
1

A study to build a tool for retrieving information
from Bitcoin transactions

Niklas Larsson Hampus Runesson
Email: nikla691@student.liu.se, hamru119@student.liu.se

Supervisor: Niklas Carlsson, niklas.carlsson@liu.se
Project Report for Information Security Course

Linköpings Universitetet, Sweden

ABSTRACT

Because of its pseudonymous and decentralized system,
Bitcoin is commonly used by scammers to lure people to
send them money. Bitcoin can be sent between users without
revealing their identity, which means that they stay anonymous
until they post their identity tied to their Bitcoin address.

In this project, we have created a tool that given a file of
Bitcoin addresses, can fetch information about the addresses
and their corresponding transactions. The tool also includes
properties to filter the data in order to make it more man-
ageable in future work. Using the Blockchain API to fetch
data, our tool can retrieve public information about an address
and create a data set that can be used to analyze transactions
regarding an address. Besides filtering, the tool is also capable
of converting the filtered data from JSON to CSV format in
order to make it easier to use in other tools.

I. INTRODUCTION

A. Motivation

Bitcoin is a pseudonymous decentralized currency where
no central authority is used and funds are tied to Bitcoin
addresses instead of a physical person. Bitcoins can be sent
directly from user to user but in practice intermediaries are
often used to simplify the process. Bitcoin utilizes a ledger,
also called block-chain, to track all transactions using Bitcoins.
This ledger is available to anyone.

Bitcoin transactions was commonly used by criminals be-
cause of the anonymity, but since authorities found out that a
lot of information about the transactions could be found in the
ledger, they have started to use it for information. Since the
ledger is available to everyone and contains every transaction
a huge map of all transactions could be made to correlate
a Bitcoin address to a wallet or person [1]. Criminals did
however adapt to this ”problem” by using different strategies
to ensure anonymity of their activity when using Bitcoins [2].

In this project we intend developed a tool, that given a Bit-
coin address, can fetch more information about the address and
each corresponding transaction from the ledger. Furthermore,
we intend to build a data set of the fetched data that is easy
to manage and analyze. We want to point out that we are not
going create some kind of map over the data and try to find
names that correspond to an address. We are only going to
fetch the information and create a data set.

B. Aim

The aim of the study is to develop a tool that will help
gather useful information about a given Bitcoin address. The
tool will also include some filter properties in order to get a
cleaner data set that also is easier to manage and analyze in
future work.

C. Research questions

To be able to fulfill our goals with the project we choose
the following research questions:

• How to collect data from Bitcoin addresses?
• What raw data can be retrieved from an address?
• How can we filter and process the raw data in order to

make it more manageable?

II. THEORY

This section will display background information about
APIs and tools used in the project.

A. Bitcoin

Bitcoin is a decentralized digital currency that were created
in 2009 by a person or group in 2008 that goes under the
pseudo name Satoshi Nakamoto. The main purpose of the
currency is to make peer-to-peer transaction viable without
any involvement of a third party, such as a bank. The lack of
a central administration unit makes it impossible to manipulate
the value of Bitcoin and e.g induce inflation of the currency.
Instead, Bitcoin is created as a reward for mining. Every
transaction that is made is stored in the distributed ledger,
which is called a blockchain. One property of Bitcoin is that it
is pseudo anonymous, which means that you are anonymous
as long as you do not connect your name to your Bitcoin
addresses [3].

A non empty Bitcoin wallet contains unspent transaction
outputs (UTXOs). UTXOs are immutable, meaning that you
cannot split it to cover a specific value. Instead UTXOs are
collected from the wallet to, at a minimum, cover the cost
of the transaction. This is called the input of a transaction.
All input UTXOs are spent and used to create new ones for
the output of the transaction. If there is change left in the
transaction, i.e. the input had a higher value than what the

2

recipient(s) are sent, a change output is also created. This
output transaction is then sent back to the sender. [4]

The following tables describes the structure of the different
parts of a transaction. Note that some information has been
excluded because it is not inside the scope of this study.

Header Data type Description
ver int32 t Data format version for transaction

tx in count var int Number of transaction inputs
tx out count var int Number of transaction outputs

time uint32 t Time when transaction was made
tx in tx in[] Array containing transaction inputs
tx out tx out[] Array containing transaction outputs

TABLE I: Transaction (tx) headers

Header Data type Description
signature script uchar[] Script for transaction authorization
previous output outpoint Previous output transaction reference

TABLE II: Transaction input (tx in) headers

Header Data type Description
hash char[32] Hash reference to the transaction
index uint32 t Index of specific output transaction

TABLE III: Outpoint (previous output) headers

Header Data type Description
value int64 t Transaction value (in satoshis)

pk script uchar[] Script for claiming output

TABLE IV: Transaction output (tx out) headers

It is recommended to generate a new public/private key
pair for each new transaction. To keep track of funds a user
would need to backup each new key-pair which could become
very cumbersome. To combat this HD-wallets (hierarchical
deterministic wallet) were introduced in BIP-0032. HD-wallets
constructs a tree of public/private key starting from a root
node. The root node is a 12 word seed chosen by the user and
to this root node a counter is added. After each transaction
the counter is incremented and a new public/private key pair
is generated. This means that the user only need to know the
seed to be able to retrieve all of their funds. It also simplifies
the process of generating new key pair for each transaction
which in turn makes it really easy to maintain the policy of
always using new key pairs for new transactions. [4]

The general structure of a HD-wallet key pair generation is
shown in the following diagram

Fig. 1: General structure of HD-wallet key pair generation

B. JSON
JSON (JavaScript Object Notation) is a popular text based

data format used in most web applications [5]. A JSON object
contains name/value pairs where each pair is separated by a
comma. A value can be multiple data types:

• Bool
• String
• Number
• Object
• Array
• Null

This gives a JSON object nestling capabillities. JSON is a raw
data format which means that a parser is needed to handle the
data. The structure of JSON has an impact on parsing speeds,
which is around 100MB/s per core. Some newer tools can
reach speeds up to 2GB/s per core. [6]

C. CSV
A CSV (comma separated value) file is a text file that

separates values using a delimiter, often a comma. Each row
or line in the file is a record of data that consists of fields,
separated by the delimiter. The CSV file type is often used to
exchange and move data between sources but also sees use in
areas such as data analysis. Because of the simplistic approach
of CSV files it does not offer nested records or fields (like
JSON) but this does instead increase parsing performance. [7]
Below an example of the CSV structure is shown.

City,Longitude,Latitude
Linköping,58◦23’53.3,15◦34’38.1

III. METHOD

In this section we will describe how we built our tool and
how we used it to fetch data about a given Bitcoin address.

To be able to build a tool that could fetch information about
a Bitcoin address we first researched how Bitcoin transactions
works. We then had to do some research of different APIs that
we could use to fetch information. After considering different
alternatives we decided to use the Blockchain Data API. We
also decided that we would write our tool in Python since it is
a simple language with a lot of use full libraries that we could
use if needed. Also, both of us felt comfortable with writing
Python code.

3

A. APIs

API Blockchain Blockcypher Sochain

Address 5 5 5
Total received 5 5 5

Total sent 5 5 5
Number of txs 5 5 5

Txs hash 5 5 5
Txs result 5 5 5
Txs input 5 5 5

Txs output 5 5 5
Txs time 5 5 5

TABLE V: Information comparison between three different
apis.

We looked into 3 different APIs for fetching information,
Blockchain Data API [8], Blockciphers Blockchain API [9]
and Sochains API [10]. We looked into what information they
could give and picked the most relevant information. As seen
in Figure V, they all could supply us with the same information
that we wanted to look at in JSON format, which were easy for
us to handle. While both the Blockchain API and Blockcypher
API could give us all of the listed information in Figure V
in one API call, the Sochain API needed more calls. We
also wanted to fetch as many transactions as possible and the
Blockchain API could give us a maximum of 100 transaction
at a time while the limit of the other two APIs were 50. This
meant that in order to get all transactions corresponding to
an Bitcoin address, the Blockcypher and Sochain API needed
a higher number of API calls in order to give the same
information as the Blockchain API.

A disadvantage of all three of these is that the number of
API calls are limited. The websites do not specify exactly how
the limitations looks like which makes it hard do know which
one is to be preferred in this case.

We found all three of them easy to use and that they could
be implemented in python which we perfered to write our
code in. The implementation for the Blockchain and Sochain
APIs were to perform simple HTTP GET requests while the
Blockcyphers API had a library that were imported into the
project. This means that Blockcypher is ready for use right
away, while you have to import some other request library to
use the other two. For us, this was not a problem since we
have worked with the Requests library before, which is really
easy to implement and use [11].

Since the Blockchain API needed the fewest API calls,
which needed to be considerd because of the rate limits, we
choose to use that API.

B. Building the tool

Figure 2 shows the structure of our tool. It’s built with two
main components in mind. Collect raw data and filter the data.
As the diagram shows we will continue to make API calls until
we run out of transactions or addresses to fetch. After that the
data is filtered to make it easier to handle, i.e. converted to a
smaller JSON object or a CSV file.

Fig. 2: General structure of our script

1) Making API calls: Since the Blockchain Data API used
simple HTTPS GET requests to fetch data we needed a library
to make requests. For this we used the library requests which is
a simple HTTP library for python [11]. To use it, we installed
it using pip3:

$ pip3 install requests

and imported it into our program. To make an api call to
Blockchains service we used the following URL:

blockchain.info/multiaddr?active=$address&n=n&offset=m

where $address corresponds to the given Bitcoin address,
$n corresponds to the number of transactions requested
and &offest corresponds to the starting point for fetching
transactions. We choose n=100 to maximize the amount of
transactions received per api call. If there were more than 100
transactions available for an address, the offset was adjusted
to ensure that we could capture all of the transactions. E.g
offset=0 for transactions 1-100, offset=100 for transactions
101-200 and so on. In the code, we sat the parameters as an
JSON object, and made the request to the URL with those
parameters:

params = {
”active”: address,
”n”: n,
”offset”: offset
}
response = requests.get(url=URL, params=params)

When we received the response, we only needed to check
the status code of it. If it was 200, which meant that the request
was successful, we extracted the JSON object and started to
filter the incoming data.

2) Filtering data: There are two parts to our filtering
process. The first step is to remove unnecessary values from
the retrieved raw data. This is done to save on space and make
processing/reading the data easier. The raw JSON object will
be reduced to the headers shown in figure V. The second
filter is a to convert the data to a CSV file. The reason
we added a CSV conversion step is to enable easier data
processing in the future. For this study we have implemented
a simple conversation tool that converts the JSON file into two
separate CSV files, one containing the information about the

4

addresses (address.csv) and one containing information about
the corresponding transactions (transaction.csv), as represented
in below:

address.csv

address,n tx,total received,total sent
example address,100,1000000,1000000

transaction.csv

address,hash,fee,result,time
example address,example hash,100,1000,yy-mm-dd-
hh:mm:ss

Since the JSON object that we extracted had nestled JSON
object we needed to split it into two separate files when we
converted the data to CSV.

3) Benchmarking the tool: To evaluate the performance of
our tool we implemented two different tests. The first test
calculates the average response time from the API and the
second test calculates the average processing time (converting
to JSON and CSV) for 100 transactions

To calculate the average response time we made 100 API
calls requesting 100 transactions (maximum amount per re-
quest). We used a random offset for each request to ensure
a better spread of data size per request. For each request we
recorded the time it took the get a response. After all requests
had been made we used the following function to calculate
the average response time:

n req∑
n=1

req timen
n req

where n req is the number of requests made and req timen
is the response time for the n:th request

After every request, we process the data that we collected
which usually contains 100 transactions. We are measuring the
time to process these 100 transactions, i.e filter the JSON data,
by calculating the time it takes to process every request and
then sum these times together and dividing by the number
of requests to get the average amount of time. The time to
convert the JSON file to CSV is also measured by calculating
the average time it takes to convert 1000 transactions from
JSON to CSV.

IV. RESULTS

This section will show and explain the output given by
our script. We will show four different results: Raw output,
Reduced JSON output, Reduced CSV output and our small
analytical results. The results shown will mainly focus on the
size of the different data sets and information gathered.

A. Raw output

The raw output gathered by our script is the biggest data set
containing every header given by the API. The size varies a lot
because the number of input and output transactions can vary
for each single transaction. The table below shows an example
of the variation in lines written for multiple addresses with the
same number of transactions requested.

addr# n tx lines written
1 50 7528
2 50 7908
3 50 9232
4 50 8712
5 50 8064
6 50 7854
7 50 8194
8 50 7298

TABLE VI: Number of rows in raw JSON file

B. Reduced output

The reduced output is filtered and only contains the fields
described in Table V. Therefore a significant decrease in lines
written is seen in the table bellow:

addr# n tx lines written
1 50 2971
2 50 3104
3 50 3576
4 50 3298
5 50 3186
6 50 3156
7 50 3194
8 50 2930

TABLE VII: Number of rows in filtered JSON file

When comparing the raw output to the reduced JSON output
the number of lines written is approximately reduced by 60%
while also maintaining the same amount of usable information.
In Listing 1 an address with one transaction is visualized in
order to show a snippet of our result (alot of transactions have
been removed which is why balance etc. does not add up).

{
"addresses": {

"address": "16hnZniy6xRZAKrp8
gVzaxDqR5DMJEfCc2",

"final_balance": 100000000,
"n_tx": 419,
"total_received": 92721986704

,
"total_sent": 92621986704

}
"txs": {

"hash": "52bfdcc8adc6b36815096461
fcca19577ffc573e53686a5555226
de3aeb8ad56",

"fee": 4176,
"result": 100000000,
"time": 1588590750,
"inputs": {

"prev_out": {
"value": 11533000,
"addr": "15p4

iUfhnsszLNAbx4Hnayz5

5

zZQZVQ8vNF"
}

}
"out": {

"value": 100000000,
"addr": "16hnZniy6xRZAKrp8

gVzaxDqR5DMJEfCc2"
}

}
}

Listing 1: Reduced JSON data

C. CSV output

As described in section III-B2 the CSV output consists of
two different files. The address.csv file writes one line per
address from the input file.

When converting the nestled JSON objects into CSV, the
raw data was reduced even more. The table bellow shows how
many lines are written to transaction.csv for every address:

addr# n tx lines written
1 50 50
2 50 50
3 50 50
4 50 50
5 50 50
6 50 50
7 50 50
8 50 50

TABLE VIII: Number of rows in CSV transactions file

By comparing the CSV output and the other two JSON data
sets, the number of lines are reduced significantly but some
information was also lost. We no longer have access to detailed
information about the input and output transactions that went
into a transaction. I.e. we cant track who money was sent too
or whom money was sent from.

D. Benchmark results

In our first test we saw and average of 1.32 seconds per
request. Some interesting results are that most requests take
around 0.7 seconds while some outliers take up to 16 seconds.

To filter the JSON data from the raw data, it takes ap-
proximately 0.009 seconds/100 transactions. Furthermore, to
convert the data JSON to CSV format takes approximately
0.0038 seconds/100 transactions.

V. DISCUSSION

In the discussion section we will review and evaluate our
results. We will also discuss our method of work, improve-
ments that could have been done and further development of
the project.

A. Results

From our results we can see that filtering the raw output has
a significant affect on the file size of the data set generated.
This in turn means that performance should increase greatly
when doing analytical work on the data set. As the results show
the CSV files are really small compared to both the raw and
reduced JSON data. Even if some information is lost in this
conversion we would argue that the best approach is to only
convert to CSV files because they don’t require and handling
of nestled objects. Also the information that is lost could be
added to its own CSV file. This would however mean that
multiple conversions would be made on the raw data which
could slow down the script. But an advantage would be that
we would have smaller subsets of the complete data that is
much easier to do analytical work on.

The benchmarking results show that the bottleneck of our
tool is making the API calls, however this bottleneck is highly
dependent on the servers that we are requesting data from and
is in many ways not a problem we can solve.

B. Method

Our method is based on fetching data and reducing the raw
data as much as possible while also retaining information. That
is why we have a reduction to a smaller JSON object since
it allowed us to do exactly what we set out to do. We were
however also instructed to look into converting the data into
CSV since it could provide easier data analysis in the future
and thus we added a CSV converter into our script. Based
on the results we would now probably completely scrap the
JSON reduction step and instead simply create multiple CSV
files containing all of the necessary information. As mentioned
previously this would most likely improve performance for
analysis work in the future. It would also mean that all the data
is available in only one format which we think is preferred.
However, the nestled JSON objects makes it harder to convert
to CSV right away. We did not manage to find a library which
could handle nestled JSON objects and arrays of these objects.
Therefore, in order to convert the raw data to CSV right away,
would require to somehow looping through every object and
extract information.

Our method and our tool are built to fetch data as fast as
possible, but regarding the rate limit, that is discussed more in
the next section, we need to do some changes. Since the data
sets that we are going to use as input later on is very large
and will require a lot of request, we need to slow down the
tool. However, we do not know exactly what the rate limits
are which requires us to do further testing in that area when
running data sets with a large amount of addresses.

C. Limitations

During our testing period we ran into a few problems that
affected our ability to collect data. The API we used has
request limits that are not stated in their documentation which
meant that we quickly ran into problems when running our
script with a bigger data set given to us. Luckily we had
access to VPN services that allowed us to circumvent the

6

limit and avoid losing 24h of making requests. We are not
sure what measurements are used to issue a request ban. To
further investigate this we made some simple scripts to try and
find the rate limit. We made one script that sent requests as
fast as possible and another that implemented a sleep timer
(500ms) between each request. The first script showed that
they measure requests per second because we were blocked
after only 80-100 requests. The other script was blocked after
3387 requests. We now know that there is a lower limit
to how fast we can send requests and that there is a upp
limit to how many requests we can send. Our small tests do
however not show exactly how to optimize our API calls and
there could also be many more restrictions that we have not
encountered. This means that the tools must atleast be slowed
down to work properly. However, by slowing down the tool we
would increase the time to collect every transaction from every
address drastically, especially when there are a large number
of address to fetch information about. When researching this
problem further, we found that you can request API keys,
however these keys seemed to be aimed towards their wallet
and transaction API that is used when building websites.

The other big problem we faced was that some transaction
information is lost when there are input and output transactions
with multiple addresses. This is because each input is collected
into a single sum of Bitcoins that is then distributed to the
outputs. So from our perspective we are only able to track the
total amount sent or received but not the exact amount sent
to a specific address. Note that this is only when there are
multiple addresses in the input and output. For us this problem
meant that our reduced CSV data set became much smaller
than anticipated. We had hoped to have a data set tracking
exact transaction history from addresses but sadly that is not
possible.

D. Future work

We think that further development of our tool is needed
and that functionality like only converting to CSV is a good
first step. We would also like to see analytical tools that can
read and process our data sets. That could prove to be a
valuable combination of tools to track the monetary activity
of scammers. By collecting a ton of data and searching the
internet for addresses tied to identities it could even be possible
to create a tool that in some way could tie certain addresses
to real identities.

VI. CONCLUSION

We have now built a first iteration of a tool that creates
data sets of Bitcoin transactions. All that is needed is an input
file of addresses and the tool will collect every transaction
ever made by those addresses. The tool filters out unnecessary
data to greatly reduce computation overhead for further data
analysis. The tool creates two different data sets, one in the
JSON format and the other in a CSV format. The CSV data
set is made up of two different files and does not contain as
detailed information compared to the JSON data set but allows
for better performance when processing the data set.

REFERENCES

[1] “Is bitcoin anonymous?.” https://bitcoinmagazine.com/guides/bitcoin-
anonymous. Accessed: 2020-04-01.

[2] “Mapping the bitcoin economy could reveal users’ identities.”
https://www.technologyreview.com/s/518816/mapping-the-bitcoin-
economy-could-reveal-users-identities/. Accessed: 2020-04-01.

[3] “Vad är bitcoin?.” https://www.bitcoin.se/vad-ar-bitcoin. Accessed:
2020-04-16.

[4] “Transaction documentation.” https://en.bitcoin.it/wiki/Transaction. Ac-
cessed: 2020-04-16.

[5] D. Xie, B. Chandramouli, Y. Li, and D. Kossmann, “Fishstore: Faster
ingestion with subset hashing,” in Proceedings of the 2019 International
Conference on Management of Data, SIGMOD ’19, (New York, NY,
USA), p. 1711–1728, Association for Computing Machinery, 2019.

[6] Y. Li, N. Katsipoulakis, B. Chandramouli, J. Goldstein, and D. Kossman,
“Mison: A fast json parser for data analytics,” in Proceedings of the
VLDB Endowment, vol. 10, pp. 1118 – 1129, Association for Computing
Machinery, 2017-06. 43rd International Conference on Very Large
Data Bases (VLDB 2017); Conference Location: Munich, Germany;
Conference Date: August 28 - September 1, 2017.

[7] T. Döhmen, H. Mühleisen, and P. Boncz, “Multi-hypothesis csv parsing,”
in Proceedings of the 29th International Conference on Scientific and
Statistical Database Management, SSDBM ’17, (New York, NY, USA),
Association for Computing Machinery, 2017.

[8] “Blockchain data api.” https://www.blockchain.com/sv/api/blockchain api.
Accessed: 2020-04-16.

[9] “Blockchain data api.” https://www.blockcypher.com/dev/bitcoin/blockchain-
api. Accessed: 2020-04-16.

[10] “Sochain api.” https://sochain.com/api. Accessed: 2020-04-16.
[11] “Requests: Http for humans.” https://requests.readthedocs.io/en/master/.

Accessed: 2020-04-16.

