
ICS Devices
Daniel Thorén, János Dani

May 16, 2020

Contents
1 Introduction 3

2 Related work 3

3 Background 3
3.1 ModBus . 3
3.2 Tridium Fox . 3
3.3 Shodan . 4

3.3.1 TopICS Scandinavia . 4
3.4 Methods to identify devices . 4

4 Method 5
4.1 Tridium Fox . 5
4.2 Modbus . 5

5 Result 6
5.1 Tridium Fox . 6

5.1.1 NSA325v2 . 6
5.2 Modbus . 7

5.2.1 Anybus M-Bus . 7
5.2.2 AWU 500 . 8
5.2.3 CMe3100 . 8
5.2.4 Corrigo controller . 9
5.2.5 CS141 . 9
5.2.6 DCS-5222L . 10
5.2.7 iR3220 . 10
5.2.8 Netbiter WS100 . 11
5.2.9 Solar-Log 1200 . 11
5.2.10 Web relay . 13

6 Discussion 14

7 Future work 15

8 Conclusion 15

9 Dictionary 15

1

10 Apendix 16
10.1 Search queries . 16
10.2 Devices . 16

10.2.1 Anybus M-Bus . 16
10.2.2 AWU 500 . 18
10.2.3 Solar-Log . 19

10.3 Code . 20
10.3.1 modbus.py . 20
10.3.2 shodanRun.py . 21
10.3.3 matches.py . 22

11 Sources 27

2

Abstract
There are many devices that have open ports on the
internet many of which are Industrial Control Sys-
tems (ICS). ICS devices are used to control numer-
ous things in the industry such as valves, pumps,
air drums and more. The software running on these
devices are updated seldom, if at all, which might
leave them vulnerable to attacks.

The goal of this report is to investigate a few
protocols used for such devices as well as some ICS
devices using those protocols. The scope of the
report is limited to the Nordic region.

1 Introduction
It is well known that there are many ICS devices
with open ports to the internet as can be seen in
the ICS count table 2. This report will look at some
of the most popular protocols for ICS devices and
what kind of devices can be found when searching
for open ports on the internet. A good tool to use
for the search of open ports is Shodan, which con-
tinuously crawls the web for open ports on random
ips and saves these in a database.

2 Related work
Seppo Tiilikainen investigates the exposure of vul-
nerable ICS devices in Finland in his master the-
sis[22]. He has written an extensive chapter on how
to identify devices on the internet where he de-
scribes different approaches such as port scanning
and fingerprinting. This chapter has been used as
a starting point for this investigation.

3 Background
There are many different protocols that use stan-
dard ports for communication over the internet.
Some of these protocols are older than the internet,
e.g Mod-Bus, and leaks a lot of information about
the specific device. Some of these devices also have
a web server which is easily accessible through a
regular web browser and can be used to extract in-
formation about the device, as Seppo talked about
in his thesis[22].

3.1 ModBus
According to modbus.org[19], Modbus is a commu-
nication protocol mainly used to communicate with
PLC devices. ModBus is a master-slave/client-
server communication protocol. It was developed
by Modicon, today renamed to Schneider Electric,
in 1979.

Since modbus was developed before the inter-
net became wide spread throughout the world it
did not incorporate authentication or any other
security mechanisms. Unless the company using
the protocol has added their own authentication
layer the modbus protocol is open to attacks by a
third party as described in the article "Analyzing
Internet-connected industrial equipment"[12].

3.2 Tridium Fox
Tridium Fox is a framework used to intercon-
nect different devices such as building automation
controls, telecommunications, security automation,
lightning control and more. The framework is de-
veloped by the American company Tridium[14].
According to the "Cyber security and Infrastruc-
ture Security Agency" (CISA)[6], the framework
has known security issues for versions lower than
the versions listed in table 1.

• One of the vulnerabilities enables an attacker
to perform a path traversal[5] to gain access
to restricted directories. The Tridium Niagara
AX software does not restrict access to par-
ent directories which means that a user can
move up to the root folder and access a file
containing all the authorized user names and
passwords.

• The system also suffers from weak credential
storage which means that it stores user names
with corresponding passwords in clear text.
The credentials are stored in the Niagara con-
figuration file called "config.bog" stored in the
root of the station folder.

• The system also stores usernames and pass-
words in cookies using Base64 encoding.

• It also generates predictable session ids which
a potential attacker can use to guess session
ID or key.

3

Software Version
Niagara AX Framework 3.8 and prior
Niagara 4 Framework 4.4 and prior

Table 1: Niagara vulnerability versions (CISA ad-
visory[7])

3.3 Shodan
Shodan is a tool that scrapes the internet for de-
vices with open ports. It collects information about
security vulnerabilities, operating system, proto-
cols and much more. Shodan can be accessed
through their web page or through an API:s where
it is possible to make custom queries and filter the
resulting data.

Shodan scans the internet by continuously gen-
erating random IP addresses and ports on which it
performs a SYN scan. If the scan was successful
it then tries to grab the banner of the device and
stores them in its database. An overview of the
way that the Shodan scanner works can be seen in
the Shodan scan diagram 1.

Figure 1: Shodan scan diagram (inspired from
the paper "Evaluation of the ability of the Shodan
search engine to identify Internet-facing industrial
control devices"[16]

Many researchers and security experts have been
worried about hackers using Shodan to find indus-
trial devices to target. This group of devices are
extra vulnerable to attacks since they are updated

rarely if at all. Because of these known security
holes in the firmware of such devices can be ex-
ploited for a long time.

The paper "Evaluation of the ability of the
Shodan search engine to identify Internet-facing in-
dustrial control devices" [16] investigates the possi-
bility to obfuscate the banner information that can
be extracted from industrial devices in order to hide
their identity. Their results show that the obfusca-
tion made identifying the device nearly impossible
thus showing that this is a promising method for in-
creasing the security of industrial devices connected
to the internet.

3.3.1 TopICS Scandinavia

By using shodan it is possible to get statistics on
ICS devices per country and also per protocol. Ta-
ble 2 shows how many ICS devices were detected
per country in the Nordic region. Table 3 shows
the discrepancy between the different protocols and
their ports. The search queries used to obtain this
information can be found in table 5 the Apendix.

Country Number of ICS
Sweden 3340
Norway 1253
Finland 942
Denmark 834

Table 2: ICS per country (Shodan statistics[21])

Protocol Count ports
Modbus 1436 502
Tridium Fox 1024 1911
OMRON FINS 832 9600
BACnet 578 47808
EtherNetIP 482 44818
General Electric SRTP 310 18245, 18246

Table 3: Protocol Information (Shodan statis-
tics[21])

3.4 Methods to identify devices
The internet if full of different devices and figuring
out which device is sitting behind a IP address can
be very difficult. There are a number of methods
to identify the device behind an ip address the one
of which is called port scanning.

4

Port scanning is when a request is sent to each
port of an IP address in order to find out which
ports are open and has services listening. The re-
sponses from the device behind the IP address can
reveal information about the services running on
the ports of the device.

The knowledge of which ports are open and what
the respective response looked like can be cross ref-
erenced with the responses of known devices. This
method of identifying devices is called fingerprint-
ing. According to the article "Improving the Na-
tional Cyber-security by Finding Vulnerable Indus-
trial Control Systems from the Internet"[22], the
open source scanning software Nmap has a finger-
print database consisting of over 2000 entries.

If the database does not contain a specific device
one can also look at the responses manually. HTTP
headers and bodies sometimes contain information
that can be used to find the specific device.

The previously mentioned master thesis on find-
ing vulnerable ICS devices on the internet[22] also
details that protocols such as netBIOS and SNMP
which are created to be used inside of private net-
works usually give away specific device informa-
tion. If thees protocols are exposed to the internet
through faulty configuration they can sometimes be
used to identify the device.

4 Method
Shodans Python3 API was used to search for de-
vices with the default ports of the protocols open
to the internet. A script that queries shodan and
parses the result was created for each of the investi-
gated protocols, see the Code section in Appendix
10.3. The Shodan queries can be seen in table 4.

Protocol Query
Modbus port:"502" country:"no,se,dk,fi"
Tridium port:"1911,4911" country:"no,se,dk,fi"

Table 4: Queries used

These queries resulted in a list of the devices
with various information, such as the IP address,
location, protocols and more. These devices where
loaded in separate files, each file had 100 entries,
which could later be queried, sorted and counted
depending on different search parameters.

4.1 Tridium Fox
Tridium fox leaks a lot of information about the de-
vice its running on when pinging the port, observe
that two ports where used here since the protocol
actually uses both 1911 and 4911. This informa-
tion includes version numbers of the protocol itself,
the operating system its running on and more.

The script parses the information gained from
Shodan API page by page (i.e file by file) and looks
at how many of the devices run versions with known
security flaws. This gives an idea of how many de-
vices running Tridium Fox in the Nordic region has
potential security vulnerabilities and a possibility
at leaking device information.

4.2 Modbus
The Shodan results were parsed and the IP ad-
dresses extracted. The script sent an HTTP re-
quest to the IP address with Python3s requests[13]
API to see if the device hosted a web server. Each
request was constrained to a timeout of 10 sec-
onds and a maximum of two tries. If a response
with status code 200 was received the HTML doc-
ument with the response were parsed and matched
with different strings. The match that was success-
ful then categorized the device IP with the search
string/strings and later printed all the categories
with there respective IP addresses and the total
number of devices in the category. The uncatego-
rized addresses were later examined manually on
random to find similarities between the devices for
another categorization round, this was done mul-
tiple times until most of the devices with response
code 200 were categorized. This method is ilus-
trated in 2

The search strings consisted of company names,
device name or other keywords that stood out in
the HTML document and could be matched. Most
of these where located in the <head> tag in the
HTML-document but some could be found inside
the body.

5

https://nmap.org/

Figure 2: Device categorization method

5 Result

A number of devices were found by parsing the json
data from Shodan and sending HTTP request to
the websites. The devices with exposed web servers
were then investigated manually to find specific de-
vice data. Most devices that was found were using
the modbus protocol since it was much easier to ex-
tract data from the websites those devices hosted.

5.1 Tridium Fox

Since the websites hosted on tridium fox devices
usually did not reveal any information about the
specific device it was hosted on it was very difficult
to identify said devices. Only one out of the many
IP addresses tested bore any fruit and that was the
NSA325v2 NAS device.

5.1.1 NSA325v2

A zyxel Network Area Storage (NAS) device for
home use was found with an exposed port on the
internet. The Nmap scan revealed that the device
had port 80 exposed which indicated that it hosted
a website. When connecting to the web server man-
ually the NAS login page seen in figure 3 revealed
the id of the device in the top left corner.

Figure 3: NSA325v2 Website with login pop-up

When searching for the device id, zyxels website
revealed a simple home NAS device as can be seen
in figure 4.

Figure 4: NSA325v2 physical device

6

5.2 Modbus
Many devices with varying security issues were
found for the Modbus protocol during this inves-
tigation. The ones that were identified are listed
here along with information about how they were
found and what they are used for.

5.2.1 Anybus M-Bus

The website hosted on this device displayed a lot of
information on the startpage as is shown in figure
5.

Figure 5: Anybus home page

The HTML document also contained the key-
word anybus in the <title> tag which was used to
categorize these devices, a total of 3 devices where
found with this keyword. When searching for the
device name that was displayed on the start page
the company website [18] appeared. The webpage
described the device as being a Modbus TCP gate-
way that allows M-Bus devices to communicate on
a modbus TCP network. A picture of the device
and a use case for it can be seen in figure 32 in the
appendix.

The most interesting thing about this device was
the login status obtained when entering the web-
site. Figure 6 shows that the login status of the
user who entered the website was immediately au-
thenticated as "Logged in as ’web’".

When navigating to the "User" tab, the privi-
leges of the "admin", "web" and "ftp" was shown
as is depicted in figure 33 in the appendix. The
surprising part was that the privileges of the "ad-
min" user and the "web" user were almost identical

Figure 6: Anybus login status

except for changing password and accessing the de-
vice through ftp. The "web" user had full write and
read access to all devices and services connected to
the device.

This meant that we could manipulate all the set-
tings displayed on the "Configuration", "Server" and
"Security" tabs as shown in the figures with the cor-
responding names78.

Figure 7: Anybus configuration settings

An even worse observation or rather test that was
made was that you could log in as admin with a
very easily guessed password, this meant that that
you could now change passwords and presumably
other important information.

The "Meter" tab on the website revealed the
connected devices as shown in figure 34. There
were three of them, two of which were some kind
of heat/cooling devices and one device which was
labled as "Electricity". The devices could be ex-
panded to expose all the variables that could be
set. The values that the Electric device exposed

7

Figure 8: Anybus server settings

can be seen in figure 34 in the appendix. When
right clicking on a value it was possible to edit the
values, the prompt showing up when clicking on the
edit button is depicted in figure 9.

Figure 9: Anybus meter edit

5.2.2 AWU 500

The device name was extracted from the HTML
code 11 of the website this device 10 hosted, later
the search string "alliance" were used and a total of
12 AWU devices were found.

Searching for this name on the internet gave a
Swedish manual[1] in which the following descrip-
tion was found (translated from Swedish to En-
glish).

"Alliance Web is a Linux based web server made
for surveillance of Modbus devices. It has a graph-
ical web interface supposed to replace the majority

Figure 10: AWU 500 physical device

of the other visualization tools in the system."
With other words, this device is intended to sit

between other Modbus devices and the internet in
such a way that multiple devices in a system can
be controlled from a single interface. Alliance have
a few example networks on there website [link here]
which showed networks of devices that ranged from
a few devices to more than 30 devices, see figure
35 in appendix for an example network. For this
reason the area which the AWU 500 was found was
examined closer without any results, this could be
a future work to research.

Figure 11: AWU 500 home page HTML-code

5.2.3 CMe3100

This device is used as a M-Bus Gateway which col-
lects data from multiple measurement devices using
the M-Bus protocol and then sends the collected
data to the receiving system.

This device was found through manually inspect-
ing the HTTP page hosted on the device as can be
seen in figure 12. The model number is underscored
by a red line. Using the search string "elvaco" a to-
tal of two devices were found.

8

Figure 12: CMe3100 login page/home page

Searching for the model number on the internet
revealed a datasheet[8] with the picture depicted in
figure 13.

Figure 13: CMe3100 physical device

5.2.4 Corrigo controller

There are many models of this controller and pin-
pointing the exact model of each such device proved
to be very difficult. Thus the devices belonging to
this controller family are bunched together. A list
of different controllers from this company can be
seen on their website[15].

The devices in this family are used for environ-
mental control of different kinds. Figure 14 shows

a sample web page hosted on one such device. The
web pages hosted on different devices look almost
identical to each other.

The script counting occurrences of devices found
214 devices of this type using the following search
parameters: ["regin"]

Figure 14: Corigo controller home page with ex-
ample device

5.2.5 CS141

This device seems to be a network card which in-
terfaces with the modbus (among other) protocol
and was categorized with the keywords ["cs141",
"webmanager"] with a total of 2 devices. The web-
site hosted on the device shows the model num-
ber "CS141" and the company name "Coromatic"
as shown in figure 15.

Figure 15: CS141 login page/home page

When searching for the device name an image
of the device 16 in question appears. When read-
ing about the device on the manufacturers web-
site[9] it is described as a "Ethernet Adapter for
the control and the management of UPS Facilities".
With other words, it is a device used to monitor
and manage UPS (Uninterrupted Power Supply)
devices remotely. The company name was found

9

on the hosted website confirms this, they seem to
be a Swedish distributor of UPS hardware.

Figure 16: CS141 physical device

5.2.6 DCS-5222L

The device name was obtained by manually looking
at the web page hosted by the device. The Id was
printed on the login screen as can be seen in figure
17.

Figure 17: DCS-5222L login pop up on home page

The device is a D-Link web camera as shown in
figure 18.

Figure 18: DCS-5222L physical device

5.2.7 iR3220

Finding this device involved multiple steps. First
the website hosted on the device had the word "Eco-
Guard". Searching for this word on the internet re-
vealed a company[2] with that name which special-
ized in collecting measurement data about building

complexes and displaying the information on a plat-
form they call "CURVES". This further supports
that this is the correct company since the website
hosted on the device also says that it is running in
"CURVES mode". Both of the keywords are under-
scored in figure 19.

Figure 19: EcoCom home page

By continuing to search for the devices that Eco-
Guard uses, a manual[3] in Swedish was found. The
manual explains in detail how to set up a moni-
toring network using the device. The device itself
should be connected to the internet and is supposed
to send data to the company’s servers. Sensors of
various kinds are then connected to the device as
can be seen in figure 20 from the manual.

Figure 20: EcoGuard network illustration from
manual

Another document[4] issued by the company
EcoGuard detailed the specifications of their device
as can be seen in figure 21.

The images of the device depicted in figure
22 that appeared both in the manual and the
other document revealed the following text "Baltos
iR3220" on the device.

10

Figure 21: EcoGuard specifications

Figure 22: iR3220 physical device

By searching for this product number the web
site of the company "Vision Systems" revealed the
producer of the device. The device on their web-
site [11] had the same specifications and model
number as the aforementioned documents and web-
sites. Thus we can be almost certain that the device
found through shodan is the device in question.

The webpage on Vision Systems website detailing
the specifications of the device shows the same pro-
cessor, ports etc as the specifications provided by
EcoGuard. This further strengthens the connection
between the device and the company EcoGuard.

The script found 113 devices of this kind using
the keyword ecocom. A devices website must have
all of these keywords to match.

5.2.8 Netbiter WS100

This device seems to be some kind of gateway for
modbus devices, a total of 3 devices were found
and categorized using the keyword "netbiter". Ac-
cording to the manual which could be found on the
company website[17], one should put a sim card in
to it for internet connectivity which implies that it
uses the telephone network.

The device id was displayed on the website
hosted on the device together with the name of the
company, see figure 23.

Figure 23: WS100 login page/home page

The companies website revealed an image of the
device as can be seen in figure 24.

5.2.9 Solar-Log 1200

A total of 20 devices were found using the keyword
"solar", these devices hosted a web server with a
quite complex control panel. When entering the

11

Figure 24: WS100 physical device

website hosted on this device the user is presented
with graphs showing the current energy production
of what seems to be solar panels. The starting page
is shown in figure 25. The device monitors the solar
panels and generates statistics regarding the effec-
tiveness of the panels. It also showed tables with
cost calculations.

Figure 25: Solar-Log home page

When entering the "about" page the information
displayed in the About view was shown as depicted
in figure 26.

From this it was easy to get the model number
and thus figure out which device was behind the
IP address. By googling on the model number a
device description and picture, as seen in figure 27,
was shown on the company website[10].

The most interesting thing about the website
hosted on the device was the security notification
that popped up when pressing the red triangle in
the top right corner. The notice said that no user
password was configured and that the website was

Figure 26: Solar-Log about page

Figure 27: Illustration of Solar-Log device

12

not protected from hackers because of this. It then
went on asking if we wanted to set the user pass-
word now. The popup is displayed in figure 28.
This is a major security risk considering that any-
one can connect to this device and set the password
to whatever thus locking the owners out of their
own system.

Figure 28: Solar-Log security notification

When investigating the available settings on the
page, the access control settings were found as seen
in figure 29. It turned out that an unidentified
user had full access to all settings in the system
including setting a user password, pin code and en-
abling access control enforcement. There were a
large number of settings on this device all of which
can be modified by an unauthenticated user. An
overview of the available settings can be seen in
figure 30. A unidentified user was even able to up-
date the firmware on the device to any uploaded
file as can be seen in figure 36 in the appendix.

5.2.10 Web relay

The website hosted on this device only showed a
web interface where the word "Webrelay Quad" was
listed. The entire website can be seen in figure 31.
It looked like the device could control four relays
of some kind though it was very unclear what the
relays were controlling. The HTML code revealed
nothing about the device and it required no au-
thentication to access and change relays. A total 2
devices were found using the keywords ["webrelay",
"quad"].

Figure 29: Solar-Log access control

Figure 30: Solar-Log settings

13

Figure 31: Webrelay Quad home page

6 Discussion
The method used to find exposed devices with a
web server running proved very efficient. The man-
ual labor of looking at the websites in order to
identify the id of the devices was significantly de-
creased. By grouping the devices together with
keywords found in the HTML code manual search-
ing was minimized further. After looking at a cou-
ple of websites of the same kind, unique strings
could be identified and used in the program to col-
lect all such websites into one specific group. This
decreased the amount of websites that had to be
inspected manually significantly.

One potential problem with grouping the web-
sites is that some websites that actually differed
from the ones manually parsed might have been
overlooked. Since the grouping mechanism only
parsed the raw HTML code and looked for key-
words related to the company and device id there
might have been variations to said device that was
missed in the process.

Since the grouping mechanism might be inaccu-
rate the number of devices of each type might not
be completely accurate. Especially since only web-
sites hosted on such devices were explored. Other
devices with the same device id might be active
without exposing their web server to the internet
while exposing other ports.

Another aspect to consider regarding the group-
ing of devices is the way in which the HTTP re-
quests were handled. If the script did not get a
response within after a second attempt or were a
little to slow to respond it assumed that there was
no web server hosted on that IP address. Because
of this the amount of devices varied slightly from
time to time when running to script.

With other words, the numbers given in this re-
port regarding the amount of devices of each type
is only an estimate using the outlined method.

A possible way to gain further information from
the devices might be querie the Telnet protocol to
see if that port is exposed to the internet. This
was not used when collecting information for this
report.

Another avenue of information gathering that
was considered was to group devices by their ge-
ographical location. By doing so it might be possi-
ble to discover what kind of facility the devices were
stationed in and thus gleam further information re-
garding what they were used for. For example, it
might reveal a power plant, production facility or
a hospital which have many ICS devices that work
together in a larger system.

The methods used in this project worked well for
the modbus protocol since the websites hosted on
such devices varied a lot. Many of the websites
revealed information about the company using the
device or the company making the device as well
as the device model number. Some had pictures of
the device while others had a detailed description
of its function. There were many sites that were
more secure and thus did not leak any information
about the device behind it.

The methods did not work that well for Tridium
Fox however mostly because almost all of the web-
sites hosted on such devices were the same. Trid-
ium Fox is not just a protocol but a framework in
which the web server is most likely bundled. They
did not reveal anything about the nature of the de-
vice in the HTML code nor in the actual website.
Only one device with a different website was found
and is presented in the results section. Using Tel-
net and other possible methods might give more
information but this was not tested during this in-
vestigation.

14

7 Future work
A possible way to gain further information from the
devices might be querie the Telnet protocol to see if
that port is exposed to the internet. This might be
worth looking into for future projects of this kind.

Another interesting aspect that might be worth
looking in to in a future project is the geographical
location of the devices. By grouping them together
by their actual location one might be able to find
facilities that use multiple ICS devices. By finding
out what type of facility they were located in, one
might be able to get more information regarding
what the devices were used for.

Since this report only investigates one protocol
thoroughly it would be interesting to explore other
protocols as well.

8 Conclusion
The investigation revealed a lot of exposed devices
many of which suffered major security holes. Only
one protocol was properly investigated and more
devices would probably be found if using more
methods or continuing using the ones outlined in
this report.

The lack of knowledge about security in the in-
dustry is scary to say the least. Since the amount of
connected ICS devices grows every year more and
more critical infrastructure is exposed on the inter-
net. This poses a severe security threat to compa-
nies, individuals and whole countries.

9 Dictionary
• ICS: Industrial Control System

• PLC: Programmable Logic Controller [20] is a
industrial digital computer adapted for assem-
bly lines, robotic devices and the like.

• SCADA: Supervisory Control and Data Ac-
quisition

• PLC: Programmable Logic Controller

• DCS: Distributed Control System

• RTU: Remote Terminal

• CISA: Cyber security and Infrastructure Se-
curity Agency

15

10 Apendix
10.1 Search queries
Table 5 contains the search queries used to find information on Shodan.

Protocol Search querie
Modbus port:"502"
Tridium Fox port:"1911, 4911"
EtherNetIP port:"44818"
BACnet port:"47808"
OMRON FINS port:"9600" response code
General Electric SRTP port:"18245, 18246" product:"general electric"

Table 5: Queries used for protocol data

10.2 Devices
10.2.1 Anybus M-Bus

Figure 32: Anybus basic device network

16

Figure 33: Anybus privileges

Figure 34: Anybus Meter information

17

10.2.2 AWU 500

Figure 35: Alliance example network with AWU devices

18

10.2.3 Solar-Log

Figure 36: Solar-Log firmware update

19

10.3 Code
This section contains the scripts used to collect and parse the data from shodan.

10.3.1 modbus.py

1 #! /usr/bin/env python3
2
3 from matches import Matches
4
5 matches = Matches("modbus", 15)
6
7 word_map = [("regin",), ("ecocom",), ("elvaco",), ("wago", "ethernet"),\
8 ("komfovent",), ("stiebel",), ("wdc",), ("ouman", "eh", "net"),\
9 ("solar",), ("webrelay", "quad"), ("cs141", "webmanager"),\

10 ("teltonika",), ("alliance",), ("netbiter",), ("anybus",), ("pcoweb",)]
11
12 matches.print_word_map(word_map)

20

10.3.2 shodanRun.py

1 #!/usr/bin/env python3
2
3 from shodan import Shodan as sho
4 import json
5
6 api = sho("vTfeGFDi1hhDvwiwk2SLIcfI1achlY0o")
7
8 matches = []
9 PROTOCOL = "modbus"

10 FOLDER = PROTOCOL + "_results"
11 PAGES = 14
12
13 def write_result(file_name, results):
14 try:
15 with open(file_name, ’a’) as f:
16 f.write(json.dumps(results))
17 except Exception as e:
18 print("Could not open file: {}\nError:{}".format(file_name, e))
19
20 def get_shodan_result(query, page):
21 try:
22 results = api.search(query, page)
23
24 file_name = "{}/{}-{}.json".format(FOLDER, PROTOCOL, page)
25
26 write_result(file_name, results)
27 except shodan.APIError as e:
28 print(’Error: {}’.format(e))
29
30
31 def main():
32 #query = ’port:"1911, 4911" country:"no,se,dk,fi"’
33 query = ’port:"502" country:"no,se,dk,fi"’
34 for page in range(PAGES+1):
35 print("Getting page {}".format(page))
36 get_shodan_result(query, page)
37
38 main()

21

10.3.3 matches.py

1 import json
2 import requests
3
4 class Matches:
5 matches = []
6 loading_string = ""
7 result_file = ""
8
9 def __init__(self, protocoll, pages, file_name = "result.txt"):

10 self.result_file = file_name
11 for i in range(pages):
12 print("Loaded page [{}]".format(i))
13 file_name = "{}-{}.json".format(protocoll,i)
14 matches = []
15 with open(file_name) as f:
16 for line in f:
17 matches = json.loads(line)[’matches’]
18 self.matches += matches
19 self.loading_string = "[{}]".format(" "*pages)
20
21 #####################
22 # WRITE TO RES FILE #
23 #####################
24 def write_to_file(data):
25 f = open(self.result_file, ’a’)
26 f.write(data)
27 f.close()
28
29 ###################
30 # PRINT FUNCTIONS #
31 ###################
32 def print_matches(self, pred):
33 for match in self.matches:
34 print("{}".format(pred(match)))
35
36 #################
37 # MAP FUNCTIONS #
38 #################
39 def get_map(self, get_key, get_value):
40 match_map = {}
41 for match in self.matches:
42 try:
43 key = get_key(match)
44 value = get_value(match)
45 except:
46 continue
47 if key in match_map:
48 match_map[key].append(value)

22

49 else:
50 match_map[key] = [value]
51 return match_map
52
53 def print_map(self, match_dict, print_key, print_value, min_key=0):
54 for key in match_dict:
55 if len(match_dict[key]) > min_key:
56 total = 0
57 print_key(key)
58 for value in match_dict[key]:
59 print_value(value)
60 total += 1
61 print("Total devices: {}\n".format(total))
62
63 def write_map(self, match_dict, format_key, format_value):
64 for key in match_dict:
65 if len(match_dict[key]) > min_key:
66 total = 0
67 self.write_to_file(format_key(key))
68 for value in match_dict[key]:
69 self.write_to_file(format_value(value))
70 total += 1
71 print("Total devices: {}\n".format(total))
72
73 ################
74 # IP FUNCTIONS #
75 ################
76 def get_ip(match):
77 try:
78 return match[’ip_str’]
79 except:
80 return "No ip"
81
82 def get_url(self, match):
83 try:
84 return "http://{}".format(match[’ip_str’])
85 except:
86 return "No URL"
87
88 ################
89 # OS FUNCTIONS #
90 ################
91 def get_os(self, match):
92 try:
93 return match["os"]
94 except:
95 return "No os"
96
97 def print_os(self):
98 pred = lambda match : print("{} : {}".format(self.get_url(match), self.get_os(match)))

23

99 self.print_matches(pred)
100
101 ##################
102 # HTTP FUNCTIONS #
103 ##################
104 def multi_match(self, html, words):
105 html = html.lower()
106 for word in words:
107 res = html.find(word)
108 # if not word.lower() in html:
109 # return False
110 if res == -1:
111 return False
112 return True
113
114 def get_word_match(self, match, words):
115 url = self.get_url(match)
116 try:
117 req = requests.get(url, timeout=10)
118 if req.status_code == 200:
119 if self.multi_match(req.text, words):
120 return match
121 else:
122 return None
123 else:
124 return "Error"
125 except Exception as e:
126 print("Exception {} occured\n".format(e))
127 return "Error"
128
129 def get_word_matches(self, words):
130 correct_matches = []
131 for match in self.matches:
132 correct_match = self.get_word_match(match, words)
133 if correct_match:
134 correct_matches.append(correct_match)
135 return correct_matches
136
137 def print_word_matches(self, words=[""]):
138 print("Words to match: ", words)
139 correct_matches = self.get_word_matches(words)
140 for match in correct_matches:
141 print("{}".format(self.get_url(match)))
142
143 def get_word_map(self, word_map):
144 result_map = {"None" : [], "No response" : []}
145 categorized = False
146 for match in self.matches:
147 categorized = False
148 for words in word_map:

24

149 correct_match = self.get_word_match(match, words)
150 if not correct_match:
151 continue
152 elif correct_match == "Error":
153 result_map["No response"].append(match)
154 categorized = True
155 break
156 else:
157 if words in result_map:
158 result_map[words].append(correct_match)
159 else:
160 result_map[words] = [correct_match]
161
162 categorized = True
163 break
164
165 if not categorized:
166 result_map["None"].append(match)
167
168 return result_map
169
170 def print_word_map(self, word_map):
171 word_map = self.get_word_map(word_map)
172
173 print_key = lambda key : print("Words: {}".format(key))
174 print_value = lambda value : print(" {}".format(self.get_url(value)))
175
176 self.print_map(word_map, print_key, print_value)
177
178 def write_word_map(self, word_map):
179 word_map = self.get_word_map(word_map)
180
181 format_key = lambda key : "Words: {}".format(key)
182 format_value = lambda value : " {}".format(self.get_url(value))
183
184 self.write_map(word_map, format_key, format_value)
185
186 ######################
187 # LOCATION FUNCTIONS #
188 ######################
189 def get_longitude(self, match):
190 return str(match["location"]["longitude"])
191
192 def get_latitude(self, match):
193 return str(match["location"]["latitude"])
194
195 def get_ip_locations(self):
196 key = lambda match : (self.get_latitude(match), self.get_longitude(match))
197 value = lambda match : match["ip_str"]
198 return self.get_map(key, value)

25

199
200 def print_ip_locations(self, min_value=0):
201 print_key = lambda key : print("Location: {0:.10}, {1:.10}".format(key[0], key[1]))
202 print_value = lambda value : print(" http://{}".format(value))
203 self.print_map(self.get_ip_locations(), print_key, print_value, min_value)

26

11 Sources

References
[1] CR Fastighetsteknik AB. AWU 500. 2010. url: http://www.systemalliance.se/wp-content/

uploads/2018/05/AWU500-2010-11-16.pdf (visited on 04/04/2020).
[2] EcoGuard AB. About EcoGuard. ? url: https://www.ecoguard.se/om-ecoguard/om-ecoguard

(visited on 04/06/2020).
[3] EcoGuard AB. EcoCom manual. 2016. url: https : / / uploads - ssl . webflow . com /

59ca716f6560aa0001b1e80c/5ae171ecfe9177569edd7469_EcoCom_Baltos_refManual_160407_
webb.pdf (visited on 04/06/2020).

[4] EcoGuard AB. EcoCom specifications. 2016. url: https : / / assets . website - files . com /
59ca716f6560aa0001b1e80c/5a4e4ab9056b6a0001015873_ECOGUARD_ECOCOM_rev2.pdf (visited
on 04/06/2020).

[5] Common Weakness Enumeration (CWE). Path Traversal. 2020. url: https://cwe.mitre.org/
data/definitions/22.html (visited on 04/01/2020).

[6] Cybersecurity and Infrastructure Security Agency (CISA). About CISA. ? url: https://cwe.
mitre.org/data/definitions/22.html (visited on 04/01/2020).

[7] Cybersecurity and Infrastructure Security Agency (CISA). CISA advisory. 2018. url: https :
//www.us-cert.gov/ics/advisories/ICSA-18-191-03 (visited on 04/01/2020).

[8] Elvaco. CMe3100 Datasheet. ? url: https://www.elvaco.se/Image/GetDocument/en/19/
cme3100-data-sheet-swedish.pdf (visited on 04/14/2020).

[9] GENEREX. Manufacterer website CS141. ? url: https://www.generex.de/content/view/25/
54/ (visited on 04/15/2020).

[10] Solare Datensysteme GmbH. Solar-Log 1200. ? url: https://www.solar-log-america.com/
products-accessories/monitoring-hardware/solar-log-1200/ (visited on 04/15/2020).

[11] VS Vision Systems GmbH. iR3220 on producers website. ? url: http://www.visionsystems.de/
produkte/baltos-ir-3220.html (visited on 04/06/2020).

[12] A. Gurtov M. Khodari A. Hansson. Analyzing Internet-connected industrial equipment. 2018. url:
https://ieeexplore-ieee-org.e.bibl.liu.se/document/8372775 (visited on 04/15/2020).

[13] HTTP request library for python. ? url: https://2.python-requests.org/en/master/# (visited
on 04/15/2020).

[14] Tridium Inc. Tridium website. ? url: https://www.tridium.com/products-services/niagara4
(visited on 04/01/2020).

[15] Regin Control UK Limited. Corrigo controller website. ? url: https://www.regincontrols.
com/en-GB/product1/exigoardo---controllers-for-heating-24-v/3278/30474/#topcats
(visited on 04/04/2020).

[16] R. Bodenheim J. Butts S. Dunlap B. Mullins. Evaluation of the ability of the Shodan. 2014. url:
https://www.sciencedirect.com/science/article/pii/S1874548214000213 (visited on
04/14/2020).

[17] HMS Networks. WS100 company website. ? url: https://www.netbiter.com/support/file-
doc-downloads/netbiter-ws100 (visited on 04/15/2020).

[18] HMS Industrial Networks. Anybus M-Bus device. ? url: https://www.anybus.com/products/
gateway- index/specific- gateways/factory- to- building/detail/anybus- m- bus- to-
modbus-tcp-gateway (visited on 04/15/2020).

27

http://www.systemalliance.se/wp-content/uploads/2018/05/AWU500-2010-11-16.pdf
http://www.systemalliance.se/wp-content/uploads/2018/05/AWU500-2010-11-16.pdf
https://www.ecoguard.se/om-ecoguard/om-ecoguard
https://uploads-ssl.webflow.com/59ca716f6560aa0001b1e80c/5ae171ecfe9177569edd7469_EcoCom_Baltos_refManual_160407_webb.pdf
https://uploads-ssl.webflow.com/59ca716f6560aa0001b1e80c/5ae171ecfe9177569edd7469_EcoCom_Baltos_refManual_160407_webb.pdf
https://uploads-ssl.webflow.com/59ca716f6560aa0001b1e80c/5ae171ecfe9177569edd7469_EcoCom_Baltos_refManual_160407_webb.pdf
https://assets.website-files.com/59ca716f6560aa0001b1e80c/5a4e4ab9056b6a0001015873_ECOGUARD_ECOCOM_rev2.pdf
https://assets.website-files.com/59ca716f6560aa0001b1e80c/5a4e4ab9056b6a0001015873_ECOGUARD_ECOCOM_rev2.pdf
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/22.html
https://www.us-cert.gov/ics/advisories/ICSA-18-191-03
https://www.us-cert.gov/ics/advisories/ICSA-18-191-03
https://www.elvaco.se/Image/GetDocument/en/19/cme3100-data-sheet-swedish.pdf
https://www.elvaco.se/Image/GetDocument/en/19/cme3100-data-sheet-swedish.pdf
https://www.generex.de/content/view/25/54/
https://www.generex.de/content/view/25/54/
https://www.solar-log-america.com/products-accessories/monitoring-hardware/solar-log-1200/
https://www.solar-log-america.com/products-accessories/monitoring-hardware/solar-log-1200/
http://www.visionsystems.de/produkte/baltos-ir-3220.html
http://www.visionsystems.de/produkte/baltos-ir-3220.html
https://ieeexplore-ieee-org.e.bibl.liu.se/document/8372775
https://2.python-requests.org/en/master/#
https://www.tridium.com/products-services/niagara4
https://www.regincontrols.com/en-GB/product1/exigoardo---controllers-for-heating-24-v/3278/30474/#topcats
https://www.regincontrols.com/en-GB/product1/exigoardo---controllers-for-heating-24-v/3278/30474/#topcats
https://www.sciencedirect.com/science/article/pii/S1874548214000213
https://www.netbiter.com/support/file-doc-downloads/netbiter-ws100
https://www.netbiter.com/support/file-doc-downloads/netbiter-ws100
https://www.anybus.com/products/gateway-index/specific-gateways/factory-to-building/detail/anybus-m-bus-to-modbus-tcp-gateway
https://www.anybus.com/products/gateway-index/specific-gateways/factory-to-building/detail/anybus-m-bus-to-modbus-tcp-gateway
https://www.anybus.com/products/gateway-index/specific-gateways/factory-to-building/detail/anybus-m-bus-to-modbus-tcp-gateway

[19] Modbus Organization. Modbus Official Site. ? url: http://www.modbus.org/faq.php (visited on
03/26/2020).

[20] Andrew Parr. Industrial Control Handbook. 1986. url: https://books.google.se/books?id=
zLwtngK3T1UC&printsec=frontcover&hl=pl&source=gbs_ge_summary_r&redir_esc=y#v=
onepage&q&f=false (visited on 04/06/2020).

[21] Shodan. Shodan statistics. 2013. url: https://www.shodan.io/report/pGY7P8qw (visited on
03/31/2020).

[22] Seppo Tiilikainen. mproving the National Cyber-security by Finding Vulnerable IndustrialControl
Systems from the Internet. 2014. url: https : / / aaltodoc . aalto . fi / bitstream / handle /
123456789/12918/master_Tiilikainen_Seppo_2014.pdf?sequence=1 (visited on 04/05/2020).

28

http://www.modbus.org/faq.php
https://books.google.se/books?id=zLwtngK3T1UC&printsec=frontcover&hl=pl&source=gbs_ge_summary_r&redir_esc=y#v=onepage&q&f=false
https://books.google.se/books?id=zLwtngK3T1UC&printsec=frontcover&hl=pl&source=gbs_ge_summary_r&redir_esc=y#v=onepage&q&f=false
https://books.google.se/books?id=zLwtngK3T1UC&printsec=frontcover&hl=pl&source=gbs_ge_summary_r&redir_esc=y#v=onepage&q&f=false
https://www.shodan.io/report/pGY7P8qw
https://aaltodoc.aalto.fi/bitstream/handle/123456789/12918/master_Tiilikainen_Seppo_2014.pdf?sequence=1
https://aaltodoc.aalto.fi/bitstream/handle/123456789/12918/master_Tiilikainen_Seppo_2014.pdf?sequence=1

	Introduction
	Related work
	Background
	ModBus
	Tridium Fox
	Shodan
	TopICS Scandinavia

	Methods to identify devices

	Method
	Tridium Fox
	Modbus

	Result
	Tridium Fox
	NSA325v2

	Modbus
	Anybus M-Bus
	AWU 500
	CMe3100
	Corrigo controller
	CS141
	DCS-5222L
	iR3220
	Netbiter WS100
	Solar-Log 1200
	Web relay

	Discussion
	Future work
	Conclusion
	Dictionary
	Apendix
	Search queries
	Devices
	Anybus M-Bus
	AWU 500
	Solar-Log

	Code
	modbus.py
	shodanRun.py
	matches.py

	Sources

