL-Schema. 2020.
https://www.tutorialspoint.com/graphql/graphql-schema.htm

[12] Apollograpgql.org. "POST and GET format How to
send requests to Apollo Server over HTTP”. 2020-04-16

https://www.apollographql.com/docs/apollo-server/v 1/requests/#post-
requests

[13] GraphQL.org. ”Serving over
https://graphql.org/learn/serving-over-http/

[14] Nage, Tom. Protecting Your GraphQL API From Security Vulnerabil-
ities. Dec 5 2019. https://medium.com/swlh/protecting-your-graphql-api-
from-security-vulnerabilities-e8afdfa6fbe4

[15] Helfer, Jonas. Disable Introspection in
a simple validation rule. GitHub repository,
https://github.com/helfer/graphql-disable-introspection

[16] Security and GraphQL https://www.howtographql.com/advanced/4-
security/

[17] Graphgl.org. ”Authorization” .
https://graphql.org/learn/authorization/

[18] OWASPorg. “Authorization”. 2020-04-19. https://owasp.org/www-
community/attacks/Man-in-the-middle_attack)

[19] Wallarm, Renata “GraphQL Batching Attack”.
https://1ab.wallarm.com/graphql-batching-attack/

[20] Stoiber, Max. Protecting Your GraphQL API From Security Vulnera-
bilities. Feb 21 2018. https://www.apollographql.com/blog/securing-your-
graphql-api-from-malicious-queries-16130a324a6b

[21] Hartig, Olaf and Pérez, Jorge. Semantics and Complexity of GraphQL.
Proceedings of the 2018 World Wide Web Conference. 2018.

[22] Choren, Matias. Discovering GraphQL endpoints and SQLi vulnerabil-
ities. https://medium.com/@localhOt/discovering-graphql-endpoints-and-
sqli-vulnerabilities-5d39f26cea2e.

[23] Apollo Docs. The Apollo GraphQL
https://www.apollographql.com/docs/intro/platform/

[24] Huaser, Evans. Apollo Link: The modular GraphQL network stack. Jul
25, 2017. https://www.apollographql.com/blog/apollo-link-the-modular-
graphql-network-stack-3b6d5fcf9244

[25] Apollo Docs. Authentication. How to authorize
users and control permissions in your GraphQL
API.2020-04-21 https://www.apollographql.com/docs/apollo-
server/security/authentication/

[26] Github GraphQL API v4, GraphQL resource limitations 2020.
https://developer.github.com/v4/guides/resource-limitations/graphql-
resource-limitations (2020).

HTTP”. 2020-04-17

GraphQL-JS with
Dec 7 2018.

2020-04-12.

Dec 13, 2019.

platform.2020-04-21

APPENDIX A
AUTHENTICATION AND AUTHORIZATION
Dawkins, Jake. ”Authorization in
GraphQL”. Apollo Blog, May 15, 2018.

https://www.apollographgl.com/blog/authorization-in-graphql-
452b1c402a9

”Common Questions”. HOW TO GRAPHQL. 2020-
04-16 https://www.howtographql.com/advanced/5-common-
questions/

Graph.cool. Apr 16, 2020.
https://www.graph.cool/docs/reference/auth/overview-
ohs4aekOpe

GraphQL.org. ”Authorization” .
https://graphql.org/learn/authorization/

GraphQL.org. “Authentication and Express Middleware”.
2020-04-12 https://graphgl.org/graphql-js/authentication-and-
express-middleware/

Apollo Docs. Authentication. How to authorize users
and control permissions in your GraphQL API.2020-
04-21 https://www.apollographgl.com/docs/apollo-
server/security/authentication/

Simha, Dotan. “Authentication and Authorization in
GraphQL (and how GraphQL-Modules can help)”. Nov
7, 2018. https://medium.com/the-guild/authentication-and-
authorization-in-graphgl-and-how-graphql-modules-can-help-
fadclee5b0c2

”Using OAuth 2.0 along with JWT in Node/Express)”. Jul 3,
2019. https://medium.com/@rustyonrampage/using-oauth-2-0-
along-with-jwt-in-node-express-9e0063d911ed

Quezada, Rodrigo. “Authentication and Authorization
Basics with GraphQL and REST”. Prisma, 2020-04-
8. https://www.prisma.io/tutorials/graphql-rest-authentication-
authorization-basics-ct20

Sandoval, Kristopher. ”Security Points to Consider Before
Implementing GraphQL”. Nordic APIs, Apr 25, 2017.
https://www.prisma.io/tutorials/graphql-rest-authentication-
authorization-basics-ct20

2020-04-12

APPENDIX B
RELATED ARTICLES

Sandoval, Kristopher. ”Security Points to Consider Before
Implementing GraphQL”. Nordic APIs, Apr 25, 2017.
https://mordicapis.com/security-points-to-consider-before-
implementing-graphql/

Mraz, David. "GraphQL security in Node.js project”.
https://atheros.ai/blog/graphql-security-in-node-js-project

Helfer, Jonas. Disabling Introspection.
https://webonyx.github.io/graphql-php/security/disabling-
introspection

Bhargav, Abhay. "The Hard Way: Security
Learnings from Real-world GraphQL”. Feb 17, 2019.
https://www.abhaybhargav.com/from-the-trenches-diy-
security-perspectives-of-graphql/

Szymanski, Matt REST in Peace: Abusing GraphQL
to Attack Underlying Infrastructure 2020-05-01.

https://www.bugcrowd.com/resources/webinars/rest-in-peace-
abusing-graphgl-to-attack-underlying-infrastructure/

