
Security Evaluation Using OWASP Testing Guide
Hampus Dunström
Linköping University
Linköping, Sweden

hamdu013@student.liu.se

Olof Holmberg
Linköping University
Linköping, Sweden

oloho254@student.liu.se

Supervisor: Ulf Kargén
Linköping University
Linköping, Sweden

Abstract—As more and more services are becoming web-based
and publicly accessible, malicious actors are attempting to abuse
or break these services for their own gain. Security is therefore
becoming more and more relevant in the software industry. With
creative attackers we need rigorous security testing. To learn
more about how to perform this testing we followed one of the
more prominent testing guides, the OWASP testing guide v4. We
as novice security testers were able to find a few vulnerabilities
but could also conclude that it takes experience and expertise to
use the guide to its full extent.

I. INTRODUCTION

A. Motivation

There is no longer any doubt about the Internet’s impact
on our society and how many services that have been moved
online. We pay our bills, do our taxes and buy our food through
the internet, often using different websites. For example, today
we keep in touch with Facebook1 and handle our savings with
Avanza2. But internet does not only attract great services but
also bad actors trying to abuse the websites and the services
they provide. Therefore it is important to have security in mind
when developing these services and even more important,
validating the security through testing. Therefore we have
chosen to test a method for security testing developed by the
Open Web Application Security Project (OWASP) Foundation3

suggested by R. De Jimenez in the conference paper Pentesting
on web applications using ethical-hacking [1]. This method is
described by OWASP in the OWASP testing guide v4 [2].

B. Research Questions

1) How much time does it take to perform the testing
described in the OWASP testing guide v4?

2) What types of vulnerabilities are possible to discover
when using the OWASP testing guide v4?

3) What prerequisite knowledge do you need as a tester to
use the OWASP testing guide v4?

C. Planusup

We needed something to test the OWASP testing guide on.
For this we choose the online scheduling service Planusup4.
We chose it because we had full access to servers, source
code and could create accounts as we pleased. Planusup

1https://facebook.com
2https://avanza.se
3https://www.owasp.org/
4https://planusup.se

is a scheduling service designed for the needs of student
organisations and organisations with a lot of workers coming
and going not working for extended periods of time. The
service is provided through a website on which administrators
that schedule workers have accounts were they create plans.
A worker can then sign up to a plan through a link and the
administrator can schedule the workers that have signed up.

D. Limitations

There were two big limitations for this project. First we
only had a certain amount of time, approximately 100 hours,
divided over two persons during which we should perform the
security testing, write a report, prepare presentations, present
the work and perform other course related work. The second
limitation is our knowledge and experience of security testing
and the tools involved. Neither of us had any previous practical
penetration testing experience.

II. THEORY

The OWASP testing guide v4 contains 12 steps for testing
the security of a web application. Here is a brief explanation
of each step:

A. Introduction and Objectives

In the introduction and objectives section, the OWASP guide
offers some explanation of terminology, e.g. what a threat and
what a vulnerability is. The phases of testing is also described:
The passive phase where the tester tries to understand the
application and the active phase where the tester follows the
11 other steps. The section also contains a checklist of what
to test when assessing the web application. [2, Chapter 4]

B. Information Gathering

In the OWASP information gathering section the purpose
is to gather as much information about the application as
possible. This is done by utilising several services (search
engines, web services etc.), programs (ZAP attack proxy5,
netcat6 etc.) and the application itself. The information that
should be gathered is first and foremost information about the
web application and the server or servers that the application
runs on. Information should also be gathered about the network
infrastructure to detect multiple servers, firewalls, proxies or
other network entities. [2, Chapter 4.1]

5https://www.zaproxy.org/
6https://nmap.org/ncat/



C. Configuration and Deployment Management Testing

In this OWASP section the found server and network entities
are checked to find out if they contain known vulnerabilities.
If the tester has access to the application (grey box testing) the
application source code and logs are checked for information
leakage. The allowed HTTP methods for HTTP requests to
the web application is also tested. [2, Chapter 4.2]

D. Identity Management Testing

In this OWASP section the different user roles and the
registration process is tested. Retrieval of user account details
by registration or failed logins is also tested as well as the
registration username policy. [2, Chapter 4.3]

E. Authentication Testing

In this OWASP section the authentication of the appli-
cation is tested. This includes testing for secure credential
transport (HTTPS), testing the login function for lock out
mechanisms, default credentials or the possibility of bypassing
authentication. Tests should also be done for password policy
and strength as well as password reset, security questions or
alternative authentication. [2, Chapter 4.4]

F. Authorisation Testing

In the OWASP Authorisation Testing section the purpose is
to test for unauthorised file access, bypass of the authorisation
schema (unauthorised access to functions or resources). The
possibility for a user to escalate the user’s own privilege is
also tested as well as the possibility to access objects by direct
references (usernames, filenames etc.). [2, Chapter 4.5]

G. Session Management Testing

To test session management the OWASP guide recommends
testing the security of any cookies (or other tokens) that are
used. This includes if and when the token/cookie is renewed,
that it is encrypted when sent over the network, that it is
not vulnerable to cross site request forgery (CSRF). Tests for
handling the token at logout and session timeout are conducted
as well. [2, Chapter 4.6]

H. Input Validation Testing

To test the input validation of the application all different
ways to provide input to the application must be identified.
When they are identified all inputs are tested for common vul-
nerabilities such as cross-site scripting (XSS), HTTP parame-
ter pollution, different injections (LDAP, ORM, XML, SSI,
XPath, IMAP/SMTP), code injection, file inclusions, com-
mand injection and different overflows (buffer, heap, stack).
HTTP requests are tested as well for splitting, smuggling and if
suspicious requests are sent in the background. [2, Chapter 4.7]

I. Testing for Error Handling

In this OWASP section the process of gathering information
from error messages is described. By causing different errors
in the application information about the web server, application
server or database might be shown to the user thus granting
the attacker knowledge. [2, Chapter 4.8]

J. Testing for weak Cryptography

OWASP recommends testing the cryptography of the ci-
phers used in SSL/TLS and other cipher suites used for
encrypting information in the transport layer. Care should
be taken to make sure that no information is leaked when
decrypting information to prevent information leakage of the
encryption cipher and/or suite. Tests should also be done to
make sure that no sensitive information is sent over unen-
crypted channels. [2, Chapter 4.9]

K. Business Logic Testing

The OWASP guide recommends several tests for business
logic including possibility of forging requests, integrity tests
for data, timing between processes and function use limit.
They also recommend testing for malicious use or mis-use
of the application including circumventing the work flow and
uploading unexpected or malicious files. [2, Chapter 4.10]

L. Client Side Testing

To test the application on the client side OWASP recom-
mends testing for HTML and CSS injections, document object
model (DOM) based XSS, JavaScript execution and client side
URL redirects and resource manipulations. Tests should also
be done for Flash and WebSockets if the application uses these
techniques. If local storage is used review needs to be done to
check that sensitive data is not stored there. [2, Chapter 4.11]

III. METHOD

In this section we will explain how we performed each step
in the guide.

We approached this guide evaluation by first looking
through the guide and noting which different areas the guide
suggested to test. These areas, or steps, were then prioritised
with the application and its implementation as well as our own
interests in mind. The prioritisation was needed due to time
constraints and a very thorough guide so we were not sure
that we had time to perform every step in the guide.

A. Testing

When testing a step/area in the guide we first began by
reading the description of the step and trying to get a basic
understanding of what the purpose was and that we understood
what needed to be done in order to carry out the test.

We then looked at the examples presented, if there were
any, and then at the suggested tools and decided if we would
use any tools. The decision on which tools to use was based
on if they made the testing easier (i.e. if the tool automated
the testing or made it easier to access the information needed
to evaluate the step) or if the tool was required to follow the
examples in the guide.

When we had a basic understanding of the step and installed
any tools that were needed we began the testing. The testing
was done mainly by following the examples, if there were
any, by following the testing description or by following the
manual of the tools used.



The results and more in depth description of how each
step was performed and the time each step took was then
documented and presented as the results of the evaluation.

IV. RESULTS

A. Information Gathering

The purpose with this step was to understand the system
about to be tested. What type of applications are running, what
libraries are used and what ports are open are some example
questions that we sought answers to. The goal was to find
possible attack vectors.

We used the search engines DuckDuckGo7, Google8 and
the GoogleHacker9 tool to look for information leakage some-
where on the internet. We found the GoogleHacker tool
unintuitive and hard to use and got very few results using
the search engines. There was no robot.txt file and we only
found 4 results from site:planusup.se for example. At the time
of testing the system had only been live for two months which
might explain the results.

To fingerprint the web server we tested the tools httprint10

on a Linux machine and the webtool Netcraft11 as suggested
by the guide. We manually reviewed the source code for
meta tags and especially looked for robots.txt to look for
information leakage there. Our ICMP requests were blocked
preventing httprint from yielding any results. Netcraft yielded
more results from scanning both the system and the server
provider. Netcraft gave the system a risk rating of 1 (very
secure) and found:

• Netblock owner DigitalOcean, LLC
• Nameserver ns1.digitalocean.com
• DNS admin hostmaster@planusup.se
• Nameserver organisation whois.networksolutions.com
• Hosting company DigitalOcean
• Hosting Country US
• IP: 157.230.19.190
• OS: Linux
• Web server: NGINX
• 3 Known trackers from Cloudflare, MaxCDN, jQuery all

delivered through CDN
• Web browser targeting:

– Browser MIME type sniffing is disabled
– Strict Transport Security (HTTPS only)
– Do not allow this site to be rendered within an iframe
– Block pages on which cross-site scripting is detected
– Detect and mitigate attacks in the browser

Enumerating the applications on the webserver was only
done briefly using nmap -PN -sT -p0-65535 planusup.se12

since we knew exactly what applications were running and
had limited time. The command host -l www.planusup.se

7https://duckduckgo.com/
8https://www.google.se/
9https://www.owasp.org/index.php/Google_Hacker
10http://www.net-square.com/httprint.html
11https://www.netcraft.com/
12https://nmap.org/

ns1.digitalocean.com on Linux was used to try and find a
list of other domains pointing to the same IP address used
by planusup.se. We found that the open ports 22/tcp, 80/tcp,
443/tcp on the server and no other domains active on the same
IP even though other domains were pointing to that very same
IP.

The source code was also reviewed for information leakage
in comments and meta tags. To identify application entry
points we used the ZAP attack proxy that identifies which
requests are sent ant what data they contained to understand
how the application formed typical requests and responses.
We stored all the found endpoints in a spreadsheet. We found
no information leakage in comments and meta tags, this is
probably the result of the transpilation of the source code in
which all comments are removed. Using ZAP attack proxy we
identified 16 different endpoints that could be possible entry
points for attacks. The application had a total of 24 endpoints.

Mapping all execution paths within the applications to
understand the workflows was only done briefly since we
already had good knowledge about the application and we
were limited on time.

When fingerprinting the application and the frontend frame-
works used within it we used the browser plugin Wappalyzer13.
For further investigation WhatWeb14 was used to learn more
about the backend, what server it was running and how it
operated. Wappalyzer identified the frontend libraries Boot-
strap, JQuery and Stripe15 including what version was used.
It did not recognise that it was a React.js application or
anything about the backend. On other websites Wappalyzer
could identify the database, webserver and backend language
used. WhatWeb on the other hand discovered that the backend
was running a NGINX webserver and that it was redirecting
to HTTPS. Both tools were easy to use with the Wappalyzer
only taking a few minutes to install and WhatWeb was a script
downloaded from GitHub that required Ruby16 to run.

Mapping the architecture of the application consisted mainly
of the network and server infrastructure and since the appli-
cation was hosted through DigitialOcean. The complexity and
scope of such a mapping was judged to be to time demanding
for us to perform.

B. Configuration and Deployment Management Testing

The goal with this step was to understand the configuration
of the server hosting the application. Looking at network
infrastructure, backup management, admin interfaces, what
type of files are on the server and who has access.

As previously mentioned an investigation into DigitalO-
ceans network infrastructure was out of scope so we skipped
the network configuration step in this part of the guide.

To save time we only used greybox testing to test the
applications platform configuration. We looked at default
applications installed with the webserver. Also looking at

13https://www.wappalyzer.com/
14https://tools.kali.org/web-applications/whatweb
15https://stripe.com/
16https://www.ruby-lang.org/en/



logging, investigating who had permissions to the logs, how
long they are stored, how they are rotated and if any sensitive
information was stored in the logs. We did not do a comment
review since it had already been done in the previous step.
From the file permission investigation we found that system
logs had reasonable permissions and were rotated once a day
and stored for a week. The webserver NGINX logs were
owned by the user www-data and the group adm. www-
data had full access to the logs while adm only had read
permissions. NGINX logs were rotated after a certain file
size was reached and fifteen archived logs were stored. The
application logs don’t seem to be rotated but just piles on.
They are owned by a human user and the group www-data
both have read and write permissions. On the application logs
all users have read permissions and sensitive data such as stack
traces was found in the application logs. There was not any
unusual data in the system log or the NGINX logs but only the
currently active logs were looked at. The default application
files from NGINX was still on the server but not reachable
from the outside and it was a HTML file with links to the
NGINX documentation.

We did not test file extension handling because the applica-
tion did not allow file uploads and only served very few files
contained within the webroot directory.

Manual greybox testing was used to review backups and
unreferenced files for sensitive information. We found that
backups are automatically done as snapshots of the server
each week by the hosting service DigitalOcean. To access the
backups you need to log in to the DigitalOcean account which
were secured with two-factor authentication.

Since we knew there were no application admin interfaces
we did not attempt to enumerate them.

To test what HTTP methods that the server supports the
following nmap command was used where X is the port num-
ber (only scanned the open ones: 22, 80 and 443): nmap -p X
–script http-methods staging.planusup.se. We did not manage
to make Netcat work on windows to perform a similar test. We
found that only GET, HEAD, POST, OPTIONS were allowed
on port 80 and 443 and only STATE, SERVICE allowed on
22. None of these methods are considered potentially risky
methods by nmap.

The HTTP header Strict-Transport-Security17 is important
for security since it tells the browser to only use HTTPS
and no HTTP requests. We tried to search for this header
with the recommended (by the guide) command curl -s D-
https://domain.com | grep Strict and the Firefox developer tool.
We Looked at both planusup.se and google.se for reference.
Using the recommended curl command we did not find any
Strict-Transport-Security header one either domain. When we
looked for the header using Firefox developer tool to look
at network request and then we could see that the Strict-
Transport-Security header was present on both domains we
tested.

17https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-
Transport-Security

We tested the RIA cross domain policy18 by searching for
the file crossdomain.xml both using a browser and manually
on the server. No crossdomain.xml files were found.

The guide suggests some permissions guidelines for dif-
ferent kinds of files. By manually running ls and namei -l
commands we checked whether the permissions on the server
followed OWASPs guidelines. Many files was readable and
executable by anyone and did not follow the OWASP recom-
mendations. For example anyone could read the application
log files as mentioned but also the python scripts on the server
was executable by anyone which was not recommended by
OWASP.

C. Identity Management Testing

There are only two roles within the system, users and
administrators. With so few roles we deemed the testing of
role definitions unnecessary.

The user registration process was tested manually using
knowledge about the inner workings of the system. The goal
for this testing step in the guide was to answer the following
questions:

1) Can anyone register for access?
2) Are registrations vetted by a human prior to provision-

ing, or are they automatically granted if the criteria are
met?

3) Can the same person or identity register multiple times?
4) Can users register for different roles or permissions?
5) What proof of identity is required for a registration to

be successful?
6) Are registered identities verified?
7) Can identity information be easily forged or faked?
8) Can the exchange of identity information be manipulated

during registration?
We found out that anyone who is willing to pay the

registration fee can register an administration account while
users do not have accounts. When someone registers for an
account there is no manual vetting process, but humans are
notified every time an account is created. There is nothing
stopping a person from registering multiple accounts as long
as they use different email addresses and pay for each account.
There are no other roles to register for other than administrator.
To register for an account you need to provide the following
information:

• valid email,
• credit card,
• organisation name,
• organisation number,
• the person registers name,
• cardholders name.

For validation, the email is verified with regex and domain
lookup. The credit card information is verified by a third
party, Stripe. The rest of the information is not verified.
Everything but the credit card could be forged or faked easily.

18https://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html



We could not discover any way to exchange or manipulate the
information during registration.

Since you can only register for one type of account we did
not test the account provisioning process.

We used manual grey box testing to test if it was possible
to guess account names. The goal was to see if the system
would give away when a valid account name was used. We
tested both the sign in process and the reset password process.
This testing was also done with given information about who
the user was to see if it made it easier to guess an account
name. It was not possible to guess an account name since
the application gave the same error message regardless if the
account name was correct and the password wrong or if just
the password was wrong. Since the account name always
was an email address if you know the person owning the
account it is much easier to guess the account name, because
a persons email address is often public. But you will not get
any confirmation that the account name is correct even if you
know who owns the account so you can’t be certain that you
have the correct account name until you successfully sign in.

D. Authentication Testing

Using the Firefox developer tools we checked if the re-
quests containing username and password was encrypted using
SSL/TLS. The credentials were confirmed to be sent over an
encrypted channel.

No known applications was found or is known to exist in
the system that might have default credentials therefore we
could not test if we could log in with any default credentials.

To test for weak lock out mechanisms we used black
box testing. By manually simulating a brute force attack we
checked if there seemed to be any lock out mechanism to
prevent brute force attacks on accounts. When using black
box testing there seemed to be no lock out mechanism in
place at all. This was confirmed as a known vulnerability of
the system.

We used black box testing to test to directly access pages
that should need authorisation. Parameter modification was not
an option since no GET parameters are used in the system.
Session ID prediction and SQL injections were skipped for
lack of time and low chance of success due to use of
SQLAlchemy19. SQLAlchemy should prevent injections by
properly encoding the queries before they are sent to the
database unless circumvented in the implementation of the
application. The "create plan page" and the "plan list page"
were possible to access using direct page requests but no
sensitive data was exposed and any action resulted in server
errors with generic error messages.

We did not test for vulnerable "remember password" func-
tionality since the system does not provide any.

To look for browser history and cache weaknesses we tested
to sign out from a page with sensitive data on and then use
the back button to see if the sensitive data was still accessible.
The browser cached was checked manually by viewing the

19https://www.sqlalchemy.org/

contents of the stored cache files in Mozilla Firefox on a
Linux machine. Using this method it was not possible to
access sensitive data using the back button or by looking in
the browser cache.

We created accounts with weak passwords using black box
testing and checked the registration code for password con-
straints using grey box testing. No password policy was found.
Users can freely chose their passwords including passwords
with low strength such as the password "1".

There was no security question functionality to test. The
only way to reset a users password is through a link sent to
the users email.

We manually tested the reset and change password func-
tionality to gather the information needed to perform password
reset and how the process works. We used Postman20 to try and
send requests for resetting and changing passwords simulating
a CSRF attack. It is possible for anyone to request a reset
password link for a specific user but to reset the password you
either need the token in the email or the existing password.
If you can get either of these you will be able to reset the
password. It was possible to send requests for resetting and
changing the password using Postman.

E. Authorisation Testing

To detect directory traversal attacks a grey box testing
for possible attack vectors were performed by searching for
the opening of files in the backend source code. The only
place were files were opened were in maintenance scripts and
testing scripts only accessible for those with access to the
server. Therefore no further testing towards detecting directory
traversal attacks were performed. The next step was to try and
bypass authorisation schemes by testing to access functionality
and information that should only be allowed if the user is
signed in. This was done both as a user who have never signed
in and as a recently signed out user. If you were recently signed
out or had never signed in did not seem to matter, in both cases
we were able to access pages made for signed in users but no
data was displayed only error messages. To test for privilege
escalation we needed to try and forge sessions tokens which
are all created by a external JSON Web Token library21 which
we deemed too time consuming and not probable to give any
results. To make sure no signed in user can access other users
data Postman was used to test different POST request using a
valid token but trying to access other users data, but the server
only returned general error messages.

F. Input Validation Testing

When testing for reflected cross site scripting we searched
for input fields that would allow a user to send a custom crafted
response to other users. Nothing that could be used to test
for reflected cross site scripting was found on the application.
Either no such methods of providing input existed or they were
using proper character encoding preventing this vulnerability.

20https://www.getpostman.com/
21https://github.com/jpadilla/pyjwt



To test XSS we tested the only way someone is able to
present stored XSS to another user. This was in the applica-
tion’s "plan sign-up" and "share-plan" functions. These were
tested by supplying the following strings as either worker
names or plan name:

• <script>alert(’xss’);</script>
• " onfocus="alert(’xss’)
• "><script>alert(’xss’)</script>
• <script>alert(’xss’)</script>

These did not result in any successful XSS attack. Mainly
due to React’s built-in escaping of code. However these were
still stored as malicious text strings in the database and might
be a security risk if the frontend implementation is changed.

The available methods that can be used for HTTP verb
tampering were tested and documented earlier in the con-
figuration and deployment management testing. The ones
allowed that the OWASP guide cites as unnecessary or bad is
OPTIONS and HEAD. The HTTP OPTIONS method is used
to describe communication options for a specified resource.
The HTTP HEAD method is used when responding to a GET
request without a body. OPTIONS is however needed by the
application whereas HEAD is not and therefore the OWASP
recommendation is to disable the HEAD method.

The application did not utilize HTTP parameters and there-
fore no testing in regards to HTTP parameter pollution was
performed.

Since the application uses SQLAlchemy the risk of a
successful SQL injection is basically eliminated and no testing
of SQL injection was performed.

When testing for SSI injection22 the following string was
used in those inputs where the result is presented to other
users: <!–#include virtual="/etc/passwd" –>. This did not
result in any successful SSI injection attacks as react seems
to prevent it by good character encoding. The malicious input
is however still stored in the database

Since XML is not used in the application no testing of XPath
injections23 was performed.

Mail services for the application is handled by external
services which were not considered to be in the scope of
testing so no testing of IMAP/SMTP injections was performed.

The only input fields available in the application are for
queries in SQLAlchemy or used in python functions. Unless
SQLAlchemy or the python functions used are vulnerable to
code injection the application should not be vulnerable to code
injection. Therefore we did not test for arbitrary code injection
since python and SQLAlchemy are already well tested against
this and any vulnerable functions would probably be found
already. Finding functions that are vulnerable and not already
documented would be too time consuming for this project.

No file inclusions are done either local or remotely so no
tests were carried out for file inclusions.

22https://www.owasp.org/index.php/Server-Side_Includes_(SSI)_Injection
23https://www.owasp.org/index.php/XPATH_Injection

No commands are sent in the URL or in the HTTP requests
so no tests were carried out for command injection vulnera-
bilities.

No tests were carried out for heap/buffer overflows since the
back end is written in python and the front end in JavaScript.
To perform a buffer overflow attack is very difficult in those
languages and the testing would definitely take more time than
what is available for this project.

The application provides no means of any upload so there
was no point in testing for incubated vulnerabilities.

Format string vulnerabilities seems to be a more prevalent
threat in applications that uses C or C++ so no tests were
carried out in regards to string formatting.

Since the application do not use either the Set-Cookie or
the Location header in the HTTP requests no tests for HTTP
smuggling24 were carried out. Tests for HTTP splitting25 were
not carried out due to the time it would take to craft custom
requests and that nothing besides JSON formatted data is
usually sent in them.

In order to test for incoming HTTP requests, a proxy is
required on the server. To install and make sure the proxy
works will take too much time and we therefore decided not
to test this.

G. Testing for Error Handling

To test for error handling the OWASP testing guide sug-
gested sending crafted requests using telnet. This did not
work for us so we sent the requests using ZAP Attack Proxy.
The responses from the custom requests did not contain any
information leaks about the application and only contained
generic error messages if any. The same was concluded for the
login functionality. Failure to provide a correct combination
of password and email is met with the same error message:
Wrong password and email combination. So those error mes-
sages can not be used to gain information whether a email
is used or not. Supplying a too long input as plan name will
either be met with the message Server error if it is reasonably
long or with no message at all, probably due to a crash, if it is
extremely long. However no sensitive information is leaked.

H. Summary

We performed 8 out of 12 steps in the guide. On which we
spent about 25 hours per person resulting in 50 hours of work
for the testing. We found two vulnerabilities. The first one
was incorrect file permissions, they were not as strict as they
should be resulting in a possibility that an attacker could get
easier access to logs and source code. Possibly even execute
some source code if he or she could get a foothold in the
server. The second one is that an attacker can brute force the
log in if he or she knows the account name.

V. DISCUSSION

Here we will discuss our findings and answer our research
questions.

24https://capec.mitre.org/data/definitions/33.html
25https://www.owasp.org/index.php/HTTP_Response_Splitting



A. Method

The methodology we followed is the one described in the
OWASP testing guide, limited by the time constraints of the
project and our own experience and knowledge. Firstly each
step was followed as described in the guide, however there
might be missed vulnerabilities that belong to a performed
testing step but were not found due to us not knowing what
to look for other than what was described in the guide.
Secondly we did not have enough time to perform too much
research before a testing step other than reading the guide
which also may result in undiscovered security issues that
require deeper knowledge, previous experience or extensive
testing in order to be discovered. Finally we did not have
enough time to go through every step in the guide which
also may result in undiscovered security issues due to lack
of testing in that specific area. This in turn may affect the
results of our application testing since there still may be
undiscovered issues present. If we would redo the testing we
would definitely devote more time to research and understand
each area better in order to better understand what should be
tested, how it should be tested and when it has been tested
properly. The downside is that the required time is drastically
increased since there might be a lot of extra research required
depending on what technologies, frameworks, etc. are used
in the application. A good knowledge of the tools that the
OWASP guide suggests is something that probably benefits
a tester since they might be able to automate some tasks or
do a more thorough testing than manual testing. This is not
something that we have specifically looked into, but we noted
late in the project that the tools have more functions than the
examples from the guide suggests.

B. Results

When going in to the OWASP testing guide our hypothesis
was that we would find more classical vulnerabilities such as
SQL Injections and XSS attacks. Probably because those are
the ones you hear a lot about in web-based systems. Instead we
found out that modern frameworks such as SQLAlchemy and
React.js handles these well known issues very well. Instead it
is more design level things such as being able to guess account
names, brute force passwords or abuse reset password systems
that we found ourselves looking more into and having more
"luck" in finding vulnerabilities. We also found out that it
takes more time than we thought to perform all the testing in
the guide, though not all testing is relevant for all kinds of
systems. We also found errors that were not security related
but still presented unintended behaviour by the application or
lack of information to the user. So the guide may be useful
for finding other application issues and not only those that are
security related.

C. Research Questions

How much time does it take to perform the testing
described in the OWASP testing guide v4?

We were not able to complete the entire testing guide,
spending about 50 hours and completing slightly more than

half of the guide while performing each step quite briefly. A
definitive answer is impossible to give here since each system
is unique but we believe that a more experienced tester could
go through the entire guide in about 60 - 80 hours for a smaller
system like Planusup. With that he or she would be able to do
each step more thoroughly than we did.

What types of vulnerabilities are possible to discover
when using the OWASP testing guide v4?

The guide covers a wide variety of vulnerabilities ranging
from your standard SQL Injections, XSS attacks to design
level issues with account and role management, data leaks in
form of both user data and information leakage about how
the system works, and issues with the network and server
architecture. We are not able to list all the vulnerabilities that
you could possibly find with the guide but we can conclude
that it is a broad guide covering most vulnerabilities you can
find in a web-based system.

What prerequisite knowledge do you need as a tester to
use the OWASP testing guide v4?

To properly use the guide we would consider that a tester
should at least have in depth knowledge in each of the testing
areas described by the OWASP testing guide. If the tester is
not knowledgeable in the areas the tester might not know if
everything included in a testing step is properly tested. More
difficult exploits might also be missed if the tester is not
proficient enough in the technologies used, for example very
good knowledge of SQL might be necessary in order to find
subtle injections. So both knowledge of the information in
the guide and also the technologies used by the application is
required in order to properly use the OWASP testing guide.
But with only a basic understanding of software security you
will be able to follow the guide to a certain extent and it will
probably improve your security even though you will not be
able to use it to its full extent.

VI. CONCLUSIONS

After this work we can conclude that security testing is a
time consuming task if done thoroughly and it also demands
a certain degree of both expertise and experience to succeed.
The OWASP testing guide is a good friend when performing
security testing for beginners as it gives a good place to start
and for more experienced testers it is a good checklist for
remembering each step and not overlooking something.

REFERENCES

[1] Rina Elizabeth Lopez De Jimenez. Pentesting on web applications using
ethical-hacking. In 2016 IEEE 36th Central American and Panama
Convention (CONCAPAN XXXVI), pages 1–6. IEEE, 2016.

[2] Matteo Meucci et al. OWASP Testing Guide 4.0. OWASP Foundation,
2014.


