
Building a web- or forum crawler to extract (and
analyze) scam/extortion emails

1st David Jungmalm
Department of Computer and Information Science

Linkoping University
Linköping, Sweden

davju247@student.liu.se

2nd Markus Loborg
Department of Computer and Information Science

Linkoping University
Linköping, Sweden

marlo975@student.liu.se

Abstract—Newspapers are reporting an increased amount of
scam emails. The subject of scammers trying to get people to
pay them with Bitcoin in exchange for not leaking personal
information is a threat. In this report we built a web crawler to
extract these mails from different forums in order to do further
analysis of the threat types and in later reports also see patterns
in where the Bitcoins disappear. The crawler that is able to collect
and store emails posted on Reddit and Bitcoin Abuse, that can
also do some basic analysis of these emails. The result of the
analysis is that it indeed appears as the scam mails are increasing.
Most commonly there was blackmail with a sub specification of
sextortion. Many different email addresses and bitcoin addresses
were used.

Index Terms—crawler, email, scam, forum, analysis, bitcoin,
abuse, Reddit, blackmail

I. INTRODUCTION

In the news there have been reports that more and more
scam mails are happening, or at the very least more scams are
being reported. Many scammers are trying to threaten people
in order to make them send money to the scammer and the
European Commission reports that the European citizens may
have lost about 24 billion EUR as a result of scams and
frauds [2] in the last two years (2018-2020) making scams
a substantial security problem. While the number of reports
grow, people share the mails in forums to help people who
have gotten similar mails to know it is a scam. Despite this,
these mails mostly stay on the forums and do not get added
to any public dataset that could be used by companies and
programs to recognize new scam mails. This is something that
we want to change, therefore we constructed a web crawler
to find all these posted mails and collect them into a dataset.
This paper will describe how we did this as well as some
of the results we could draw from the gathered dataset. Our
results and investigation will be focused around the following
questions:

• Are the amount of threats in extortion/scam mails increas-
ing?

• What percentage of the mails are using threats?
• What is the most common type of threat?
• How can a web crawler be designed for the purpose of

finding scam email patterns?
The rest of this paper is organized as follows. Firstly there

will be explanations of terms as well as descriptions of the

different frameworks and tools that were used to create the web
crawler, in section II. Then, in section III, we will describe how
we went about creating the web crawler. This will be followed
by the results from our analysis as well as an evaluation of
the web crawler in section IV. Then we proceed to analyze
and discuss our findings and sources in section V. Following
that we draw our final conclusions based on the result and the
analysis in section VI.

II. BACKGROUND

In this section we present the necessary information needed
to understand the rest of the report.

A. Bitcoin
Bitcoin is an online cryptocurrency aiming to remove the

need of third party financial institutions. It is a pure peer-
to-peer electronic currency that allows users to make direct
payments without going through any financial institution.
Many modern banking solutions offer digital currency without
the need of physical money bills and with this solution often
comes a debit card to make transactions. While it might be
easy to think that this is the same thing, they have a massive
difference in that debit cards are still tied to a central bank who
controls the transactions making them centralized. There is
also no way for anyone except the bank to see the transactions
making them non-transparent. Bitcoin, on the other hand is
decentralized meaning they are not controlled by a central
institution but on the other hand they are transparent meaning
anyone can see any transaction in what is called a blockchain.
Any wallet can send money to any other wallet, but the wallet
can not be bound to any person making them popular in email
scams trying to blackmail persons for bitcoin money [3].

B. Web scraping
Web scraping is a way of extracting data from the world

wide web. In its basic form, copy-pasting is a type of web
scraping at a minimal scale which can be done much more
efficiently by computers. This is what search engines like
google.com is doing, searching the web for keywords that the
user is inserting. Web crawlers, or spiders, is an intelligent
program that searches and indexes web pages, follows links
etc. that can be used to extract information and later export
the information into useful file formats like JSON [4].

Fig. 1. Scrapy architecture.

C. Scrapy

Scrapy is an application framework that can be used to crawl
websites and extract structural data. It is a Python library and
it also supports extraction of data using APIs, like the Reddit
API. This can be useful in the case where CSS selectors are
hard to use, like Reddit which has nested comments i.e. every
comment can have a reply which has a reply. The architecture
of Scrapy is shown in Fig. 1. All information is processed in
the spiders, and these are implemented by the user. The spiders
define start URLs and for each URL sends that request to the
engine which will schedule a request from the downloader.
After the response is received it is sent to the spiders to be
handled. The exact details of the spiders will be covered in
section III. After the spider has done what it needs, it can
send a new request if there are links to follow etc., or output
items through pipelines. These items are what the user gets
back after running the crawler meaning the information one
wants to extract from a given website [5].

D. CSS selectors

Cascading Styling Sheets (CSS) is a language that describes
the style of HTML documents which build up websites. A way
to refer to these HTML elements is using CSS selectors. In
Fig. 2 you can see the typical structure of HTML, and let us
say one want to extract the link in <a href>. Then the
CSS selector would be ”.mb-3:nth-child(1) a” where .mb-3 is
the class name of the div in which <a>is stored, :nth-
child(1) means the first child with the class name ”mb-3” and
lastly chose a tag in this div tag. The CSS selectors are useful
for defining what in a web page one wants to extract. Some
useful selectors are shown in table I.

E. SelectorGadget for Chrome

A useful tool for getting the correct CSS Selector for a
specific element or group is the SelectorGadget extension for
Chrome browser. It lets you click an element and it will show
a CSS Selector and also display which other elements are

Fig. 2. Typical HTML structure.

TABLE I
USEFUL CSS SELECTORS

Selector Example Example description
.class .container Selects all elements

with class=”container”
element.class ul.pagination Selects all elements

with class=”pagination”
#id #table Select all elements

with id=”table”
element a Select all <a>elements

:nth-child(n) td:nth-child(4) Selects every <td>
element that is the

fourth child of its parent
:nth-last-child(n) li:nth-last-child(1) Selects every

element that is the first
element of its

parent, counting from
the last child

included in the current selector. You can also choose if some
elements should not be included with the selector [8].

F. Reddit

Reddit is a website made for posting about different sub-
jects. Each subject has its own page called a subreddit. In these
pages users can post things about that subject and comment
on posts or on other comments [9].

G. PRAW

PRAW stands for Python Reddit API Wrapper and is as it
says an API for Reddit written in Python. With PRAW you
can fetch any subreddit, comment, user, post etc. from Reddit.
You can also extract any of the available data from these such
as timestamps, content, etc [11].

III. METHOD

In order to build the crawlers, the first thing needed was
websites containing some sort of information that interests
our study. Mostly websites containing mails with bitcoin
references in them. Although raw email archives were very
hard to find, the best effort was made to ensure that the bitcoin
addresses found were truly used in scam mails. The websites

Fig. 3. HTML structure of reports on main page.

decided to crawl were Reddit and Bitcoin Abuse [10]. A
website which contained some example emails were also used,
however these were considered a test run since the dataset was
so small.

A. Page information

To decide the format of the crawler, the specific website
structure needed to be analyzed. Since we used the Reddit
API for that crawler, the analysis was mostly done for Bitcoin
Abuse. Firstly the page was looked over for information that
might be useful. For Bitcoin Abuse, one could visit the page
/reports where every single report is listed. Inside each of those
links, one can see all the common reports for that specific
address. It also contains info like total reports counts, Bitcoin
transactions received and descriptions. Decisions were made
to extract the Bitcoin address, together with report count and
all the descriptions, where every description also had a time
stamp, abuse type and a name/email address of the abuser who
sent the mail. One important note that was taken here is that
since all reports are listed in the /reports page, there would be
duplicates if no countermeasures were taken. The the needs
of the crawler were the following:

1) Extract all links to reported addresses.
2) Visit links and extract address, report count and descrip-

tions if address is not a duplicate.
3) Visit next reports page and repeat until all pages are

visited (or set threshold reached).
Using the inspection tool in Chrome, as shown in Fig. 3, one
can see that reports are stored in a div called row and that
the specific reports are stored in a div called col-x1-4 col-
md-6 mb-3 and the link wanted is stored in an a tag. The
appropriate CSS selector would therefore be ”.mb-3 a” and
since we want the link in href and not the text of the tag
we use ”a::attr(href)”. Now that we have a link to follow we
move on to the page containing the information we need. The
structure of these report pages are very useful since they all
follow the same standard and looks like Fig. 4. Using the
Chrome inspector tool once again shows the HTML structure
of the table, as seen in Fig. 5. By either looking at the HTML
code or using SelectorGadget we see that the CSS selector
for the address is ”#summary-table i”. Moving on we need to
extract the report count field. Same strategy as before gives us

Fig. 4. Graphical view of a report.

Fig. 5. HTML structure of address table shown in Fig4.

the selector ”#summary-table tr:nth-child(2) td”. The two CSS
selectors above will give us the actual HTML element and to
extract the text inside the element we simply add ::text right
after the selector. Lastly looking at the table containing all
the descriptions for the reported address we see the structure
shown in Fig. 6 And as seen in the Chrome inspector tool we
see that the class name for the table is rather complicated,
however using the SelectorGadget we see that a possible
selector is ”td:nth-child(4)” meaning that the elements in the
table have a <td>field and is happens to be the only 4th
element with that tag meaning it can be used as selector. As
before, we add ::text to extract the text.

Fig. 6. HTML structure of report descriptions.

B. Presenting data

Scrapy has the functionality to output scraped data as JSON
files. The way this is done is by using yield keyword, almost
like a return but it keeps enough state to resume execution
after the yield. There are two main ways to return data. Either
you yield JSON data directly in the form yield {”message”:
message, ”address”: address} or you use Scrapy items.
This is a class that extends the scrapy.Item class and assigns
variables as var = scrapy.Field() and then you can import
the item class and use it as a list. Ie if you have an item
= ScrapyItem() with field address = scrapy.Field() you edit
the list with item[‘address’] = localvar and then simply yield
the item. Both these ways work the same, but using items is
a more clean way of doing it and that is also how we chose
to do it in this project.

C. Picking forums

Generally there is a lot of information on the internet, you
just have to look in the right place. The definition of the
problem stated that emails that contain bitcoin references were
desired. Finding email was kind of hard in the first place and
adding in the need for bitcoin references made it even harder.
Without going completely out of scope for this project a forum
that contained many mails in the same thread/site was needed
since making a crawler that scrapes full sites is kind if hard
and would be very time consuming to get working properly.
Generally it would be kind of a time waste to search a forum
with only a few emails per forum thread/site.

IV. RESULT

The crawler developed in this project will be described in
the following section.

A. Crawler

The crawler created is able to crawl all pages on the website
http://www.bitcoinabuse.com/reports. In the crawler there are
two constants for deciding how many pages to crawl and what
addresses to include. PAGE THRESHOLD is the number of
main pages on the website that the crawler should crawl. There
is also a constant named REPORT COUNT THRESHOLD
which is a constant that can be used to filter addresses that
only have a few reports. The number defined in this constant
will prevent output of any addresses that have less reports
than the given number. For Bitcoin Abuse the crawler will
output every address specified by the constants together with
the number of reports for the given address where every report
is saved as an item with four fields: date, abuse type, abuser
and the description.

The crawler can also crawl any subreddit in Reddit simply
by adding the subreddit name to an array of subreddits. This
crawl looks into the latest posts on the subreddit and crawls
each post and the comments on said posts. Apart from this
it crawls one subreddit and three posts specifically since
they are made to post scam emails on. The subreddit being
r/Scams and the posts are old posts on that subreddit. Since
the information available on Reddit is not exactly the same as

on Bitcoin Abuse, the output from this part of the crawler is
somewhat different. The fields outputted here are the message,
the extracted bitcoin address is there exists one, if it is marked
as suspicious and the time stamp.

B. Limitations

The crawler that was created has some limitations. First of
all is the fact that when it crawls Reddit it is using Reddits own
API for fetching the data. This API has a built in limitation
of only fetching around 1000 objects. Meaning if you fetch
the hottest posts of cars you will only get around the 1000
hottest posts, while if you fetch the newest posts you will get
around the 1000 newest posts. This means that if any post has
more than 1000 comments, we can not get them. We still get
around the first 1000 but not more.

Secondly there are problems with some of the bitcoin
addresses. Some mails have removed the bitcoin addresses and
some have them obfuscated. This is mentioned at a larger scale
in our analysis but even with the tools we used to minimize
it some will still slip through our grasp.

Thirdly there is a limitation of correctness. Sadly there are
both false positives and false negatives in the crawler. This is
due to the fact that there is no real way to say this is a mail
and this is a comment. The way we did it is by looking for
suspiciousness or bitcoin addresses in the text. If it contained
either of that, then we added it to the list. By suspiciousness
we are referring to the obfuscation talked about above for the
bitcoin addresses which could also be found in more places
than just the addresses. Sadly this means that we get false
negatives when the scammer has not added this obfuscation
which is a minority but they do exist and the user has removed
the bitcoin addresses for anonymization. It also means that if
someone simply adds a comment ”is this xxxx a trustworthy
address” it will be counted since it contains a bitcoin address.

C. Analysis

With the crawler made for Reddit and Bitcoin Abuse a
dataset of nearly 44,000 unique addresses were collected and
over 155,000 different reports/emails were found. With these
addresses we could do some analysis. According to Bitcoin
Abuse there have been a huge spike in reports in April [10].
Same site also tells us that the number of reports for 2020 are
likely going to be more than for 2019 if the average number of
reports for this year keeps the same rate. Fig. 7 and Fig. 8 show
graphs from Bitcoin Abuse. During the project a rudimentary
analysis was made on the collected dataset. This analysis gave
the following results. The most common threat was blackmail
with around 65000 reports with an additional 50000 reports
of sextortion which is a subgroup of blackmail. Other than
that there were 36000 ransomwares and then around 5000
other reports. The bitcoin addresses used varied with a total
of 44123. The usage of every single address was also varied.
Some addresses were only used once while the most common
one was used 928 times. The mails came from 704 unique
days and the most that was reported in a single day was 8221
reports on 16th April 2020. The average emails per day was

http://www.bitcoinabuse.com/reports

Fig. 7. Reports per year as of April 30th 2020..

Fig. 8. Reports per month as of April 30th 2020.

around 222 but as seen above a huge spike occurred in April
2020. In fact the average before April 2020 was only 162 mails
per day but the average for only April was 1637 mails per day.
The mails were somewhat diverse in what they said. The most
common mail was found 98 times. In total there were 1000s
of unique mails. Another thing was the email address that the
mails were sent from. They also varied from 86 uses down to
1.

V. ANALYSIS

During the creation of the webcrawler we learned many
things and encountered many obstacles. One of the biggest
obstacles was the fact that many of the mails had characters in
them that are not visible when you read the mail normally. For
example you read ”Give me 100 bitcoins” but what it actually
says is ”Gi\xa0 ve me 10\udcf70 bi\ufe0ftc\ufe0foi\ufe0fn”.
These characters are characters that are not supposed to be
used in this situation. The \u characters you see here are not
visible normally because they are used for the computer to
understand things about the string it reads. For example some
of them are used to notify the computer that the string should
be read from the left because it is a Hebrew string. Others are
emoji identifiers like ”following emoji should be black”. But
since no emoji follows, nothing happens and you do not see
the character.

Then there were similar cases where they used characters
that looked similar to normal letters. For example ”Give me
100 bitco. in”. As you see there is a small dot below the o
which separates it from a normal o. You can still read bitcoin
but for the computer it will see ”Give me bitc\uxxxxin”
where the xxxx represents a hex number that is the code
for that character. These characters are used all over the mail
swapping any letter. They use anything from scientific formula
notations to Russian. Any character that is in the Unicode set
of characters is used.

This becomes a problem since if you ask the computer
if it contains the word bitcoin it will say no. This made
finding bitcoin references and analyzing the messages quite
a bit harder. But there is another problem with this, and that
is that the computer can have problems with encoding this.
Now this is not a problem you see but when we attempted
to save this to file we found lots of errors claiming it can
not encode character \uxxxx. We solved both of these by
creating functions that removed those that were invisible and
swapped the characters to their plain text alternatives. We also
used functions that simply ignored characters that could not
be encoded because even with our functions there were sets
of these characters that avoided us. Even with that there were
still some addresses that were obfuscated since some of the
scammers used tricks that the functions and scripts just could
not deal with.

Then when the crawler was created we ran into another
issue. That was that some of the mails were anonymized. The
user had masked either bitcoin address of the mail address or
both. This was done by xxxx or by replacing it with ”(bitcoin
address)” and such. This made it hard since we could not just
search for addresses. We never really found a good solution
to this which can be seen if you look in the actual files saved
that we got a bit of false positives due to not being able to
search for the bitcoin addresses explicitly. We also lost some
to false negatives due to this.

Then another thing we noticed was that a lot of the messages
were very similar. As said in the result the most common
message had 98 occurrences and that there were 100s of
unique mails. This is somewhat false due to this similarity.
There are a lot of emails where a few words differ. Could be
down to the amount of money or changing ”last week” to ”last
Sunday” and such things. This made it register as unique for
us but is not really. So in actuality there are probably only
about 100s of unique mails with a bit of higher occurrences
than we could report.

Another thing is our own dataset. While it feels big to say
that we collected tens of thousands of addresses and hundred
thousands of mails in reality it is just a very small subset of all
of them floating out there in someone’s inbox.The amount of
addresses we have is around 10−52% of all possible addresses.
Of course not all of these are active or even used in these
scams but it still shows just how little of an amount we have
collected.

Then we reach our analysis of our analysis. There was really
only one interesting part there and that is the spike in mails in

April 2020. Why is it there and what happened? Sadly there is
little we can do to find the answer to this, other than speculate.
Could have been because of the corona virus making everyone
stay home meaning the scammers do not have anything better
to do and more targets are going to be home at their computer.
It could also be something to do with April fools though then
the trend should have been seen in previous years as well
which it did not.

Finally we will analyze our sources. Did we use reliable
ones and why do we think they are reliable? It depends. Are
the sources reliable for our purpose in the report? Yes. Are
they for the dataset? Partly. The sources as far as the report
goes are reliable due to the fact that it is mostly the homepages
of the websites we talk about and the actual documentation
of the APIs used. Sure what web scraping is comes from a
blog but it is supported by many more. W3schools is a quite
famous site to help you understand different classes and how
to use them. They would not be nearly as popular or famous
if what they taught was not accurate.

But for the dataset we used Reddit and Bitcoin Abuse.
Now Bitcoin Abuse is quite a good source since it is an
accumulation of reports from people all over the world. Sure
their categorizing might be a bit ambiguous since you do not
know how well a user knows what sextortion is or if they just
picked a category that sounded good. But it is still metadata
based on multiple reports.

But Reddit on the other hand had much less actual emails
and more comments around the mails. There was also rules
saying that posts should be anonymized which makes the
validity of the addresses collected suspicious even though the
mails are still good.

VI. CONCLUSIONS

Are the amount of threats in extortion/scam mails
increasing?
According to our analysis together with the data given by
Bitcoin Abuse the reports, and mails, seems to be increasing.

What percentage of the mails are using threats?
Based on our analysis we did not collect any mails that do not
contain threats since this was the main purpose of this report.
Therefore the results of 100% are inconclusive.

What is the most common type of threat?
When it comes to scam mails with bitcoin addresses the most
common threat seems to be leakage of personal and sensitive
data although in many cases these threats are taken out of thin
air based on trying to message people with information that
the receiver identifies to be correct. For example mentioning a
common password that the receiver might be using, making the
receiver think that their information is leaked or mentioning
a website that the receiver might have visited. The scammer
is trying to make the receiver think that their information is
leaked even though it might not be.

How can a web crawler be designed for the purpose of
finding scam email patterns?
The report found that picking a forum to crawl and design a
crawler for that page can be done using Scrapy and different

APIs. The crawler developed in this project could be made to
collect a lot of data by making use of the standard way that
Bitcoin Abuse present their data on reported addresses and
also collect data from Reddit using their API.

ACKNOWLEDGMENT

We would like to thank Niklas Carlsson for the support and
dedication in this project even though the course had to be
restructured for distance mode during second period of spring
semester.

REFERENCES

[1] Jack Schofield. ”I got a phishing email that tried to blackmail me
– what should I do?” URL: https://www.theguardian.com/technology/
askjack/2019/jan/17/phishing-email-blackmail-sextortion-webcam [Vis-
ited 2020-04-01]

[2] Ipsos. ”SURVEY ON ”SCAMS AND FRAUD EXPERIENCED BY
CONSUMERS” Final Report, p.18”, URL: https://ec.europa.eu/
info/sites/info/files/aid development cooperation fundamental rights/
ensuring aid effectiveness/documents/survey on scams and fraud
experienced by consumers - final report.pdf [Visited 2020-04-30]

[3] Satoshi Nakamoto. ”Bitcoin: A Peer-to-Peer Electronic Cash System”
URL: https://bitcoin.org/bitcoin.pdf [Visited 2020-04-20]

[4] Scrapinghub. ”What is web scraping?” URL: https://scrapinghub.com/
what-is-web-scraping [Visited 2020-04-20]

[5] Scrapy developers. ”Scrapy at a glance” URL: https://docs.scrapy.org/
en/latest/intro/overview.html [Visited 2020-04-20]

[6] Scrapy developers. ”Architecture overview” URL: https://docs.scrapy.
org/en/latest/topics/architecture.html [Visited 2020-04-27]

[7] W3Schools. ”CSS Selector Reference” URL: https://www.w3schools.
com/cssref/css selectors.asp [Visited 2020-04-20]

[8] Andrew Cantino et al. ”SelectorGadget: point and click CSS selectors”
URL: https://selectorgadget.com/ [Visited 2020-04-21]

[9] Reddit. URL: https://www.reddit.com/ [Visited 2020-04-21]
[10] Bitcoin Abuse. ”Bitcoin Abuse Database” URL: https://www.

bitcoinabuse.com/ [Visited 2020-04-30]
[11] Reddit. ”Reddit API documentation” URL: https://www.reddit.com/dev/

api/ [Visited 2020-04-21]

https://www.theguardian.com/technology/askjack/2019/jan/17/phishing-email-blackmail-sextortion-webcam
https://www.theguardian.com/technology/askjack/2019/jan/17/phishing-email-blackmail-sextortion-webcam
https://ec.europa.eu/info/sites/info/files/aid_development_cooperation_fundamental_rights/ensuring_aid_effectiveness/documents/survey_on_scams_and_fraud_experienced_by_consumers_-_final_report.pdf
https://ec.europa.eu/info/sites/info/files/aid_development_cooperation_fundamental_rights/ensuring_aid_effectiveness/documents/survey_on_scams_and_fraud_experienced_by_consumers_-_final_report.pdf
https://ec.europa.eu/info/sites/info/files/aid_development_cooperation_fundamental_rights/ensuring_aid_effectiveness/documents/survey_on_scams_and_fraud_experienced_by_consumers_-_final_report.pdf
https://ec.europa.eu/info/sites/info/files/aid_development_cooperation_fundamental_rights/ensuring_aid_effectiveness/documents/survey_on_scams_and_fraud_experienced_by_consumers_-_final_report.pdf
https://bitcoin.org/bitcoin.pdf
https://scrapinghub.com/what-is-web-scraping
https://scrapinghub.com/what-is-web-scraping
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/topics/architecture.html
https://docs.scrapy.org/en/latest/topics/architecture.html
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://selectorgadget.com/
https://www.reddit.com/
https://www.bitcoinabuse.com/
https://www.bitcoinabuse.com/
https://www.reddit.com/dev/api/
https://www.reddit.com/dev/api/

	Introduction
	Background
	Bitcoin
	Web scraping
	Scrapy
	CSS selectors
	SelectorGadget for Chrome
	Reddit
	PRAW

	Method
	Page information
	Presenting data
	Picking forums

	Result
	Crawler
	Limitations
	Analysis

	Analysis
	Conclusions
	References

