
Survey of How to Secure GraphQL APIs
Project Report for TDDD17 - Information Security Course - Linköping University, Sweden

Björn Edlund
bjoed010@student.liu.se

David Åström
davas593@student.liu.se

Supervisor: Olaf Hartig
olaf.hartig@liu.se

Abstract—GraphQL is a relatively new query language for
Web APIs developed by Facebook which aims to offer a more
flexible way to query data from a web server. As it grows in
popularity and adaptation, the potential attack surface grows
and thus security aspects of the language have been put under
bigger scrutiny.

This report documents a survey trying to map the current
state of GraphQL security research and discussions in 2020.
The survey was made by searching through scientific articles,
documentation, and tech blogs in order to find the threats and
vulnerabilities currently present in the language. These were
categorized according to the CIA triad, followed by searching
for and documenting proposed solutions to these risks.

Many risks found were similar to those present in classic REST
APIs, but the increased freedom in queries in GraphQL leads to
some availability risks more unique to GraphQL.

Several proposed solutions to the risks were found through
blog posts and documentation but the survey found that the field
is relatively untouched in the formal research. This leads to the
conclusion that although many risks are documented and solved,
more formal research is needed in the subject, which this report
could act as a basis for.

I. INTRODUCTION

This report is the result of an obligatory part of the course
Information Security (Course code: TDDD17) at Linköping
University.

A. Background

After being built by Facebook and released as open source
in 2015, GraphQL has quickly increased in popularity as an
alternative to the classic REST API when building web pages.
Today it is used by large companies and services such as
Airbnb, GitHub, and Twitter [1].

As the relatively new technology emerges and some of the
largest services in the world adopts it, one would argue that it
is very relevant to look into the security implications the use
of GraphQL brings with it. Since the technology is starting to
mature, more methods and technologies for securing GraphQL
applications are being discussed in forums, and more research
is being made on the subject. This report is the result of a
survey that aims to map the current state of GraphQL security
research and method recommendations in the spring of 2020.
What threats and vulnerability have been found, and what
solutions are being proposed to these risks?

B. Problem statements

In order to better understand the vulnerabilities of GraphQL
the survey will first try to answer:

1) What security vulnerabilities does the use of GraphQL
come with and how do they relate to the CIA triad.

Based on the vulnerabilities and risks found, the following
questions will be explored:

2) How can Loss of Confidentiality be prevented in
GraphQL.

3) How can Loss of Integrity be prevented in GraphQL.
4) How can Loss of Availability be prevented in GraphQL.

C. Method

The survey was conducted in two main stages. First, the aim
was to identify the security risks that GraphQL imply when
implemented.

The search was conducted by first reading the official
documentation for GraphQL, thereby getting the officially
recognized risks.

In addition to these, an online search for tech blog posts,
tutorials, and scientific reports which presents and discusses
security in GraphQL was done. This search was conducted in
a two stages:

• In order to find scientific reports on the subject, a
search was made via Google Scholar, using the search
query ”GraphQL security”. From the results, articles that
seemed interesting for the survey were chosen to read
and analyse. The references of the found articles were
also used to find further information.

• To find blog posts and tutorials, two methods were used.
First, a search on Google.com was made, also using the
query ”GraphQL security”. Interesting posts from the
results was analysed further. A search on Hacker News, a
popular news site for computer science related subjects,
was also made. Once again the same query as above was
used, and interesting results chosen.

The found risks was then categorized according to which
part of the CIA triad they belonged to. If said issue was not
applicable to either one of the three categories, the issue would
not be taken into consideration in this survey.

Once this was done, the survey moved into the second
stage. Here the same material was analysed in order to try
to find proposed solutions for every given issue. A second
search similar to the first was also conducted by searching
for each given problem specifically to find further proposed
solutions. These solutions were then summarized in order to
answer questions 2, 3, 4.

1

D. Limitations

No first-hand experience of the API in question will be
evaluated in this project.

II. THEORY

This section will cover some of the basic theory that acts
as a basis for the rest of the report.

A. GraphQL

GraphQL is a query language for web APIs developed by
Facebook. It acts as an alternative to the more classic REST
APIs, with the main aim to reduce the amount of over and
under fetching of data that is common in REST applications.
Instead of the server providing multiple endpoints for the client
to send requests to, each with a specified set of data to return,
a GraphQL server provides a single endpoint for the client
to query. That endpoint accepts POST requests containing a
GraphQL query which specifies what data the client wants to
access. By doing this, the client can query exactly the data it
needs, and thereby avoids over fetching data not needed, or
under fetching resulting in more queries needed [2].

This method also helps with separating the client and server
from each other. As the client is no longer dependent on certain
endpoints and the data they provide, client development can
be done relatively independently of the server, as the client
can simply change the queries sent to the single endpoint [2].

1) Client: The client part of a GraphQL service sends
request to the server. The requests are always POST requests,
and the requested data is specified in the request body as
a GraphQL query. In its basic form this query specifies
what types and what fields of that type the client wants to
retrieve [3]. A small example can be seen below:

{
u s e r {

name
e m a i l

}
}

The query can be expanded further, for example specifying
which instances of the object to retrieve, as well as retrieve
related types, such as messages that a user has posted.

{
u s e r {

name
e m a i l
messages {

message
}

}
}

In addition to retrieving data, the query has two more
specific use cases, mutations and subscriptions. A mutation
query is used to mutate data, either by creating new types, or
update fields in existing objects [1].

A subscription query opens a steady connection to the
server, and is used to subscribe to real-time updates of the
data. When a subscription is in place, the client receives the
updated data whenever it is changed on the server, allowing
for the real-time applications common today [4].

2) Server: Most of the GraphQL API is implemented on
the server side. The main part of the server is the GraphQL
schema. The schema defines what can be queried by the client.
It defines the types, what fields the types contain, and the
relations between types. In addition to this, the schema also
defines the possible queries, mutations, and subscriptions the
client can make [4].

The server must also define resolvers for each of the types
and queries. However, GraphQL does not care about how
these resolvers are implemented, as along as they return the
promised data. This means that a GraphQL server can be
implemented in pretty much any way, framework, or language.
It can use any database system, and fetch data from other third
party APIs, thereby connecting several systems and services
to a single endpoint [5].

B. Definition of the CIA triad

The CIA triad is a common way to categorize key objectives
that need to be secured in any system. They consist of
Confidentiality, Integrity, and Availability and can be described
as follows:

1) Loss of Confidentiality - Assurance that information is
not accessed by unauthorized entities such as programs
and people [6].

2) Loss of Integrity - Information must retain its accuracy
and be protected from unauthorized modification or re-
moval [6].

3) Loss of Availability - Authorized users must be able to
access information or information systems in a timely
manner [6].

III. RESULTS

The survey resulted in a list of risks and vulnerabilities
which can be studied in table I. Most of the risks were found
in blogs and tutorial, but a few were found in the official
documentation and articles as well.

A. What security vulnerabilities does the use of GraphQL
come with and how do they relate to the CIA triad.

The results clearly shows that most risks are either related
to fetching or modifying data the user is not authorized to
access, or about creating malicious queries that in some way
overloads the server, thereby causing availability issues.

The official documentation for GraphQL mainly focused on
specifying the underlying principles of the query language,
rather than any specific implementations of it, and therefore
did not touch many security aspects. It did however mentioned
that GraphQL does not handle authentication or authorization
by itself [7], [8], as well as also mentioning the issue with
invalid and cyclic queries possibly crashing the server if the
incoming queries are not validated properly.

2

TABLE I
RISKS AND VULNERABILITIES FOUND IN GRAPHQL

ID Description C I A
Official Documentation
1 Unauthenticated queries [7] X X
2 Unauthorized access to data [8] X X
3 Invalid and cyclic queries [9] X

Scientific Articles
4 Superlinear response sizes causing very large responses [10] X
5 Unusually Big Queries [11]([12]) X

Blogs and Tutorials
6 Unusually deep queries [12], [13] X
7 Queries requesting large amount of data [12], [13] X
8 Unusually Frequent Queries [12] X
9 SQL injection [14] X X

10 NoSQL injection [15] X X
11 Unauthorized access to data [16] X X
12 Unauthorized access to data through parameter smuggling, insecure direct object referencing [17], [18] X X
13 Cross Site Scripting [18] X

No articles that focused on security issues with GraphQL
were found, but a few instances noted on individual security
issues. Both mentioned the issue of unusually large queries
causing very large responses, risking the stability and avail-
ability of the server [10], [11].

Blogs and articles proved the most valuable in the search.
A few of these mentioned similar issues as the documenta-
tion and articles. These issues were mainly large and deep
queries causing possible denial of service. HowToGraphQL
also touched on the issue with a large amount of frequent
requests overloading the server, as is the issue with most types
of web services and APIs [12].

Many blogs also noted some vulnerabilities concerning
confidentiality and integrity. Partially in general like the doc-
umentation with unauthorized access to data [16], but some
more specific examples were also brought up. As GraphQL
is an entry point to the server like any REST API, it may be
utilized to do many common web attacks. Some of these are
SQL injection and NoSQL injection, where GraphQL queries
can contain executable code if not escaped properly. Attacks
like XSS could also be possible this way [18]. Different types
of direct object referencing were noted as well, where the
user possibly can access data it is not authorized to see by
smuggling parameters in the query if the data is not properly
protected [17], [18].

B. How can Loss of Confidentiality and Integrity be prevented
in GraphQL.

Since most threats regarding confidentiality and integrity
concerned both aspects, this subsection will address both
Question 2 and 3.

1: Implementing user authentication in GraphQL can be
handled similarly to in a REST API. As GraphQL utilizes
HTTP requests just like REST, you can utilize a client-
provided authentication token in the request header. The
official documentation mentions this case in the context of an
ExpressJS GraphQL server, and recommends using an Express
middleware that processes the token in the resolver [7].

A blog post on Medium.com [19] discusses how to imple-
ment authentication in a GraphQL context, and concludes that
authentication is best handled in the GraphQL server rather
than the HTTP server or the Business logic, giving the best
control of the authentication flow. In this example it is done
by implementing a context in the server, which checks for a
present token and fetches a user from it. This context is then
present for all resolvers, which enables them to access the
current user for further authorization [19].

2, 11, 12: All these risks are concerned with the authoriza-
tion of users to access certain data. In order to implement
authorization you would of course need to first implement
authentication as above [19]. Although the documentation
mentions that it is possible to implement authorization on a
GraphQL level, it would require a lot of duplicate code as
soon as a project grows past the experimental stage. This
would result in both very tedious work developing, but more
importantly the issue where changes or mistakes causing the
authorization checks not being perfectly in sync throughout
the server could introduce possible exploits like parameter
smuggling and insecure direct object referencing [8].

Instead the documentation recommends that authorization
should not be handled by GraphQL itself, but rather be
delegated to the business logic layer of the server. This would
provide a single point of truth for the authorization, thereby
avoiding the issue with the authorization being out of sync
throughout the server.

9, 10, 13: Both these points relate to injection attacks.
Because of the way GraphQL is structured, it both solves and
creates some common injection vulnerabilities. Each query or
mutation is strongly typed in GraphQL. This means the system
is already protected from malicious users injecting unexpected
types in fields, simply rejecting queries that does not follow
the specified structure [20]. It is however worth noting that
by using naively implemented custom scalars to create more
flexible queries you can open the server up for injection
attacks. This can instead be mitigated by compromising on the

3

flexibility in the query definition, and specify exactly which
types of input you can expect to receive [21].

Like any API that accepts user input, GraphQL is also
susceptible to more common SQL injection attacks, where
finely constructed strings can modify a database query if
passed on directly. This is also not a problem specific to
GraphQL specifically, but must be solved by ensuring any
strings are escaped when resolving the query, before passing
the query to the database [14]. The same is true for defending
against XSS exploits. The input strings must be properly
escaped from characters that may cause scripts before being
passed of to the database [18].

C. How can Loss of Availability be prevented in GraphQL.

This subsection will list the methods found that solve the
Availability issues found previously

4: In the article An Empirical Study of GraphQL Schemas
by Erik Wittern et al. [10] the authors try to understand how
GraphQL is used in open-source and in industry. However for
our purposes Wittern et al. also examines response times and
later goes into detail why this is a potential security problem.
Since nested queries in GraphQL are applied to all returned
objects of the parent node, nested queries can grow in size
exponentially [10].

A cubic query can for example be achieved by asking for
the friends of friends of friends:

que ry {
f r i e n d s (f i r s t 5){

f r i e n d s (f i r s t 5){
f r i e n d s (f i r s t 5){ b i r t h d a y }
}

}
}

This query’s response would, according to Wittern et al. [10],
function regarding polynomial response for GraphQL be cal-
culated in the following way:

O((n−K) ∗DK)

where:
1) D is the length of the retrieved object list.
2) K is the maximum number of nested lists.
3) n is the size of the query.

Which gives us:

1 + 5 ∗ (1 + 5 ∗ (1 + 5 ∗ 1)) = 156

Note that the +1 is there because GraphQL adds an additional
name field to all lists. Queries with hefty responses such as
these could be used in DoS attacks to overload the server [10].
These can be mitigated as described in 5, 6 and 7 utilizing
depth and complexity. Wittern et al. [10] also introduces some
ways to reduce exposure to DoS attack and making the server
have a reasonable work load; namely paging. In which a limit
is set, for example the maximum amount of friends of users
you can request [22] [10].

6: Since GraphQL itself does not limit depth (or any part
of the construction of a request) [12], it is possible to for
example request the friends of friends of friends and so on
from a database of users in a social media site.

{ d e p t h 0
u s e r { d e p t h 1

f r i e n d s { d e p t h 2
f r i e n d s { d e p t h 3

[. . .] d e p t h n
}

}
}

}

One way to limit deep queries or recursive queries is to
introduce depth in which the server throws an error message
and does not compute queries for all requests with a depth
count over an arbitrary number n. This has the added benefit
that it stops DoS attacks in which complex deep queries spends
all server resources [18]. This does however not stop unusually
large request with many nodes in the root layer.

7 5: As stated above, queries can still request large amounts
of data if they simply pack the root node full of nodes,
traversing broad instead of deep as above [12]. This can be
mitigated with complexity layers. Where each node have a
complexity value and the complexity of the whole query is
the sum of all nodes’ complexity value [18].

{
u s e r { c o m p l e x i t y 1

f r i e n d s (f i r s t 5){ c o m p l e x i t y 5
}

}
}

If the server is configured to allow a complexity of maximum
4 this query above would fail, since it has a complexity of 6.

8: This is most often solved by simply limiting the amount
of requests available in a specific server side set time frame.
For example letting each client have a ”pool” of time which
refills at a certain rate (for example 50 ms per second with a
maximum pool of 1000 ms) [12]. Another, more elegant way
is to throttle based on complexity as described at 7. Where
clients have a pool of complexity which depletes based on the
complexity of request. This makes the client implementation
easier as they do not have to estimate server side computation
time but instead exactly calculate complexity over time [12].

IV. DISCUSSION

When analysing the results, one can see some interesting
patterns and draw some conclusions regarding the current state
of GraphQL security. What has become clear is that GraphQL,
in many aspects, is very similar to other APIs, being affected
by many of the same threats and vulnerabilities. This may
not come as a surprise as GraphQL is still based on HTTP
requests, and need to fulfill many of the same functions as for
example a REST API.

4

One can however note that GraphQL is simply a query
language for server-client communication, and only a part of a
complete web application. It is therefore naive to believe that
GraphQL alone would be responsible for all security aspects of
the system. Take the authorization aspect as an example, which
had shown to probably be better to delegate to the business
logic of the application.

What is more interesting to analyse is the security aspects
that GraphQL and its principles more specifically entail.
Having a more flexible way to query data gives more control
to the client and user about what data to query. This does,
not very surprisingly, seem to be the main security risks
with GraphQL. The survey shows that most risks discussed
or explored have been related to users sending unexpected
queries. Either very large or deep queries which, if not handled
correctly, may overload the server and cause availability issues,
but also queries containing malicious input such as injections
or scripts. Many risks seem to have been found and many
ways to limit or better specify queries have been developed
to counteract them. However, with GraphQL being relatively
young compared to for example REST, there are great chances
that more possible vulnerabilities exists, or will emerge from
further development, meaning this area could be a good entry
point for further studies on the subject.

This leads on to the next big point about the survey. There
seem to have been very little formal research done into the
subject of GraphQL security. This clearly shows from the
lack of articles found discussing the subject when searching
for materials for this survey. There is definitely room for
further studies on the subject. As this survey mainly focuses
on how GraphQL is discussed in the community, it could
be interesting to study how security features are actually
implemented on the web today, compared to the theoretical
background of how they ”should” be implemented. Similar
studies have been done mapping the general use of GraphQL
on the web [10], [11]. These have however mainly focused
on how GraphQL performs regarding over and under fetching
compared to REST, so a more security focused study could
be interesting to see.

V. CONCLUSION

As GraphQL increases in use, the research of how to
develop secure GraphQL APIs is more relevant than ever.
This survey has mapped the current landscape for risks and
vulnerabilities related to the implementation of GraphQL in
web services. It shows that GraphQL is concerned with similar
threats as classic REST APIs, but that the more flexible queries
that characterizes the language, also opens up the possibility
of an attack, both in order to cause denial of service, or access
or modify confidential information.

The survey also highlights the lack of formal research in the
subject, indicating that this is a field to study further. With this
work, we hope to have helped lay a foundation upon which
this further research can be based upon.

REFERENCES

[1] “Graphql: A query language for apis.” [Online]. Available:
https://graphql.org/

[2] “Graphql vs rest - a comparison.” [Online]. Available:
https://www.howtographql.com/basics/1-graphql-is-the-better-rest/

[3] “Queries and mutations.” [Online]. Available:
https://graphql.org/learn/queries/

[4] “Graphql core concepts tutorial.” [Online]. Available:
https://www.howtographql.com/basics/2-core-concepts/

[5] “Graphql architecture big picture.” [Online]. Available:
https://www.howtographql.com/basics/3-big-picture/

[6] “Cia-triad,” accessed: 2020-04-06. [Online]. Avail-
able: http://www.e2college.com/blogs/risk management/confidentiality
integrity availability.html

[7] “Authentication and express middleware.” [Online]. Available:
https://graphql.org/graphql-js/authentication-and-express-middleware/

[8] “Authorization.” [Online]. Available:
https://graphql.org/learn/authorization/

[9] “Validation.” [Online]. Available: https://graphql.org/learn/validation/
[10] E. Wittern, A. Cha, J. C. Davis, G. Baudart, and L. Mandel, “An

empirical study of graphql schemas,” in International Conference
on Service-Oriented Computing. Springer, 2019, pp. 3–19. [Online].
Available: https://arxiv.org/pdf/1907.13012.pdf

[11] T. Taskula, “Advanced data fetching with graphql: Case bakery
service,” G2 Pro gradu, diplomityö, 2019-03-11. [Online]. Available:
http://urn.fi/URN:NBN:fi:aalto-201903172287

[12] “Howtographql,” accessed: 2020-04-09. [Online]. Available:
https://www.howtographql.com/advanced/4-security/

[13] “Securing your graphql api from malicious queries,” accessed: 2020-04-
06. [Online]. Available: https://blog.apollographql.com/securing-your-
graphql-api-from-malicious-queries-16130a324a6b

[14] “Discovering graphql endpoints and sqli vulnerabilities,” accessed: 2020-
04-09. [Online]. Available: https://medium.com/@localh0t/discovering-
graphql-endpoints-and-sqli-vulnerabilities-5d39f26cea2e

[15] M. T. You, “Learning graphql mongodb security vulnerabilities,” Dec
2019. [Online]. Available: https://medium.com/@mrthankyou/learning-
graphql-mongodb-security-vulnerabilities-b52f7e26ee24

[16] “The $30,000 gem: Part 1.” [Online]. Available:
https://www.hackerone.com/blog/the-30-thousand-dollar-gem-part-1

[17] “Bypass account level permissions through parame-
ter smuggling,” accessed: 2020-04-09. [Online]. Available:
https://labs.detectify.com/2018/03/14/graphql-abuse/

[18] “Graphql - security overview and testing tips,” accessed: 2020-04-
09. [Online]. Available: https://blog.doyensec.com/2018/05/17/graphql-
security-overview.html

[19] D. Simha, “Authentication and authorization in graphql (and
how graphql-modules can help),” Mar 2019. [Online]. Avail-
able: https://medium.com/the-guild/authentication-and-authorization-in-
graphql-and-how-graphql-modules-can-help-fadc1ee5b0c2

[20] P. Corey, “Nosql injection and graphql,” Jun 2016. [Online]. Available:
http://www.petecorey.com/blog/2016/06/13/nosql-injection-and-graphql/

[21] ——, “Graphql nosql injection through json types,” Jun 2017. [On-
line]. Available: http://www.petecorey.com/blog/2017/06/12/graphql-
nosql-injection-through-json-types/

[22] GraphQL, “Pagination,” 2020. [Online]. Available:
http://graphql.github.io/learn/pagination/

5

