
Blockchain Security in IoT
Eric Nylander

eriny656@student.liu.se
Linköping University
Linköping, Sweden

Lukas Osipovič
lukos321@student.liu.se

Vilnius University
Vilnius, Lithuania

ABSTRACT
The application of blockchain technology to IoT networks is a
subject of ongoing study due to the decentralized nature of the
blockchain. IoT devices have unique limitations and requirements
placed on them as relates to storage, computation and latency.
Blockchain has the desirable property of democratizing processes
among concerned nodes on a network. Applying these two fairly
novel technologies on one another raises concerns as to the security
of such a network, what vulnerabilities exist and what potential
remedies can be applied. Any such remedy must be constrained
by the aforementioned limitations and requirements on an IoT
network.

The following paper analyzes inherent and applicable security
measures of blockchain technology when practically applied to a
simple IoT network using the Hyperledger Fabric framework and
finds that certain aspects of the framework such as its private per-
missioned nature offer strengths as opposed to a general blockchain
network. Further, it explores some limitations in the Fabric frame-
work and documentation in application to a network of devices
running mixed architectures.

1 INTRODUCTION
Due to the modern network infrastructure shifting into the domain
of Internet of Things (IoT), there is a growing interest in applying
novel solutions to communication and administration between
these devices. Such devices include wearable devices and smart
TVs, sensors such as motion and light sensors or some combination
of sensors and computational devices. These devices may have
unique requirements as they relate to latency on the network and
are often limited in computational power and storage capacity.

Blockchain technology has recently gained traction in applica-
tion to such IoT networks due to its decentralized nature, democratic
administration of resources, and basic security requirements [18].
However, the application of this technology to a network archi-
tecture poses challenges to the limitations of devices on an IoT
network with minimal computational and storage capacities while
maintaining the network security.

Yakoob, et al. outline a series of requirements on an IoT network
that an architecture would need to meet as relates to resource
control, energy awareness, and security, among others [22]. We
expand their definition of energy awareness to a more general
resource awareness in order to incorporate the possible limitations
of storage and computation power of the IoT devices.

With the expansion of IoT there have been a lot of work put
into providing security to the network and its components. For
instance, to help establish a secure End-to-End (E2E) connectivity
between low-power IoT devices and cloud servers a mobile-based
relay solution was presented and documented in detail [15]. There

was also a study done on the development of a system model that
ensures security on E2E connectivity between IoT devices and
Unmanned Aerial Vehicles (UAV) and manages the data processing.
[16]

1.1 Motivation
The following paper outlines a literature study done on the pre-
requisites of an IoT network as well as general information about
blockchain technology. The paper then goes on to set up a simple
IoT network using two Raspberry Pi 3s running Ubuntu 18.4 as well
as a single admin device running Ubuntu 18.4 on x86_64 architec-
ture. This simple network serves as a prototype for creating an IoT
network using blockchain technology.

Tests are performed on adding and removing organizations and
peers as well as modifying access control on this network. Beyond
this, simple applications are deployed on the devices that utilize
chaincode to query the ledger while the admin modifies the content
of the ledger. Then, we ensure that actions beyond the permis-
sions offered by the access control defined for the network are not
possible to perform.

The latest version of Hyperledger Fabric released in January
of this year and offers some valuable improvements to areas that
relate to decentralization that apply well to an IoT network. [4]
However, there exists no official method to deploy a network on
distributed devices. Through analysis of the security merits of a
blockchain network using the Hyperledger Fabric framework along
with the creation a prototypical network using amixture of different
architectures typically present in an IoT network, we demonstrate
areas of focus for future development of the security provisions of
the framework and provide a basis from which to develop secure
distributed networks using the Hyperledger Fabric framework.

2 BACKGROUND AND THEORY
This section will contain an analysis of blockchain technology as
applied to IoT from literature studies as well as how Hyperledger
Fabric implements various solutions.

2.1 Blockchain Properties
This subsection will analyze the theoretical security benefits and
limitations of blockchain technology on an IoT network. Blockchain
networks operate and validate transactions of a number of assets by
having the relevant parties sign transactions using public-key cryp-
tography. These transactions are easily validated by other members
of the network to ensure that nobody on the network performs an
unauthorized action.

When enough members have validated a transaction, it is added
to a block of committed transactions on a peer who then adds the
block to the end of the blockchain when certain conditions are met



Eric Nylander and Lukas Osipovič

and propagates that block through the network. Once a block has
been added to a blockchain, it cannot be removed by any interaction
on the network; this ensures the immutability of the blockchain.[19]

The blockchain does not contain the current state of assets on
the network. The blockchain does however store all transactions
and other business data manipulations performed on the network,
such as smart contracts. Thus, the state of assets on the network can
be derived from the blockchain since it contains all state-transitions
performed on the network.

2.1.1 Consensus protocols. In order to add blocks to a blockchain,
each block needs to be approved by a subset of members of the
network. Determining which members need to approve a block
before it is added is done using consensus protocols. There are
a number of consensus protocols that are available to use on a
general blockchain network, but many of them are designed to be
used on networks that manage cryptocurrencies, or on devices that
are more powerful than those expected on an IoT network.

Since IoT networks are limited in their computational and stor-
age capacity, specific consensus protocols are required in order to
preserve security on an IoT blockchain network. Salimitari et. al.
suggest that the consensus protocols that are best for such a net-
work are Proof of Elapsed Time (PoET), Practical Byzantine Fault
Tolerance (PBFT), and Tangle. [17]

2.1.2 Smart Contracts. Smart contracts allow users to deploy ap-
plications on the blockchain utilizing the decentralized aspects
of blockchain technology. These applications can be used in IoT
networks to manage devices on the network. [12]

2.1.3 Permissioned Blockchain. Permissioned blockchains allow
for application of access control to a blockchain network. This
restricts who may perform arbitrary actions on the network, and
ensures that each member of the network must be given a level of
access control. This allows control over integrity and confidentiality
of transactions on a network since it is possible to restrict the
capabilities of vulnerable devices on an IoT network.

Since each device must be registered on the network to be given
access, this also means that breaches on the network can be traced
to individual devices. [9] In addition, certain consensus protocols
require permissioned networks in order to be effective. [17]

2.1.4 Ledger Fork. The order in which transactions occur on the
network may differ as they reach members of the network and thus
blocks may be added at different times and in different orders on
different members. When two or more members append a block to
the chain and propagate that new block through the network, it is
called a ledger fork. Different blockchain technologies handle these
ledger forks in different ways.

One such example is the Longest Chain Rule which states that
when a fork is discovered on the blockchain by a member, the
member chooses to switch to the longest chain. This introduces
some nondeterminism to the order of transactions on the blockchain
at any time and a transaction that has been appended to one fork
may not exist on the second fork and thus has some probability of
being invalidated later in time. [7]

2.2 Hyperledger Fabric Model
Hyperledger Fabric is a framework that can be used to build a
network that uses blockchain to perform validation and ordering
of transactions on the network. The project in this paper uses
Hyperledger Fabric 2.0.

2.2.1 Ordering Service. The ordering service is a group of members
that ensures that transactions are added to blocks in the same order
across all members. When a transaction is added to a block, it
must first be ordered among all other transactions that have been
committed to blocks on the network.

The ordering service by default requires that all orderer members
validate the order of transactions before a block is appended to the
blockchain. This ensures that the blockchain is deterministic and
that a ledger fork is impossible on a Fabric blockchain.

2.2.2 Ledger. Across all Hyperledger frameworks, there exists a
ledger that is updated across all members of the network, providing
eventual consistency on the blockchain on the network. Hyper-
ledger extends the concept of the ledger and stores the ledger as
two objects: the blockchain and the world state database.

The blockchain follows the general definition of a blockchain
in that it is an immutable, write-only data entity that contains the
information about transactions of assets on the network.

The world state database on the other hand contains information
about the current state of assets on the network. As such, when a
block is added to the blockchain, it is possible to update the world
state database after adding a block to the blockchain. This is possible
since the ordering service ensures that it is not possible for different
forks of the blockchain to occur.

2.2.3 Chaincode. Chaincode refers to packages of smart contracts
in the Hyperledger Fabric framework. In order to deploy chaincode
on a channel, the code is packaged, signed and installed on the
relevant peers who, in turn, sign the package on success and commit
the chaincode deployment to a block on the blockchain in the same
way as a transaction is committed.

Determining which peers must sign a chaincode package before
it is committed to a block is handled separately from the consensus
protocol for the blockchain and must be defined for each chaincode
package individually.

2.2.4 Channel. In simple terms, channels are sub-networks on the
main Fabric network and each may contain their own ledger and
individual configurations. Only members of a channel may write
to the blockchain according to their permissions on that channel.

2.2.5 Organization. Organizations are units that may encompass
a number of peers and applications. An organization’s identity may
be used in a channel policy to determine the rights afforded to the
peers in that organization.

2.2.6 Peer. Peers are units that may be members of one or more
channels and one organization. This is the unit on the network
that hosts instances of ledgers and chaincode. Peers are the only
units that contain information about the ledger and chaincode on a
network, so any unit that needs access to these resources does so
through interaction with peers.



Blockchain Security in IoT

Upon joining a channel, a peer is given access control rights
according to its identity, as defined in the channel’s policy.

2.2.7 Application. Applications interact with the blockchain net-
work to perform tasks on channels. These transactions are done
through ordered interaction with peers and orderers who in turn
handle the logic for chaincode and administration of a network or
channel.

2.3 Hyperledger Fabric vs Hyperledger Iroha
Hyperledger is a collaborative project for supporting open source
blockchain frameworks for everyone that is in need of developing
applications and services that require blockchain technology. There
are plenty of options to chose from depending on the requirements
of your network. The distributed ledger frameworks include Besu,
Burrow, Fabric, Indy, Iroha and manymore. The Hyperledger family
tree is shown in the Figure 1.

Figure 1: Hyperledger Family Tree. Image is from hyper-
ledger.org.

For our project we needed a framework that features a general-
purpose, simple and open-source framework that supports smart
contracts and is aimed at developing permissioned applications.
Although Fabric was the clear choice for our work, we took the
liberty and time in exploring Hyperledger Iroha and its advantages.
Iroha has a simple architecture with C++ design and it comes with
the YAC [14] consensus algorithm. A more detailed comparison
of all the Hyperledger frameworks was done by the team at FPT
University [20].

2.3.1 Smart Contracts. In Fabric a smart contract is called a chain-
code. An endorsement policy which plays a big part in the valida-
tion of transactions is determined by the chaincode. In the situation
when a client sends a transaction, a transaction is being executed by
specific peers and the output is stored. After that, transaction goes
into ordering phase which uses consensus protocol to construct
ordered sequence of the transactions that later will be grouped in
blocks. Apart from that Iroha also provides a batch of transactions
that allows sending its peers several transactions at once while still
preserving the order.

2.3.2 Blocks. Blocks in both the Fabric and the Iroha networks
are broadcasted to all the peers that are part of the channel. Blocks
consist of the Header, Data and MetaData. Blocks are also signed
with the cryptographic signatures by the peers for validation.

2.3.3 Consensus. Raft algorithm is responsible for consensus in
the Fabric network. The protocol is used to keep all transactions
on the blockchain ordered, and requires more than half of orderers
to be active.[3] As already mentioned above the YAC consensus
algorithm is implemented by the Iroha framework which basically
performs ordering and consensus.

2.3.4 Nodes. Both Iroha and Fabric have the same set of nodes in
their network. Expect that Fabric network is permissioned so all
the nodes need to have an Identity provided by the Member Service
Provider (MSP). There can be three kinds of nodes:

• Clients. In Fabric peers can submit transactions proposals
for execution. On the other hand in Iroha clients have more
power. They can query the data while also performing state-
changing action or transaction.

• Peers. In Fabric peers are responsible for executing transac-
tions proposals and validating them. In the Iroha network
a peer has an address and maintains a copy of the current
ledger.

• Ordering Service. In both frameworks the ordering service
establishes the order of the transactions.

After investigating the differences between frameworks that are
provided by the Hyperledger open-source projects, the best fitting
option was Hyperledger Fabric. It provides permissioned applica-
tion development with the implementation of smart contracts while
maintaining a simple and modular architecture. While being one of
the most developed framework, Fabric also has a lot of documenta-
tion which helped in setting up the environment and understand
the underlying logic of the technology.

3 METHODOLOGY
3.1 Prerequisites
Hyperledger Fabric framework was deployed on the network using
Raspberry Pi 3 devices. The Raspberry Pi is a very cheap computa-
tional device that operates in Linux environment and provides a
great opportunity to explore Internet of Things (IoT).

Our initial setup involved:installing an Ubuntu 18.04 operating
system (version for Raspberry Pi ARM architecture), configuring
wireless interfaces for establishing SSH connection and establish-
ing a VPN tunnel between our devices. Because this project was
done during the spread of COVID-19, Raspberry Pis were setup
in different places and were connected using ZeroTier VPN [5].
ZeroTier using certificates to control access to virtual networks
and all the traffic between peers are encrypted using end-to-end
keys. The implementation was very simple since it didn’t require to
manually generate certificates and import them into Raspberry Pis.
VPN implementation process consists of installing ZeroTier service,
creating and joining the VPN network with provided ID.

3.2 Installation
Hyperledger Fabric was built using Go progamming language. The
version of Go that we used with our system was crucial since some
older versions had issues and error that could not be dealt with. Fur-
thermore, Docker, Docker Compose and Docker Swarm needed to be



Eric Nylander and Lukas Osipovič

Figure 2: Custom network design with two peers on Raspberry Pi’s and one orderer on a computer.

installed. With Docker Compose you can run multiple containers at
once that work in sync and Docker Swarm groups multiple physical
devices into one virtual cluster. In order to deploy the blockchain
network we needed to download compiled binaries on github [11].
The repository included docker images for AArch64/ARM64 build
for use with the Raspberry Pi 2/3/4 ARM which was the crucial part
of the installation. It also included configuration files for setting
up the network and various test scenarios for understanding the
concept Hyperledger Fabric logic.

3.3 Deploying Fabric Network
To deploy the Fabric network we have used scripts that were pro-
vided in the repository which was downloaded earlier. It should be
noted that scripts generated an environment which was set up for
educational purposes to teach developers about smart contracts and
blockchain applications. This is why it was a perfect fit for our net-
work as it provided the tools and the documentation to experiment
with. Using the Docker images we brought up the network.

Our initial Fabric network consisted of two peer nodes that were
operating in different organization and one ordering node. See
Figure 2 for network design. After the nodes were setup, private
layer of communication was needed for the nodes of the network to
communicate. We created a Fabric channel for transactions between
our organizations. It is important to know that channels can be
used only by organizations that are invited to join that particular
channel. After the channel is created, the nodes of the network
need smart contracts to start interacting with the ledger.

3.4 Deploying Chaincode on the Network
Hyperledger Fabric provides several APIs for the development of
Chaincode in Go, Node.js and Java. In order to create a simple test
network, we write chaincode that initializes with a set amount
of assets and a framework for authorized members to query and
transact these resources.

The chaincode created provides each of the raspberry pi:s with
the ability to query values on the blockchain.

We also provide an admin peer that exists on one of our com-
puters the rights to edit chaincode on members of the channel.
This emulates the ability for a peer to edit configurations of IoT
devices. This peer is also the only one that is permitted to perform
transactions on the ledger.

3.5 Test applications
Applicationsmay be developed forHyperledger Fabric 2.0 inNode.js
or Java. SDKs for Python and Go exist, but do not support Fabric
1.4+. We write simple applications that perform actions using each
of our peers.

On each of the Pi:s, applications query the ledger for values at
set intervals and react by printing to the console when the ledger
reaches a certain state. This will verify that each Pi has been given
appropriate permissions on the network and can access the state of
the ledger.

The admin peer has an application that modifies values on the
ledger. The admin peer uses chaincode that it has deployed on the
blockchain to modify these values on each of the Raspberry Pi:s.
Upon successful commits to the ledger, the Raspberry Pi:s should



Blockchain Security in IoT

respond by outputting values to the console once their threshold
for ledger state has been met.

3.6 Experimentation
3.6.1 Adding an Organization/Peer to the Fabric Network. Adding
an organization or peer to the network requires a member to have
Admin privileges on the network. As a test, we have an admin
create a peer that belongs to its own organization on the main
channel of the test network. This peer has minimal rights and in
turn attempts to perform tasks for which it is unauthorized.

3.6.2 Adding and removing access control. Access control is de-
fined in a configuration file for each channel that is created on the
network. This file determines the rights given to different roles on
the network, with default roles such as Reader, Writer and Admin
being defined. The channel admin makes edits to access control on
the channel and the result is noted for the affected peer.

3.6.3 Deploying and querying chaincode. Using the method de-
scribed in section 3.5, we deploy, edit and invoke chaincode on
the network to ensure that the chaincode is installed only on the
relevant peers and that only the chaincode that the admin peer
deploys is validated by the Raspberry Pi peers.

4 DISCUSSION
4.1 Literature Review
Much of the literature that has beenwritten on the topic of blockchain
have been written very recently, and the topic itself is very broad in
scope, even when focused on the security of a blockchain network
on IoT.

4.2 Security concerns in IoT
It is very important to note that although blockchain is an innova-
tive solution to our current centralized network, it still has some
issues regarding security measures. There is still a wide range of
attacks that can be performed on a blockchain-based IoT systems.
Researchers at a Swinburne University of Technology discussed
and showcased different techniques for avoiding security measures
of blockchain [21].

• Sybil attacks It describes a situation when adversaries pro-
duce a large amount of fake IoT user nodes and then tries to
impact the blockchain network with the majority of peers. It
is worth noting that this attack inflict a huge privacy leakage
once the network gets taken over.

• Message Spoofing In a blockchain environment message-
spoofing is an attack when a intruder is broadcasting fake
messages in the network to lower security, privacy or effi-
ciency of the network [10].

• Linking attacks Linking attacks are more associated with
the data that are on the blockchain network. Third party
operators try to use the external data that is linked with the
protected data within the network in order to infer personal
information about the node in the blockchain network.

4.3 Storage concerns in IoT
Deploying a blockchain on an IoT network presents difficulties due
to the unique limitations of embedded devices.

Storage is a main concern in this regard since the entirety of the
blockchain must be stored on each device that communicates with
the network for the purpose of validating transactions. According
to an IBM white paper on the subject, when expecting a feasible
100 transactions per second, each peer is expected to require over
315TB of storage per year. [8]

Block archiving is a possible solution to this problem, where vali-
dated segments of the blockchain are stored on a remote repository
while devices utilizing the blockchain store the latest blocks of the
blockchain that are still useful for validation. An implementation of
this solution in Fabric is underway, and is specifically constructed
with IoT in mind.[1] However, this solution is not entirely feasible
as of yet in part due to issues in how peers validate blocks - block
sizes may differ between peers due to block metadata.[2] The solu-
tion may also introduce some latency when querying data history
on the blockchain, but has not yet been tested.

The aforementioned solution also limits the desirable property
of decentralization since a storage device that contains the archived
blocks is required, and while many copies may still be available
over the network, this is similar to centralization of data at data
centers.

4.4 Performance Evaluation and Comparison
with Raspberry Pi Zero

In order to understand the workload for an IoT network imple-
mented with blockchain technology, we first need to acknowledge
the ecosystem of the IoT. According to the [6], the ecosystem con-
sists of:

• The hardware components of the interconnected devices
with the appropriate gateways.

• Connectivity between the network nodes and with the out-
side Internet.

• The deployed services on the network and running applica-
tions.

It can be noted, that depending on the domain on which the
IoT devices specialize in, nodes in the network can a share a huge
amounts of data. In these scenarios, the network has to deal with
latency issues, congestion and consumption problems.

During the development of our network, we did ran into a few
latency problems with Raspberry Pi 3 which was expected. It did not
cause any major problems nor malfunctions which would nominate
the device for the usagewhile experimenting blockchain technology
in an IoT network.

Although Raspberry Pi 3 could be also described as a real com-
puter due to its computational power, Raspberry Pi Zero is a perfect
example of an IoT network component. In our project, we also
wanted to research what power and computational limitations there
are for blockchain deployment. A study on performance evalua-
tion of Raspberry Pi Zero W [13] showed that in a case you use
Raspberry Pi Zero as a IoT Gateway for blockchain service, there
are no crucial limits of the hardware and nature of the device. The



Eric Nylander and Lukas Osipovič

tests were performed in order to increase the temperature and CPU
usage but it was not sufficient enough to damage the device or to
disable a running service.

This would indicate that blockchain technology is a plausible
security implementation to IoT networks which could improve the
security features without consuming the majority of the network
traffic.

4.5 Practical Work Review
Due to the COVID-19 pandemic, the scope of the project expanded
beyond simply setting up a network for testing. Setting up the test
network required the use of a VPN, and some issues that arose on
one of the Raspberry Pi:s were not present on the other, likely due
to each person involved having experimented with their individual
Raspberry Pi.

Using the Raspberry Pi:s necessitated the establishment of a
Docker swarm for ease of deployment and consistent network defi-
nition across all devices. Once this is set up, however, deploying the
network and havingmembers interact with one another is relatively
simple since connection between devices is handled automatically
once a container is deployed on a remote device.

Once devices are connected and permissions are distributed, it is
possible to deploy chaincode, but each device that needs to utilize
chaincode simply validates on a successful install. A misconfig-
ured policy for a channel may open up the channel for attack if
an attacker can coerce a vulnerable device to run an application
that changes values on the ledger. But the nature of blockchain
technology makes adding bogus data to the blockchain from a de-
vice not authorized on the channel relatively difficult at scale. As
such, performing transactions that edit the shape of the channel by
adding organizations, peers, or chaincode is relatively difficult.

On the other hand, since Fabric peers store the world state in a
database that is unencrypted by default, it is simple to determine
the state of the ledger at any time relative to a ledger that is simply
stored as a series of transactions on a blockchain.

4.6 Challenges and Error Handling
Many of the issues that held back the development of this project re-
lated to the ARM64 architecture of the Raspberry Pi:s. The method
used for setting up test network using Fabric relied on Docker im-
ages, but there were no images that were compiled for the ARM64
architecture, and we therefore relied on unofficial binaries deployed
to the Docker Hub. This meant changing many values in configura-
tion files for the test network before we could progress in writing
our own tests. Roughly half the time for this project was devoted
to fixing issues such as this through trial-and-error.

We chose to use the Fabric framework due to it being well
adapted to the task of setting up an IoT network and relatively
modular. However, the decision to use the latest version of Fab-
ric led to its own share of hurdles since there were relatively few
guides to setting up a network on Raspberry Pi:s using this version.
We "reinvented the wheel" when getting adjusted to managing the
network since using examples from these guides was impossible
in many cases. Had we chosen to use Fabric 1.4 instead of 2.0, we
would have saved a great deal of time in setting up networks and
troubleshooting issues that related to misconfigured config files.

Overall, the scope of our initial plan for this project was well
beyond what we had time to accomplish in the short time allowed
for this project. Since both parties involved in the development of
these tests were entirely unfamiliar with development of blockchain
networks, reducing the scope of the project to a literature review
of blockchain on IoT and instead simulating such a network using
Docker containers on a single device running an x64 architecture
would have resolved issues so that more time could be spent on
testing security on the network such as sybil attacks and methods
for enhancing confidentiality of the ledger.

5 CONCLUSIONS
In this paper our aim was to discuss the possibilities of using Hyper-
ledger Fabric framework for securing and keeping the privacy of a
blockchain-based Internet of Things network. The main reason why
we chose to work with Fabric framework is that it is private and
permissioned. Rather than an open permissionless environment
that is free to anonymous identities to take part in the network,
the nodes of the Fabric network can join the network through a
trusted MSP. We mainly focused on understanding the underly-
ing technology of Fabric framework and the principals used for
developing blockchain network in IoT. We have also managed to
deploy a successful blockchain network in an IoT environment
and tested features like smart contracts implementation, channel
configuration and privacy validation.

Among the discussed implementations of blockchain technol-
ogy, we have reviewed some of the possible security threats that
surround the innovative technology and its functionalities. How-
ever because of the nature of the blockchain technology and its
architecture the attacks mentioned in paper would be difficult to
execute.

Some issues as relates to storage and computation persist with-
out sufficient solutions when deploying a blockchain on an IoT
network. For example, while working with this project, the stor-
age capacity of each Pi was 32GB. Though storage capacity may
increase in future for embedded devices, it is infeasible to expect a
full blockchain to be stored on each device at scale when the size
can grow to the order of hundreds of TB.

6 FUTURE AREAS OF STUDY
This paper aimed to develop a reliable method for deploying a net-
work over distributed devices while focusing on areas of improve-
ment for future development of the Hyperledger Fabric framework.
In future, it would likely be beneficial to extend this test network to
incorporate more complex network configurations as well as mod-
elling different application areas such as management of industrial
devices and smart homes.

As one of the main bottlenecks of IoT devices is the limited
computing power and storage capacity, methods for archiving old
blockchain data without potential loss of integrity should be ana-
lyzed. In addition, practical application of various consensus proto-
cols on the Fabric network could provide valuable insight into how
they effect performance on a scaling permissioned network using
benchmark testing against the default consensus protocol.



Blockchain Security in IoT

REFERENCES
[1] [n.d.]. https://github.com/hyperledger-labs/fabric-block-archiving
[2] [n.d.]. https://lists.hyperledger.org/g/fabric/topic/58600016
[3] 2020. Raft Consensus Algorithm. https://raft.github.io/.
[4] 2020. What’s new in Hyperledger Fabric v2.x.
[5] 2020. ZeroTier VPN. https://www.zerotier.com.
[6] Serge Autexier, J. Campbell, J. Rubio, V. Sorge, M. Suzuki, and Freek Wiedijk.

2008. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics): Preface. 5144 (01
2008), V–VI.

[7] Nicolas Courtois. 2014. On The Longest Chain Rule and Programmed Self-
Destruction of Crypto Currencies. (05 2014).

[8] Steve Elliott. 2018. Storage requirements for blockchain applications. IBM (April
2018). Accessed: 2020-04-03.

[9] Jake Frankenfield. 2019. Permissioned Blockchains. https://www.investopedia.
com/terms/p/permissioned-blockchains.asp Accessed: 2020-05-04.

[10] Christoph Günther. 2014. A Survey of Spoofing and Counter-Measures. Naviga-
tion 61 (09 2014). https://doi.org/10.1002/navi.65

[11] Johan Hedlin. 2020. Hyperledger Fabric binaries for AArch64/ARM64
(Raspberry Pi 2/3/4). https://github.com/busan15/fabric-
binaries-pi?fbclid=IwAR1M21pAY43POQ7p0PobMDe89ajnP3Zs_
PTSpfjO9yMZVtWhmegEGR2XMDc.

[12] S. Huh, S. Cho, and S. Kim. 2017. Managing IoT devices using blockchain
platform.. In International Conference on Advanced Communication Tech-
nology, ICACT. ETRI, 464–467. https://login.e.bibl.liu.se/login?url=https:
//search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edselc&
AN=edselc.2-52.0-85018510486&lang=sv&site=eds-live&scope=site

[13] D. B. C. Lima, R. M. B. da Silva Lima, D. de Farias Medeiros, R. I. S. Pereira,
C. P. de Souza, and O. Baiocchi. 2019. A Performance Evaluation of Raspberry
Pi Zero W Based Gateway Running MQTT Broker for IoT. In 2019 IEEE 10th
Annual Information Technology, Electronics and Mobile Communication Conference

(IEMCON). 0076–0081.
[14] Fedor Muratov, Andrei Lebedev, Nikolai Iushkevich, Bulat Nasrulin, and Makoto

Takemiya. 2018. YAC: BFT Consensus Algorithm for Blockchain.
[15] P. Porambage, A. Manzoor, M. Liyanage, A. Gurtov, and M. Ylianttila. 2019.

Managing Mobile Relays for Secure E2E Connectivity of Low-Power IoT Devices.
In 2019 16th IEEE Annual Consumer Communications Networking Conference
(CCNC). 1–7.

[16] Archana Rajakaruna, Ahsan Manzoor, Pawani Porambage, Madhusanka
Liyanage, Mika Ylianttila, and Andrei Gurtov. 2018. Enabling End-to-
End Secure Connectivity for Low-Power IoT Devices with UAVs. (2018).
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?
direct=true&db=edsarx&AN=edsarx.1811.04283&site=eds-live&scope=site

[17] Mehrdad Salimitari and Mainak Chatterjee. 2018. A Survey on Consensus
Protocols in Blockchain for IoT Networks. (2018). https://login.e.bibl.liu.se/
login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,
uid&db=edsarx&AN=edsarx.1809.05613&lang=sv&site=eds-live&scope=site

[18] Mayra Samaniego and Ralph Deters. 2016. Blockchain as a Service for IoT. 433–
436. https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.102

[19] Caner Taçoğlu. [n.d.]. Immutability. https://www.binance.vision/glossary/
immutability Accessed: 2020-05-04.

[20] Ban Tran Quy, Bui Anh, Ngo Son, and Tran Dinh. 2019. Survey of Hyperledger
Blockchain Frameworks: Case Study in FPT University’s Cryptocurrency Wallets.
ICSCA ’19: Proceedings of the 2019 8th International Conference on Software and
Computer Applications, 472–480. https://doi.org/10.1145/3316615.3316671

[21] Muneeb Ul Hassan, Mubashir Husain Rehmani, and Jinjun Chen. 2019. Privacy
preservation in blockchain based IoT systems: Integration issues, prospects,
challenges, and future research directions. Future Generation Computer Systems
97 (03 2019). https://doi.org/10.1016/j.future.2019.02.060

[22] I. Yaqoob, E. Ahmed, I. A. T. Hashem, A. I. A. Ahmed, A. Gani, M. Imran, and
M. Guizani. 2017. Internet of Things Architecture: Recent Advances, Taxonomy,
Requirements, and Open Challenges. IEEE Wireless Communications 24, 3 (2017),
10–16.

https://github.com/hyperledger-labs/fabric-block-archiving
https://lists.hyperledger.org/g/fabric/topic/58600016
https://raft.github.io/
https://www.zerotier.com
https://www.investopedia.com/terms/p/permissioned-blockchains.asp
https://www.investopedia.com/terms/p/permissioned-blockchains.asp
https://doi.org/10.1002/navi.65
https://github.com/busan15/fabric-binaries-pi?fbclid=IwAR1M21pAY43POQ7p0PobMDe89ajnP3Zs_PTSpfjO9yMZVtWhmegEGR2XMDc
https://github.com/busan15/fabric-binaries-pi?fbclid=IwAR1M21pAY43POQ7p0PobMDe89ajnP3Zs_PTSpfjO9yMZVtWhmegEGR2XMDc
https://github.com/busan15/fabric-binaries-pi?fbclid=IwAR1M21pAY43POQ7p0PobMDe89ajnP3Zs_PTSpfjO9yMZVtWhmegEGR2XMDc
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edselc&AN=edselc.2-52.0-85018510486&lang=sv&site=eds-live&scope=site
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edselc&AN=edselc.2-52.0-85018510486&lang=sv&site=eds-live&scope=site
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edselc&AN=edselc.2-52.0-85018510486&lang=sv&site=eds-live&scope=site
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edsarx&AN=edsarx.1811.04283&site=eds-live&scope=site
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edsarx&AN=edsarx.1811.04283&site=eds-live&scope=site
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.1809.05613&lang=sv&site=eds-live&scope=site
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.1809.05613&lang=sv&site=eds-live&scope=site
https://login.e.bibl.liu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.1809.05613&lang=sv&site=eds-live&scope=site
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.102
https://www.binance.vision/glossary/immutability
https://www.binance.vision/glossary/immutability
https://doi.org/10.1145/3316615.3316671
https://doi.org/10.1016/j.future.2019.02.060

	Abstract
	1 Introduction
	1.1 Motivation

	2 Background and Theory
	2.1 Blockchain Properties
	2.2 Hyperledger Fabric Model
	2.3 Hyperledger Fabric vs Hyperledger Iroha

	3 Methodology
	3.1 Prerequisites
	3.2 Installation
	3.3 Deploying Fabric Network
	3.4 Deploying Chaincode on the Network
	3.5 Test applications
	3.6 Experimentation

	4 Discussion
	4.1 Literature Review
	4.2 Security concerns in IoT
	4.3 Storage concerns in IoT
	4.4 Performance Evaluation and Comparison with Raspberry Pi Zero
	4.5 Practical Work Review
	4.6 Challenges and Error Handling

	5 Conclusions
	6 Future areas of study
	References

