
1

Cracking the Nixu Challenges
Joakim Argillander, Christian Wahl

Abstract—In this report we illustrate a subset of the main topics of this year’s NIXU Challenges (2019). Through our work of solving
these challenges, we discuss the attack vectors made possible by exploiting the vulnerabilities or intrinsic weaknesses of the challenge
topics. Procedures for mitigation of the threats are suggested where applicable and design practices that can aid in detecting ongoing
exploits are suggested elsewhere.

Index Terms—NIXU challenge, CTF, Reverse Engineering, Forensics

F

1 INTRODUCTION

THE cybersecurity company NIXU Cybersecurity is pre-
senting their annual information security challenges,

the NIXU challenges. Participants are given the task of find-
ing so-called flags in a system that are to be submitted on
the challenge website.

The challenges are related to a selection of areas within
memory forensics, reverse engineering and networking. The
purpose of the challenges is to attract potential employees
to the company, and to serve as a recruitment platform for
the consulting company.

In the following, we show our solutions to a subset
of the challenges presented by NIXU in the areas of Data
Exfiltration, Memory Forensics and Reverse Engineering.

2 NETWORK TRAFFIC EXFILTRATION

In order to send data outside of controlled premises it is
oftentimes desirable to hide the data traffic. This is useful in
cases where attackers’ malware sends acquired data out of
company networks from within, or if an insider employee
steals intellectual property from its employer. Conventional
tunnelling of data is often detectable, and it is very clear
what is going on if the network traffic is monitored. The data
is not readable in such cases, but the amount of outgoing
traffic can be sufficient to determine that an exfiltration
attack is ongoing.

These attacks are particularly dangerous, as the data is
sent via normal protocols, remotely, while hidden in plain
sight.

2.1 Data Exfiltration over DNS

A common way of exfiltrating data is to tunnel it over a
DNS request. Seemingly normal DNS requests pass through
a firewall inconspicuously, even though the requests contain
a custom payload. DNS tunnelling is a very stealthy com-
munication way that is often used to silently send data, and
fetch commands to be executed by malware [1].

This can also be used for bypassing payment portal
for services such as customer internet access at hotels, for
example. Those services can be exploited particularly easy
if the firewall accepts outgoing DNS requests. If so, it is
reasonable to believe that the hotel does not have local
DNS servers on site that enforce the limitation but is using

a purchased service from a payment portal provider. This
enables exploiters to send HTTP data in the payload field
of the DNS request. The payload is usually formatted as
a domain query where the domain part is the payload
encoded as a hexadecimal string. The request is then made
to a server the exploiter controls, which then acts as a proxy
for relaying the HTTP requests and responses.

Tools such as Iodine [2] have been developed to make
DNS tunnelling easier, and allows data to be encoded as a
base64-string in the requests for A-records. The receiving
server is set to respond with the payload within NULL-
responses, in which payload of up to 16 bits may be used [3].
This method supposedly can reach up to 1 Mb/s down-
stream, but with a highly asymmetrical bandwidth thus
yielding a much lower upstream bandwidth. [2]

2.2 Data Exfiltration over UDP Port Numbers
One of the challenges demonstrated another form of data
exfiltration, but this time over UDP. The data was encoded
into the source port numbers of datagrams sent over the
network. This data is then retrieved on the server and re-
assembled into data. In this way, UDP packets can be sent
with dummy payload that can contain seemingly inconspic-
uous data, while the real exfiltration is done by the port
number modulation.

2.3 Mitigation
Although some novelty use cases, e.g. pay-wall evasion,
for exfiltration exploits exist, these can also manifest in the
form of real attacks on corporate’s intellectual property.
It is of importance that enterprises who wish to uphold
confidentiality of internal data need to take measures to
mitigate potential attack vectors.

2.3.1 Verifying DNS Host Name
To mitigate data-exfiltration over DNS tunnelling, the re-
quests’ host-name may be verified with a trusted third party
DNS provider such as, for example Google or Cloudflare. This
is, in practise, done by monitoring each outgoing DNS re-
quests and verifying the host-names before either allowing
the DNS request coming from the suspected exploiter to go
through, or just returning the response to the verification
query. If the query is legitimate, both of the queries should
return the same response [4].



2

2.3.2 Disallow Rapidly Changing Source Port

If an UDP data exchange is followed, and many packets are
being sent from within a network to an outside host, and the
source port numbers are changing with each datagram sent,
it should raise suspicion. It can be said, with some degree
of accuracy, that it is an attempt of exfiltration of data. As
the data amount that can be sent with each UDP packet is
very limited (16 bit), it would require a substantial number
of messages being sent in order to exfiltrate any real data.
By imposing a limit on the number of source port number
changes of datagrams to the same destination host within a
certain time interval before packets are dropped, mitigation
of UDP port number exfiltration may be achieved.

3 MEMORY FORENSICS

Memory forensics is the act of retrieving data about a par-
ticular computer’s state at a given time. The techniques of
memory forensics often used in law-enforcement purposes
where a computer is analysed for proof of criminal activity,
but it is also used as an advanced attack vector targeting an
entire computer. This is done by means of memory dumps,
where the current working memory of the computer is
recorded and often extracted to another machine for thor-
ough analysis. By recording the volatile working memory of
the target computer, the current state of the target computer
can be saved and analysed to find traces of actions taken by
the users, malwares and other software.

3.1 Method and tools

The memory forensics challenges were almost exclusively
solved by using the Volatility framework [5]. Volatility is a
comprehensive open-source framework that can perform
analysis such as process listing, process memory extrac-
tion, file extraction and other operating system specific
operations. Only some knowledge of how the program’s
data is stored in memory is needed in order to interpret
the extracted raw data and to retrieve data from the raw
data. For common Windows programs, much information
is available on the Internet for how to interpret data.

A memory profile has to be determined for the memory
dump such that Volatility knows where in memory to look
for symbol tables and which algorithms to use for extracting
data. After running the imageinfo utility, the framework
can correctly identify the image as coming from a Windows
7 SP1 x86 - machine.

Worth mentioning is that memory forensics is easier
when something known is searched for. In the case of the
NIXU challenges the keys’ format is known (NIXU{FLAG}),
searching for the flag format can serve as an initial hypoth-
esis.

3.2 Process Memory Extraction

After listing the processes running on the machine, three
noteworthy programs are open and running:

• notepad.exe
• paint.exe
• lsass.exe

3.2.1 notepad.exe

Notepad is Windows’ default text editor, and works by
storing the text into a memory buffer which is only saved
to a file upon the user’s command. No auto-saving of the
text buffer is done, and it can safely be assumed that any
content that is visible in the text area of the editor exists in
the process’ memory.

The assumption is proven to be correct as the memory
content can be retrieved by dumping the process memory
to a file, running strings and either manually analysing
the content of its output, or piping to grep if parts of the
content is known. In the case of these challenges where the
format of the flag is known, it could easily be grep’ed for,

In reality however, in a forensics use case, analysts
would have to manually search through the outputted
strings that were found by the strings tool. Depending
on text buffer size and operating system, this can be more
or less difficult.

It is also worth noting that as the text is stored into the
process’ memory only, it does not matter if it has been saved
to file or not. As long as the text is visible in the editor, it
exists in the memory, and thus can be retrieved if a snapshot
is taken with the process running.

3.2.2 paint.exe

Much like in the case with notepad.exe, the graph-
ics’ buffer of Windows’ default raster graphics editor,
paint.exe, stores the current drawings of the canvas in
the process memory. The graphics buffer exists in memory
entirely even if not written to a file.

By dumping the memory and opening it in a graphics
editor as a raw input file, the canvas can be restored. Any
metadata or other content of the process can be treated as
noise, as the canvas itself occupies the majority of the data.

It is known that Microsoft Paint saves the current canvas
in a PNG-like format, and the data can therefore be extracted
as each pixel row of the image is stored sequentially.

3.2.3 lsass.exe

The Local Security Authority Subsystem Service is a process
running on Microsoft Windows that authenticates user ac-
counts, handles verification of user passwords and updates
of user passwords. This is an exceptional process to target
with Volatility by dumping its process memory, and then
running it with the Volatility plugin mimikatz.

According to the mimikatz source code, the
lsass.exe service stores the passwords encrypted
with a reversible cipher (AES or DES) [6] in memory.
The plugin searches the process memory for the correct
memory position in which it can find the decryption key
for the passwords. After it found the key to decrypt the
passwords, mimikatz shows the unencrypted passwords
to the attacker.

3.3 File Extraction Using the Microsoft Windows File
Cache
Windows caches files in memory for quicker access times.
This means that files can be retrieved as part of the memory
dump with the tool filedump in Volatility. The framework
iterates over the Virtual Address Descriptors, VADs to retrieve
files that are known to contain data.



3

3.4 Microsoft Windows-specific Graphical User Inter-
face Extraction

Volatility has great tools for targeting Windows’ graphical
user interface.

3.4.1 Clipboard retrieval

By targeting the Windows system’s clipboard array and
cross-referencing its user handles, the contents of the recent
clipboard copies or cuts can be easily retrieved. This is
particularly easy if the data is text content.

In the scope of this project, the clipboard retrieval was
done and contained a clue that implied that the flag was to
be found somewhere related to text editing. This led to the
analysis of the process dump for Notepad.

Copied passwords or other sensitive information is
made available to a potential attacker in cleartext. This is
particularly dangerous as not many users may be aware that
the data of the clipboard is retained after pasting. This could
potentially mitigate long, strong passwords entirely, as they
are more prone to be copied and pasted than shorter ones
that can be memorized.

3.4.2 Window Environment Extraction

Volatility is also able to generate wire-frame diagrams of the
window locations in the Windows graphical interface. The
extracted diagrams show the x, y and z position of each
window that is open. In the context of these challenges, it
was used to see what programs were running in windowed
mode.

These extraction tools do not necessarily give complete
data from a running process but can be used as little clues
as to what the user is currently doing with the machine,
from a user’s perspective, rather than just what processes
are running and their data.

This can give an attacker a good view of what the user
was looking at, at the time of memory extraction. This does
not reveal any content of the windows, but can give an
attacker a good view of what the user was doing, and use
this to infer for example, usage patterns and corporate work-
flows.

From an information security point of view, the safe-
keeping of intellectual property is as important as securing
the data on the system. This implies that, if important
intellectual property can be attributed to work processes or
windowed tools, it is still worth protecting.

However, this feature can still be argued to be more
useful for memory forensics in search for evidence of crimes
as it can give good evidence of what the user was doing at
the time of extraction.

3.5 Mitigation of Malicious Memory Analysis

Common for all these examples is that the content of a run-
ning process can relatively easily be dumped and retrieved
with more or less point-and-shoot tools such as Volatility. As
there is no reasonable way of preventing a memory dump
from occurring, focus should lie on obfuscating the memory
content instead.

3.5.1 Process Memory Encryption
At initial glance, encryption of the memory content appears
appealing. The only issue with nave encryption of the mem-
ory is that the decryption key must also reside in the mem-
ory in order for the encryption to work, thus rendering the
encryption useless if an attacker is able to obtain a complete
memory dump, as it would, along with the process data,
contain the decryption key. For an experienced attacker,
this would pose no real challenge, while it may serve as
deterrence for simpler attackers if considered a practise of
security by obfuscation.

As memory forensics is considered advanced it can be
assumed that attackers employing such techniques are more
akin to advanced persistent threats, thus increasing the need
for other real protection mechanisms.

3.5.2 Microsoft Windows Graphical User Interface Attack
Mitigation
Mitigation of user interface attacks starts at the user. By
employing practises that sensitive data cannot be copied nor
pasted, the risk of having, for example, passwords leaked
through extraction of the clipboard is reduced.

Window location information is guarded, if deemed
necessary, by employing practices that windows are to be
minimized upon leaving the computer unattended.

However, while these security practises are theoreti-
cal measures that mitigate the risk of an attack, they are
not realistic to implement in reality. It might not be easy
to implement procedures that require that much security
awareness by employees in reality, unless the data on the
computers is of extremely high security class. If so, then
there should already be other measures in place that more
efficiently guard against such threats, see Section 3.5.3.

3.5.3 Limiting Physical Access
If the memory content cannot be secured in itself, another
way of securing the data is to limit physical access to the
machine from which a memory dump is wanted. The two
most common ways of acquiring memory dumps is either
to dump the memory on site, or to extract the memory in a
laboratory environment. As the working memory is volatile,
the computer must not be powered off, or else the data is
lost. Simply making sure that computers are powered down
when left unattended will mitigate the risk of having any
data maliciously extracted.

Worth noting is that memory dumps can be acquired
over a network connection, and open source solutions exist
for this purpose. This can be mitigated through usual net-
work security, and practises for that should already be in
place for organizations with rigorous limitations of physical
access.

4 REVERSE ENGINEERING

We solved two different kind of reverse engineering challenges:
The first one (Lisby) is a previously unknown architecture
that needs to be disassembled or implemented in order to
receive the flag. This challenge will be described in Sec-
tion 4.1. The second challenge focused on exploiting buffer
overflows together with the usage of string manipulation
functions that use a length limit.



4

4.1 Reverse Engineering of an Unknown Processor Ar-
chitecture
In this section we focus on illustrating and solving a chal-
lenge that dealt with an unknown processor architecture.
This means, that there are no publicly available tools that
help during this process. Although, the challenge intro-
duction provided us with an implementation specification
outlining all possible instructions and with an overview
over the architecture [7].

The background story for the challenge tells us that this
machine was developed “decades ago” and used to run these
Lisby programs directly. In order to solve this challenge,
we followed the hint from the challenge introduction to
start with ‘disassembling’ the binary [8]. Consequently, we
implemented a framework to disassemble Lisby binaries.
However, disassembling the first challenge revealed a large
number of assembler instructions that we did not intend to
evaluate by hand. Thus, we developed a Lisby implemen-
tation in Python that helped us to solve the challenge by
evaluating the Lisby binary directly. With this tool we were
able to solve these challenges.

If we apply the background story of this challenge now
to the world of legacy systems, we see that the intention of
the Lisby challenges might be to raise awareness for old sys-
tems. As we saw in the challenge, old systems might either
still contain algorithms that are necessary for businesses and
might need to be reverse-engineered or contain information
that a company wants to reconstruct or aids an attacker to
exfiltrate data.

The background story could also be an example of legacy
systems that are still run by banks and rely on programming
languages that can only be written by a limited number
of people (namely COBOL) [9]. As these programmers be-
gan their career during the early days of computers, these
people have retired already and might die soon, take their
knowledge with them and thus create a huge problem for
the industry.

If viewed from a different standpoint, one could also
say that an unknown architecture might give a competitive
advantage as not everyone is able to reverse engineer or
make sense of a binary (an implementation of security by
obscurity).

4.2 Find Possible Exploits in a Given Source Code
The challenge was called “Device Control Pwnel” and might
resemble a program that might be found in an early stage of
development. The challenge was written in the C program-
ming language and used the fgets function in combination
with a consecutive strcpy function call.

In theory this combination could be secure as fgets will
terminate the buffer if it gets data and not write over the size
of the buffer that was given as a parameter. However, in this
challenge the authors provide either a larger intermediate
buffer to fgets and copy the contents over to the final
buffer that is smaller or supply a too large size parameter
directly. This leads to buffer overflows that need to be used
in order to enable flags that open the possibility to view the
flags for the challenges.

In a software project this might not be done intentionally,
but a sign of bad documentation or templates or even bad

training. If one does not know the real size of the buffer one
might as well use the sizeof operator to specify the size
that the buffer has. In order to mitigate these types of attacks
one should either use dynamically allocated buffer with
which the length is known at run-time or generate these
method calls with templates which include precautions to
safeguard against buffer overflows. Although, it might be
even better to not use functions that need a length attribute
that could be specified wrongly (i.e., employ data-structures
that know their length at run-time).

5 CONCLUSIONS

The challenges have demonstrated a plethora of exploits
and attacks that can be performed to either gain entry,
silently exfiltrate data or extract data from an unknown
system.

Network data cannot be just assumed to contain what-
ever data is implied by the standards the packets adhere
to. Neither can it be assumed that data is not sent through
other fields in the network packets. Even though the non-
payload-carrying fields (like lifetime, etc.) are not generally
settable by high-level programming languages that do not
support raw sockets, data can still be sent in non-essential
parameter fields by advanced attackers and exploiters by
using custom made tools.

The operating system that was investigated as part of
the memory forensics challenges was shown to store much
more data in memory about the current state of the machine
than initially thought. Intuitively, the process’ state must be
stored in working memory at some point in time, but it is not
before a memory dump is analysed with forensic tools that
it becomes clear how much is actually retained in memory
and essentially retrievable.

Furthermore, an unknown processor architecture might
hide information on the first sight but might not hide the
information or proprietary knowledge if one has access
to an architecture description. Additionally, lesser known
systems might have another impact that is not security
related: They might include previously available algorithms
or information, but these might not be available anymore
as there are no people left that are able to process this
information.

The challenges have also shown that issues with memory
management arise whenever low-level languages are used.
Much of this is abstracted in higher level languages, and
buffer overrun attacks are very rare in these languages.
It serves as a word of caution about how the complexity
changes when working closer to the hardware, and how
user input cannot be trusted. This is especially true in
cases where bounds checking is not implicitly done by the
programming language.

REFERENCES

[1] C. Marrison, “Dns as an attack vector and how
businesses can keep it secure,” Network Security, vol.
2014, no. 6, pp. 17 – 20, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1353485814700613

[2] Iodine. Visited on 2019-05-06. [Online]. Available:
https://code.kryo.se/iodine/



5

[3] L. Nussbaum, P. Neyron, and O. Richard, “On robust covert chan-
nels inside dns,” in Emerging Challenges for Security, Privacy and
Trust, D. Gritzalis and J. Lopez, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 51–62.

[4] S. Bromberger, “Dns as a covert,” National Electric Sector - Cyber
Security Organization, US Government, 01 2011.

[5] V. Foundation. Volatility memory forensics toolbox. Visited on 2019-
05-06. [Online]. Available: https://www.volatilityfoundation.org/

[6] community/mimikatz.py at volatilityfoundation/community.
Visited on 2019-05-06. [Online]. Available:
https://github.com/gentilkiwi/mimikatz

[7] Nixu challenge 2019. Visited on 2019-05-06. [Online]. Available:
https://thenixuchallenge.com/c/lisby-1/static/README

[8] Nixu challenge 2019. Visited on 2019-05-06. [Online]. Available:
https://thenixuchallenge.com/c/lisby-1/

[9] A. Irrera. Banks scramble to fix old systems as it
’cowboys’ ride into sunset - reuters. Visited on 2019-05-06.
[Online]. Available: https://www.reuters.com/article/us-usa-
banks-cobol/banks-scramble-to-fix-old-systems-as-it-cowboys-
ride-into-sunset-idUSKBN17C0D8


