
Solving the Nixu Challenges
Erik Sandberg

Linköping University
Sweden

erisa418@student.liu.se

Patrick Richer St-Onge
Linköping University

Sweden
patri111@student.liu.se

Abstract—This document presents solutions to
the Nixu challenges.

I. Introduction

As our project we participate in the 2019 edition
of the Nixu Challenge. The Nixu Challenge is a yearly
Capture-The-Flag (CTF) event organized by the cyber
security company Nixu Corporation. In a CTF event the
participants try to complete various challenges with the
objective of retrieving specific tokens. The Nixu Challenge
consists of a variety of challenges related to subjects like
web security, memory analysis, cryptography and reverse
engineering. The difficulty level range from simple prob-
lems solvable in a couple of minutes to complex challenges.

Our goal is not to solve every single challenge
but to beat as many as possible and report how we solved
them, what we’ve learned and how it is relevant to the
course. We also want to complete diverse challenges of all
difficulties for the report to touch on as many subjects as
possible.

II. Challenges

A. AIMLES - staging

We are given a network capture in the form of
a .pcap and a url:port pair to a server running SSH.
Trying to SSH into the server gives an error about no
matching ciphers. Therefore, we decide to look at the
network capture which consists of SSH traffic. Looking
around in the packets, we can see that the shell session
is not encrypted. We use strings on the pcap file to
extract the readable text, which gives us some commands
that were run on the server and an email about the
security audit, which contains 4 hints. The fourth hint in
the email confirms our doubt that there is no encryption
cipher offered by the SSH server. We need to compile the
OpenSSH client with a small modification to allow us to
connect to the SSH server using the none cipher [1]. Once
we try to connect, we need to authenticate using a key.
Another hint from the email tells us that the encryption
key used by the two employees to connect to the server

may have a weakness. After having extracted the public
keys from the network capture, we used RsaCtfTool to
perform an attack against the two public keys to find a
common factor and recover the private keys [2]. We are
now able to go one step further, but the server asks for a
time-based one-time password (TOTP). Using the other
hints in the email, we know the validity of the TOTP
is 5 minutes. Also, the user ran a command on the file
containing the TOTP secret that gives us what number
appears in the secret and that there is only consonants
and numbers. The user also ran ls, which gives us the
length (8 chars) of the secret and he ran md5sum, which
gives us the MD5 hash of the secret. Using Hashcat mask
attack and the hints we have about the secret, we brute
forced the MD5 hash to find the value of the TOTP secret
[3]. With the secret, we are able to generate a TOTP that
is valid for 5 minutes and finally connect to the SSH server
to retrieve the flag!

1) Analysis: This challenge consists of multiple
steps that need to be solved in order to obtain the flag.
This feels more realistic than other CTF challenges, as
there are multiple skills involved and there is a process
to go through instead of just solving a specific task. It
resembles more to what a penentration tester job may look
like (the challenge description refers to a security audit).
The challenge requires to have networking skills (analyzing
a .pcap with Wireshark, understanding the SSH protocol)
and an understanding of encryption/authentification (how
OpenSSH works, the flaws in RSA key generation, Time-
based one time password). Such a challenge demonstrates
that a chain of multiple exploitable flaws in a system may
allow to obtain access to it.

B. Bad memories - part 1

This is the first part of a five parts challenge
on forensics, where it is needed to recover information
from a memory dump. To analyze the memory dump, we
use the Python tool Volatility Framework and its many
commands [4].

The first step is to find out what type of operat-
ing system was the memory capture was done on, which
we can find with the command imageinfo.



volatility -f mem.dmp imageinfo

We find that the memory dump is from a Win-
dows 7 operating system. From there, we can list the
processes that were active during the capture with either
pslist or pstree.

volatility -f mem.dmp --profile=Win7SP1x64
pslist

The first part says to recover the user documenta-
tion, which would hint at a text editor. There is a notepad
.exe process running with PID 700, so we dump the VADs
(Virtual Address Descriptors) and look at the VAD tree
to find memory regions of the heap (in yellow).

volatility -f mem.dmp --profile=Win7SP1x64
vaddump -p 700 -D ./vads/

volatility -f mem.dmp --profile=Win7SP1x64
vadtree --output=dot --output-file=./vads/
graph.dot -p 700

To do that, we can use strings to find text in
the heap memory.

strings -e l vads/notepad.exe.8c45060.0
x0000000000390000-0x000000000048ffff.dmp

After looking through a few files, we can find
the flag in ROT13 AVKH{guvf_j4f_gu3_rnfl_bar}, which
results in a valid flag NIXU{this_w4s_th3_easy_one}.

C. Bad memories - part 2

In this part of the forensics challenge, we need
to look for a lost file. To do this we need to search
for files present in the main memory dump and more
importantly files that have been deleted or moved to the
recycle bin. There are multiple commands available in
volatility to search for files such as filescan, dumpfiles
and mftparser [5]. We had success with mftparser. Using
the following command mftparser --dump-dir=output
--output-file=badmem_mft.body --output=body, we

get a list of extracted files in badmem_mft.body and the
extracted files in the output folder. Knowing we are
looking for a lost file, we search for the recycle bin like
thiscat badmem_mft.body | grep -i "recycle" which
gives us about 10 results. We try after to display the files in
the output and we finally find one that is interesting (cat
output/file.0x286f8400.data0.dmp). This content is

Base64 encoded which once converted becomes a string of
0 and 1 that can be converted to an ASCII string that is
the flag.

D. Bad memories - part 3

This time, the information that needs to be
recovered from the memory dump is the “new design”
that the user was working on. These hints tell us to search
for a graphic image. Using pslist, we can confirm that
a mspaint program was running on the machine. Using
cmdscan and console, we can see there exist a flag.bmp
file in the system of the user, but we were unable to extract
it from the memory dump. Therefore, we do a memdump of
the Paint process and look into that.

volatility -f mem.dmp --profile=Win7SP1x64
memdump -p 2816 -D ./dump/

We rename the extension from .dmp to .data
to be able to use GIMP to view the raw data. Doing
this, we are able to move along the process memory
and search visually for an image [6]. After a lot of trial
and error and looking at random bits of data, we were
able to find a few images that made sense, such as the
desktop of the user and an image containing the flag NIXU
{c4n_you_3nhanc3_this}.

E. Bad memories - part 5

In this part, the goal is to recover the user
password from the system. We started with the hashdump
command.

volatility -f mem.dmp --profile=Win7SP1x64
hashdump

We get a list of the users and the NTLM hash
of their password. We tried to reverse find the hash on a
few online websites, but with no success. So, we try this
second command lsadump, which extracts secret keys from
the registry, such as the default password for Windows.

volatility -f mem.dmp --profile=Win7SP1x64
lsadump

Indeed, in the default password key we can find
the challenge flag NIXU{was_it_even_hard_for_you?}.



1) Analysis: The Bad memories series of chal-
lenges is about forensics and memory dump analysis. This
is a common category in capture the flag competitions
where the goal is to extract flags from a main memory
dump (the RAM content) of an operating system. It also
relates to real-world situations such as data recovery and
digital/computer forensics. The same skill set applies for
both cases, except that for forensics, it is not only sufficient
to recover the information, but also to find evidence with
metadata in order to present facts for legal reasons. From
a memory dump, there is a lot of information that can be
retrieved like running processes, active network connec-
tions, files that are being edited, usernames, passwords,
etc. and also more data from sources such as the Windows
registry or any databases. The skill set is also important
in the field of computer security where memory analysis,
for example, might be necessary to understand the nature
of a more advanced attack where the attacker tries to hide
their trail, somewhat similarly to the challenge where the
memory dump was taken just before the computer crashed
under mysterious circumstances. Encryption at different
levels can be a way to hinder the process of memory dump
analysis, but this was not part of the challenges.

F. Exfiltration

This challenge offers a network capture contain-
ing mostly SSL and DNS traffic. From the hint in the de-
scription (using internet would be annoying if this protocol
did not exist), we can assume it is about DNS (would be
annoying to use an IP address instead of a domain name).
Looking at the DNS packets, we can see a lot of legitimate
traffic, but also many TXT, MX and CNAME query to a
domain name ending with malicious.pw. We can filter
those queries using this expression dns && dns.qry.name
contains "malicious.pw" in Wireshark.

From there, we can assume that the data in
encoded in the numbers in the domain name. Looking up
on the web, we can find a DNS tunnel named dnscat2
that seems to be the one in use [7][8]. We export the DNS
queries from Wireshark to a text file, keep only the domain
name and strip the malicious.pw ending. By converting
the series of numbers to ASCII, we can find a session in
a UNIX shell and a file named flag.png, which seems
to have also been transferred in the same DNS tunnel
session. Indeed, we can also find the header of a PNG file,
starting with 89 50 4E 47. Using a Python script and the
library dpkt, we parse the network capture and keep only
the data from the DNS queries that contains PNG to the
end of the image, the packet containing IEND. We also
need to strip a few bytes that are used by the dnscat2
protocol. Writing the image bytes to a file results in a
valid PNG (after a few tries) which contains the flag NIXU
{just_another_tunneling_technique}.

1) Analysis: Dnscat2 tunnels network traffic
over the DNS protocol and is a real world application
that a security researcher could encounter. DNS tunnels
are common because it allows to communicate with the
outside world as it is rare for a firewall to block DNS
traffic. An example application is for a command-and-
control infrastructure that could be used by malware. This
challenge is a realistic situation that relates to network
security. To be able to detect such traffic inside a network,
we would need a performing IDS to detect that this is
malicious DNS traffic.

G. fridge 2.0

For this challenge, we get the firmware of an
IoT-device that is part of a Cloud network. We started
by reversing the firmware using the tool Radare2 and
afterwards Ghidra. From the binary, we can see that
the device connects to an external server to do a JSON
request. The URL that the device sends a request to
is encryption inside the firmware. However, the key
used by the encryption is also stored in the firmware,
so we are able to decrypt it using AES to recover
the URL. The recovered URLs are https://fridge2_0
.thenixuchallenge.com/api/register and https://
fridge2_0.thenixuchallenge.com/api/temp which are
part of the API to register a new IOT device and control
the temperature of the device. However, we have not been
able to go farther from there. We have tried to find other
interesting pages/protocols on the server and also tried to
exploit and do fuzzing on the API, but with no success.

1) Analysis: As this challenge is about insecure
IoT-devices, it might be the challenge with most real world
relevance of them all. According to experts there will be
75 billion IoT devices in the world by 2025 [9] and IoT-
devices have a history of lacking security. By comparison
the device in this challenge is reasonably secure. Its real life
counterparts often operate with well-known default login
credentials that are the same for all devices and just like
the device in the challenge they are often delivered with
insecure firmware that is seldom patched. A good example
of the destructive potential of insecure IoT-devices is the
Mirai botnet, consisting of only IoT-devices, which in
late autumn 2016 was used to launch a massive DDoS
attack against a company responsible for parts of the
Domain Name System. The attack lasted for more than
a day, reached traffic levels of more than a terabit per
second against the targets and brought down numerous
major websites and services, including major websites like
Twitter, the Guardian and CNN [10].

H. lisby-1

This is the first challenge in a series of three
challenges based on reversing programs from an old com-



puter architecture. We are given a manual of how the
architecture works and what are the instructions and
opcodes. We started by dividing the bytes manually into
the appropriate sections and translating progressively the
instructions. Soon enough, we can understand what the
program does and find a pattern in the instructions. The
program push two numbers to the stack and subtract
them, which gives an ASCII char and by doing a few of
the subtractions manually, we can see the string as the
format of the flag (NIXU. . . ). We wrote a small Python
script to read the binary, find the subtraction instruction
and do in operation on the numbers, which allowed us to
recover the full flag.

1) Analysis: A fake computer architecture is
described in this challenge which is used to reverse a
binary to assembly code in order to understand what
the program is doing and recover the flag. Reversing
engineering is an important skill in security and may be
used in multiple situations, such as malware analysis or
to understand how a program/protocol works. While the
Lisby architecture is fake, the general concepts of reversing
a binary still apply as there exists a lot of different ISA
like x86, ARM, MIPS, RISC-V, etc. which each has some
differences. On the opposite of those architectures, the
Lisby device is unknown, therefore there is no toolchain
around it (assembler, compiler, debugger, emulator, etc.)
and reversing tools such as radare2 does not support it.
Either we need to do the disassembly by hand or write
some tool to help us.

I. ACME Order DB

The website in question is protected by a login
page. After trying with credentials admin/admin, we can
see that a cookie sess is created with a Base64 encoded
value that corresponds to username=admin::logged_in=
false. We change the value of logged_in to true, encode
it and update the cookie. We are now logged in.

In the source code of the webpage, we can
see a reference to LDAP (<!-- Get documents from
ldap! -->), which hints us at a LDAP injection. Us-
ing the following query *))(|(a=*, we are able to have
access to secret files which one contains the flag NIXU{
c00kies_with_ldap_for_p0r1ft}.

1) Analysis: This is a web challenge that has a
simple flaw in how the authentification is done and that
is not really seen on any actual website. However, there
are many different categories of flaws on web applications,
so it is not surprising to find some sort of vulnerabilities
on a website. The second part of the challenge is a LDAP
injection, similar to a SQL injection, which has been and is
still a very common flaw in web servers and how database
queries are handled. While this challenge may have been

easier, web flaws are very common and it is important
to learn about them to be able to correctly secure a web
server and website.

J. Device Control Pwnel

There are two buffer overflow vulnerabilities in
this challenge which is divided in two parts. The first part
is a simple buffer overflow, where the program uses the
secure function fgets, but with a value of 127 for the
maximum number of characters to read. The characters
are stored in an array of 8 bytes, which allows us to
overflow and write the value of the local variable int id
to zero, which gives access the admin menu and the first
flag.

python -c 'print("ABCDEFGH\00\00\00\00\n8")' |
nc overflow.thenixuchallenge.com 20191

NIXU{pr3tty_s1mpl3_0v3rfl0w}

K. Device Control Pwnel - part 2

This is the second part of the buffer overflow chal-
lenge using the same C source code. The idea is similar,
256 bytes of inputs are allowed while the description field
in the struct is of size 128 bytes. The array is copied using
the unsecured function strcpy which allows us to write
over the field id of the device struct. The goal is to write
the device master ID 0x8100ca33c1ab7daf to a device to
get the flag. The only problem is that the number contains
a null byte \x00 which is the character that will cause
strcpy to stop copying. Therefore, we need to first create
a new device with the first part of the ID 81 and after edit
the same device to add the rest of the ID 00ca33c1ab7daf.

python -c 'print("2\n" + "name\n" + "A
"*128+"1234567\x81\n" + "3\n1\n" + "name\n"
+ "A"*128+"\xaf\x7d\xab\xc1\x33\xca\x00\n" +
"1\n4")' | ./devices

NIXU{h0w_t0_d3al_w1th_null_byt3s\x00}

1) Analysis: Bugs related to buffer, stack and
integer overflows remain common to this day. They occur
both in small scale software like the one used in these
challenges and in products developed by software giants
like Google [11]. Overflows have been known since at
least 1972 [12], are among the most well-known bugs and



are often the first ones new programmers learn about.
Overflows are often, as reflected in the challenge, simple
in nature but can have devastating consequences. That
overflow bugs and exploits are still common despite all
this highlights the need for security oriented programmers
(all programmers should be) to be knowledgeable about
overflows.

L. Ports

Based on the name of the challenge it seemed
obvious that we should look into the port numbers. Using
Wireshark we exported the port numbers from the pcap
file into plain text.

tshark -r ports.pcap -T fields -e tcp.dstport >
ports.txt

We then tried to translate the decimal numbers
to ASCII. The result looked like a typical base64 string, a
good sign that we’re on the right track.

QVZLSHtmbHpvYnlmX25hcV9haHpvcmVmX25lcl9zaGFfZ2Jf
Y3lubF9qdmd1fQ==

The format of the decoded base64 string assured
us that we’re almost done. Using ROT13, a version of the
classic Caesar cipher, we recovered the key.

AVKH{flzobyf_naq_ahzoref_ner_sha_gb_cynl_jvgu}
NIXU{symbols_and_numbers_are_fun_to_play_with}

1) Analysis: This challenge, which is functioning
as an introduction to the Nixu Challenge, don’t have
many real-world applications. The challenge introduce
analysis of network traffic using programs like Wireshark
and basic encodings but the solutions are straightforward
and don’t require much thinking. While it is obviously
possible to send information encoded as port numbers,
it is cumbersome and the erratic behaviour would easily
be detected, and most likely blocked, by the most basic
network security system.

III. Conclusion

Participating in the Nixu Challenge have been
a varied and educational experience. It is in the nature
of Capture The Flag events that the knowledge needed,
and gained, will be in a wide array of areas and not
as in depth as some other projects could have provided.
However, compared to earlier capture the flag experiences

of the group the Nixu Challenge provided less elementary.
At the same time one should not disregard the importance
of a wide knowledge base as exploits based on quite basic
faults are still common. Attacks against typical internet
connected devices, like IoT-devices and routers, are more
often than not using attack vectors like default credentials,
overflow attacks or injections [13]. More intricate attacks
are usually only executed by APTs [14] and are used by
the common hacker only when leaked, disclosed through
zero-day patches or in other ways revealed to the public.

As Nixu is an actual company working within
the cyber security field and the challenge is a part of their
recruitment the project have also given us some insight
into the kind of knowledge and abilities companies are
looking for in potential junior hires and trainees.

In relation to the course content, many of the
challenges where related to the technical part of what we
have seen in class. For example, the use of Wireshark
was essential in multiple challenges in network security.
Other concepts that we have seen in class include buffer
overflow, query injection in a database system and two-
factor authentication. Like we said, we have covered a wide
range of categories about information security while not
having went in depth in a particular one or having touched
the more theoretical parts of the course content.

References

[1] Server Fault, “How can I disable encryption
on openssh?” https://serverfault.com/questions/116875/
how-can-i-disable-encryption-on-openssh/895654#
895654, Feb-2018.

[2] Ganapati, “RsaCtfTool,” GitHub repository.
https://github.com/Ganapati/RsaCtfTool; GitHub, May-
2019.

[3] hashcat, “Mask Attack.” https://hashcat.net/
wiki/doku.php?id=mask_attack.

[4] Volatility Foundation, “Command Refer-
ence.” https://github.com/volatilityfoundation/volatility/
wiki/Command-Reference, Apr-2017.

[5] Nybble, “Extracting files from MFT Table
with Volatility.” https://steemit.com/security/@nybble/
forensic-extracting-files-from-mft-table-with-volatility-part-2-en,
Jun-2017.

[6] B. Rodrigues, “Extracting RAW pictures from
memory dumps.” https://w00tsec.blogspot.com/2015/02/
extracting-raw-pictures-from-memory.html, Feb-2015.

[7] R. Bowes, “dnscat2,” GitHub repository.
https://github.com/iagox86/dnscat2; GitHub, Jun-2018.

https://serverfault.com/questions/116875/how-can-i-disable-encryption-on-openssh/895654#895654
https://serverfault.com/questions/116875/how-can-i-disable-encryption-on-openssh/895654#895654
https://serverfault.com/questions/116875/how-can-i-disable-encryption-on-openssh/895654#895654
https://github.com/Ganapati/RsaCtfTool
https://hashcat.net/wiki/doku.php?id=mask_attack
https://hashcat.net/wiki/doku.php?id=mask_attack
https://github.com/volatilityfoundation/volatility/wiki/Command-Reference
https://github.com/volatilityfoundation/volatility/wiki/Command-Reference
https://steemit.com/security/@nybble/forensic-extracting-files-from-mft-table-with-volatility-part-2-en
https://steemit.com/security/@nybble/forensic-extracting-files-from-mft-table-with-volatility-part-2-en
https://w00tsec.blogspot.com/2015/02/extracting-raw-pictures-from-memory.html
https://w00tsec.blogspot.com/2015/02/extracting-raw-pictures-from-memory.html
https://github.com/iagox86/dnscat2


[8] g4ngli0s, “BsidesSFCTF - FOR:
dnscap.” http://g4ngli0s.logdown.com/posts/
1421430-bsidessfctf-for-dnscap, Feb-2017.

[9] “The 5 worst examples of iot hacking and
vulnerabilities in recorded history.” https://www.iotforall.
com/5-worst-iot-hacking-vulnerabilities/, May-2017.

[10] N. Woolf, “DDoS attack that disrupted
internet was largest of its kind in history, experts say.”
https://www.theguardian.com/technology/2016/oct/26/
ddos-attack-dyn-mirai-botnet, Oct-2016.

[11] P. Bright, “Gangnam Style overflows
INT_MAX, forces YouTube to go 64-bit.”
https://arstechnica.com/information-technology/
2014/12/gangnam-style-overflows-int_
max-forces-youtube-to-go-64-bit, Dec-2014.

[12] J. P. Anderson, “Computer Security
Technology Planning Study.” https://web.archive.org/
web/20110721060319/http://csrc.nist.gov/publications/
history/ande72.pdf, Oct-1972.

[13] S. Mirani, “ASUS routers overflow with
vulnerabilities.” https://blog.securityevaluators.com/
asus-routers-overflow-with-vulnerabilities-b111bc1c8eb8,
Nov-2018.

[14] “Advanced persistent threat.” https://en.
wikipedia.org/wiki/Advanced_persistent_threat.

http://g4ngli0s.logdown.com/posts/1421430-bsidessfctf-for-dnscap
http://g4ngli0s.logdown.com/posts/1421430-bsidessfctf-for-dnscap
https://www.iotforall.com/5-worst-iot-hacking-vulnerabilities/
https://www.iotforall.com/5-worst-iot-hacking-vulnerabilities/
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://arstechnica.com/information-technology/2014/12/gangnam-style-overflows-int_max-forces-youtube-to-go-64-bit
https://arstechnica.com/information-technology/2014/12/gangnam-style-overflows-int_max-forces-youtube-to-go-64-bit
https://arstechnica.com/information-technology/2014/12/gangnam-style-overflows-int_max-forces-youtube-to-go-64-bit
https://web.archive.org/web/20110721060319/http://csrc.nist.gov/publications/history/ande72.pdf
https://web.archive.org/web/20110721060319/http://csrc.nist.gov/publications/history/ande72.pdf
https://web.archive.org/web/20110721060319/http://csrc.nist.gov/publications/history/ande72.pdf
https://blog.securityevaluators.com/asus-routers-overflow-with-vulnerabilities-b111bc1c8eb8
https://blog.securityevaluators.com/asus-routers-overflow-with-vulnerabilities-b111bc1c8eb8
https://en.wikipedia.org/wiki/Advanced_persistent_threat
https://en.wikipedia.org/wiki/Advanced_persistent_threat

	Introduction
	Challenges
	AIMLES - staging
	Analysis

	Bad memories - part 1
	Bad memories - part 2
	Bad memories - part 3
	Bad memories - part 5
	Analysis

	Exfiltration
	Analysis

	fridge 2.0
	Analysis

	lisby-1
	Analysis

	ACME Order DB
	Analysis

	Device Control Pwnel
	Device Control Pwnel - part 2
	Analysis

	Ports
	Analysis


	Conclusion
	References

