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Abstract—The aim of this research is to derive rules for
profiling malware in Android applications, using data that could
be easily extracted from the hosting marketplaces and data
intrinsic to the downloaded APKs themselves. An automatic
system for scraping metadata from the marketplace website,
extracting intrinsic metadata and submitting APKs to Virustotal
is set up. Based on the dataset generated from this system,
analysis is done using decision trees and association analysis.
Because of the discovery that the decision trees created were
heavily biased towards rules for profiling benign APKs the
strategy of the research was changed for the association analysis,
modifying the dataset in such a way as to increase the likelihood
of extracting rules which profile malware.

From both of these analyses a sets of rules were found. The
rules were in general rather intuitive and reasonable, with a few
outliers which were harder to interpret. A discussion of these
rules were performed where their meanings were analysed.

Index Terms—Malware Profiling, Android Security, Rule Ex-
traction, Machine Learning

I. INTRODUCTION

Given the prevalence of malware in mobile applications
shared on the web, Android as a platform should in no way
be excluded from modern security considerations. Among
applications offered on various marketplaces targeting Android
users, many are disguised as benign while in reality exhibiting
malicious behaviour when being run. As of 2018, 26.6 million
applications were detected to contain malware [1]. This is
however still just a small part of all of the android apps
available for download. Thus when considering all applications
currently in circulation, how does one determine which can
be trusted and which to avoid? Scanning every application for
malware with well known malware detection tools may be a
good idea, but might not be feasible with the amount of APKs
available. The aim of this research is to generate rules from
easy to extract metadata available on an Android marketplace,
to aid security analysts in profiling malicious applications.
This task motivates the following question formulation:

• What rules are likely to be most effective for deciding
whether a given app is malicious?

II. BACKGROUND

Terms in need of explanation will be defined here along with
a presentation of previous research lightly illustrating concepts

discussed in this report, mostly relating to machine learning,
data mining and Android security.

A. APK

An Android package, or APK, is a file compressed with the
format used to distribute applications on the Android platform.
APKs contain everything that is needed for an app to be run
on an android phone. The relevant files for feature extraction
are as follows:

• The Android Manifest defines a lot of the aspects which
make up the metadata of the app, such as the name, the
components of the app, the permissions it requires to be
run and the hardware and software features it requires.
[2]

• The .dex Files contain the application’s program code.
• CERT.RSA contains certificate information of the appli-

cation issuer.
• The assets/ and res/ Directories contain data used by

the application, such as images or text data.

B. Description of Relevant Android Permissions

• BROADCAST STICKY - Allows an application to
broadcast sticky intents. These are broadcasts whose
data is held by the system after being finished, so that
clients can quickly retrieve that data without having to
wait for the next broadcast. Messages are sent between
components of an application. Protection level: normal

• BLUETOOTH ADMIN - Allows applications to dis-
cover and pair Bluetooth devices. Protection level: normal

• BLUETOOTH ADMIN - Allows applications to con-
nect to paired Bluetooth devices. Protection level: normal

• CALL PHONE - Allows an application to initiate a
phone call without going through the Dialer user inter-
face for the user to confirm the call. Protection level:
dangerous

• CHANGE NETWORK STATE - Allows applications
to change network connectivity state. Protection level:
normal

• INTERNET - Allows applications to open network sock-
ets. Protection level: normal

• MODIFY AUDIO SETTINGS - Allows an application
to modify global audio settings. Protection level: normal



• READ PHONE STATE - Allows read only access to
phone state, including the phone number of the device,
current cellular network information, the status of any
ongoing calls, and a list of any PhoneAccounts registered
on the device. Protection level: dangerous

• RECEIVE SMS - Allows an application to receive SMS
messages. Protection level: dangerous

• READ SMS - Allows an application to read SMS mes-
sages. Protection level: dangerous

• READ EXTERNAL STORAGE - Allows an applica-
tion to read from external storage. Protection level: none

• WRITE EXTERNAL STORAGE - Allows an applica-
tion to write to external storage. Protection level: none

• PROCESS OUTGOING CALLS - Allows an applica-
tion to see the number being dialed during an outgoing
call with the option to redirect the call to a different
number or abort the call altogether. Protection level:
dangerous

C. Tools:

• Virustotal is a website providing services for scanning
files for malware with several different engines such
as Avast and F-secure. Virustotal also provides an API
for automating the scanning of files via scripting. The
Virustotal API can be accessed for free, but with some
restrictions, which is in part enforced by requiring users
to create an account on the Virustotal website. [3]

• NinjaDroid is a tool which automatically extracts most
of the existing information from a given APK, such as
file sizes, name, version, requirements, et cetera [4]

• Weka is an application which contains several tools
for machine learning and data mining. It is GUI based
and allows the user to apply many different algorithms
on provided data. One of the tools is specialized in
performing association analysis and allows the user to
perform such analysis with minimal knowledge of the
underlying functionality and algorithms.

• Selenium is a tool for testing web applications. It uses a
browser process, a web driver, to interact with a webpage
using given commands. In this case, google chrome was
used together with selenium’s python implementation.

D. Classification

Classification of data in a machine learning sense means
that, given measurements of different attributes of the sample
that is to be classified, the model will try to find patterns so that
it can predict a class of the object based on the attributes. An
example of this would be that given the amount of downloads
for an app, the model will try to predict whether the app is
malware or not.

E. Selected machine learning algorithms

While technologies such as Neural Networks (often Deep
Neural Networks also known as Deep Learning) and Support
Vector Machines (with non-linear kernels) are usually more
in the public eye as to regarding machine learning nowadays

these techniques do have some weaknesses. One of these is
the reliance on transforming the data into a feature space to
help ease the classification process and to enable non-linear
classification. Being able to perform non-linear classification
is essential to being able to handle complex data, and thus the
conversions to feature space are essential for these techniques
to function properly. These feature spaces do however come
with some drawbacks, one of the largest of these being
a lack of interpretability. It can be extremely hard to tell
exactly which properties of the input data that has affected the
outcome. Since it is hard to tell which inputs lead to which
output it is also hard to create rules connecting input to output
which humans can understand based on the trained models.

Because of these problems in order to extract the rules based
on metadata for deciding whether an app is malware or not
this report resorts to other machine learning approaches which
can provide these rules. These approaches will be introduced
in the following sections.

1) Decision trees: If you were to imagine the simplest
classifier possible it would probably be to classify based on
one value in one dimension, for example if the amount of
downloads are less than 10,000 then the app is assumed
to be malware, otherwise it is assumed to be safe. Such a
classifier is called a decision stump. While decision stumps
might work on the simplest of data it would obviously not be
that good as a classifier for more complicated data, even such a
simple relation as y=x could not be modelled. However, if we
combine several of these decision stumps, looking at different
dimensions and having different thresholds on the values a
much better classifier could be created. This is what is called
a decision tree and what will be used as a classifier in this
study.

The biggest advantage of decision trees compared to other
relevant machine learning approaches is that the classification
rules are immediately extractable from the trained model.

2) Association Analysis Rules: Association analysis is the
theory of finding rules for the different classes in the already
existing data, and is thus extremely relevant for this report. The
rules are found by looking at the dataset and looking at which
patterns are often present in the interesting samples. Such a
pattern could be a correlation between malware classification
and what average review score a given app has. Since it would
be hard and take way to long time to generate all rules, there
are algorithms limiting the generation of rules to the ones
which are considered interesting, based on the rule’s support
and confidence.

The support of a rule is how often it occurs in the database,
for example if low review score and malware occurs together
in 1% of the entries in the data then the support for this
combination of attributes would be 1%.

The confidence of a rule is what fraction of cases where
the left hand side of the rule (the consequent) of the rule
occurs that the right hand side (the antecedent) also occurs.
For example if in 70% of the cases where we have classified
an app as malware we also find that the app has less than
10,000 downloads then the confidence of the rule is 70%.



The algorithms for rule generation does require that the data
is discrete, and thus require the data to be discretized before
the algorithm can be run, meaning that the parameters selected
can severely affect the outcome of the algorithm.

F. Malware Classification on Application Metadata
In [5] it has been shown that it is possible to classify android

APKs as either malware or benign based on easily extracted
metadata features, such as the number of required permissions
and the time since the latest update. This does lend credence
to the idea of finding rules for classification of malware based
on such easily extracted metadata features. It has also been
shown that certain categories of apps are more likely to contain
malware, once again supporting the hypothesis that such a
classification would be possible.

G. Motivation of Collected Features
In this section initial motivation for the choice of attributes

to analyze is presented arguing for why they are considered
important in the context of this report.

The expectations when setting out with the project is that:
• There will be a difference in malware density among the

different categories, as shown in previous studies. [5]
• Apps with more permission requirements are more likely

malware since the goal of the malware is likely to
gain access to as many of the phones functionalities as
possible.

• Apps with lower user review score are more likely
malware since if users discover that malware is present,
then they are likely to give the app a lower review score.

• Apps with a higher version number is probably less likely
to be malware, this since it is unlikely that malware will
get continuous support and updates after release.

• The proportion of the amount of URL:s and the size of the
app might be indicative of malware. While it is likely that
larger apps have more URL:s it is possible that malware
have a higher number of URL:s compared to their size.

III. METHODS

In this section the general workflow of the project is
presented. This includes the fetching of apps, labeling of the
apps (as malware or benign) as well as rule extraction from
the collected data.

A. Choosing Markets
To select a suitable marketplace for downloading apps a few

different criteria were taken into account. The most important
were:

• The amount of free apps should be larger than 10,000
• The likelihood of viruses to be present on the site should

not be too low
The chosen marketplace was Anzhi.com, on which both

stated criteria were fulfilled [6]. Furthermore the site had
relevant metadata readily available on every app page and had
a structure that could be traversed without too much trouble
(for more information on structure and traversal see section
III-D).

B. Challenges and Rationale of the Program Structure

A challenge with this project is the amount of data which
needs to be downloaded and processed. Assuming that the
maximum size of each app is 30MB, which is the maximum
which we can submit to Virustotal, and that the goal of the
report is to download and process about 10,000 apps this
would mean that in the worst case an approximate 300GB of
data would be required to be downloaded and stored. It would
therefore be preferable to instead manage the downloading
and processing of apps in smaller batches. This would allow
for the apps within a batch to be removed when processed
so that only the unprocessed apps need to be stored on
the computer, greatly reducing the required space. This does
however increase the complexity of the programming task.

Another challenge is the amount of time it takes to process
all of the apps. Since Virustotal restricts the allowed amount
of API calls to 4 per key per minute this means that the
expected time to process 10,000 apps would range from two
to three days. This is quite a long time to expect a single
process to manage to run uninterrupted, especially when the
process requires access to the internet to function. This means
that it would be preferable to take care to save state as
often as possible so that the process can be paused at any
point, or even stop it entirely, without having to restart the
downloading and processing process. This becomes harder
when the downloaded apps are removed after they have been
processed.

C. Structure of the Data Collection Code and Execution

The data collection code is made up of four different main
components, these are:

• A module for downloading APKs and scraping metadata
• A module for submitting APKs to Virustotal for scanning
• A module for extracting the intrinsic metadata from the

APKs
• A module for removing the already processed apps
These four components communicate with each other by

using files which they write to and read from. For example
when the downloading module has downloaded an APK it
writes this to two different files to notify the submitting
module and the extracting module that the APK is available
for processing.

The entire system is also built up in a cyclical manner where
the processes do all of the work available to them in one cycle
before restarting to check if any new work is available. For
example the submitter submits all of the APKs available to
it in one cycle to then wait until the next cycle starts before
checking if any new apps are available. This is done so that
the cleaner has some time where all processes have stopped
during which it can remove APKs safely.

The system was parallelized between 6 computers, all
running on a given index.

D. Traversing the Website

For the site traversal the choice was made to fetch the app
pages from an index page found on the site. All the apps



considered for download could be reached by incrementing a
number in the URL of this page and following the app links
listed there. The computers running the program were given
indices spread out over the whole set.

E. Downloading the Metadata

Application metadata was obtained by loading the app-
specific page on the marketplace and then scraping the relevant
information from it (using the python package BeautifulSoup),
which is then saved to disk in a CSV file for future analysis.
In the case that one of the apps were missing some of the
expected metadata a default value was instead used.

The chosen data was:
• The app name
• The review score
• The app category
• The number of comments

F. Downloading the APKs

The APKs were downloaded by clicking a download link
on their respective app pages. Since the apps could not simply
be downloaded by fetching from a specific URL, but instead
by executing some JavaScript code, a web driver was needed
to initiate downloads. The python package selenium was used
with a chrome driver to click on the download buttons and
run downloads in the browser. Since the filenames where
randomly generated by chrome, the file creation time was
used to associate files with fetched data, which meant that
the downloading process needed to be serial.

G. Extracting the Intrinsic Metadata

To extract intrinsic metadata from the APKs, the APK
parser tool NinjaDroid was used. The apps marked ready for
parsing was input, with JSON formatted data being output
from NinjaDroid. From these the relevant data was extracted
and saved in a CSV file for future analysis. The chosen data
was:

• The version number
• The app size
• The number of URLs in the APK (extracted from the

.dex files)
• The number of shell commands used (extracted from the

.dex files)
• The permissions required

H. Submitting the APKs to Virustotal

The submitter sends APKs to Virustotal for malware scan-
ning. It is made up of one main thread which loads in all of the
apps and makes sure that all other subprocesses finish properly
as well as one new thread for each of the APKs which are to
be processed.

As stated for each of the APKs which are to be submitted
there is one new thread spawned which is responsible for
taking care of the entire process of scanning that APK. This
process is made up of several different steps which also vary
depending on the responses received from Virustotal. The first

thing which is done for each of the APKs is to check if the
APK is already present on Virustotal. Is this the case then
the next step is to check if the current report on Virustotal is
recent enough to use, in this case recent enough is defined as
made within the last 180 days.

Is the report not present on Virustotal or if the existing
report is too old then the APK is submitted to Virustotal for
scanning. After an APK has been submitted to Virustotal the
thread responsible for the APK sleeps for five minutes waiting
for the result. When the thread wakes up it checks if the results
are available or not, if they are then the thread is done and
outputs the results, if the results are not available, then the
thread sleeps for another three minutes.

The reason for the threaded module is to enable the possibil-
ity of having more than one app being processed at a time, this
means that if the Virustotal submitter has to wait for results
for one of the apps then it can still process the others, making
sure to fully utilize the four available requests per minute.

The restriction of four requests per minute gets somewhat
trickier when having a thread per APK however, since all
of the living threads must share the available requests. This
is however accomplished by python’s condition functionality.
The condition functionality allows having a restriction where
the threads can only make a request if a counter is above a
threshold value, this counter is protected by a lock. A separate
thread can then update the counter with four new requests
every minute as well as updating all of the waiting threads
when the counter is updated.

I. Extracting Malware Recognition Rules

For the rule extraction the R programming language is used.
The data is loaded in and combined into one large data frame.
After the data has been loaded it is then used to create a first
classification tree. After this, cross validation is used to decide
upon the optimal tree depth and the tree is pruned to this level
iteratively.

For the association analysis Weka is used to generate the
rules. To be possible to be used in weka the data needs to be
converted to an .arff format, this can, however, easily be done
in weka. After converting the data the association is performed
by selecting the association option from the interface. From
this the algorithm is run and the rules extracted. Because of
how the association analysis works, not all APKs can be used
for this. If all of the APKs are included then the benign APKs
far outnumber the malicious APKs, and thus the rules found
relate only to the benign APKs. Because of this the data was
pre processed in such a way that there were approximately the
same amount of benign APKs as there was malware. This was
done by first dividing the data up into malware and benign
APKs. After the APKs were divided up approximately the
same amount of benign APKs were taken at random from the
set of benign APKs as there were malware APKs. These two
equal sized sets were then combined into one final set which
was then processed. The reason it is required to have benign
APKs in the set, which is processed with the association
analysis, was that otherwise there occurs problems with the



confidence of the rules, since there exists no benign APKs for
which the rules could also hold.

When doing the intrinsic metadata extraction such as it was
done in this project, each of the possible permissions of an
app is represented as one binary variable in the data regarding
the APK. This means that each app was represented by 170
different variables in total. Because of both the time and the
memory complexity of the Apriori algorithm, as a function
of the amount of variables in the data, it becomes unfeasible
to perform the algorithm on the data when keeping all of the
variables. This means that some of the variables has to be
removed. This removal of variables was done manually and
worked in such a way that if there were a variable where
less than 100 APKs fell into either of the categories then the
variable was removed. This means that if, for example, less
than 100 out of the APKs used a permission then the variable
representing that permission was removed before the algorithm
was run. This also means that all of the variables that were
removed were those with the lowest amount of variance.

IV. RESULTS

In this section the generated decision tree and rules are
presented to the reader.

A. Model and Extracted Rules

In the following section the results regarding both the
generated tree classifier and the generated rules are presented.
Regarding the decision trees only the final tree for the finally
selected virus threshold is presented, there were however trees
generated for each of the integer thresholds in the range [1,20],
this was done to be able to compare the misclassification rates
of the trees.

B. Selection of Threshold

As earlier presented one challenge which presented itself in
this project was to decide upon a threshold as to how many
of the Virustotal engines had to mark an APK as a virus for
it to be considered a virus. To help with this decision two
figures were generated, one presenting how the proportion of
viruses compared to overall APKs changed for different values
of the threshold(Figure 1), the other was an image showing
the misclassification rate of the decision tree as a function of
the selected threshold(Figure 2).

Based on these figures the values of the threshold for the
decision trees was set at 13. The threshold for the association
rules was also set at 13, which is the value for which about
10% of the data is virus. The reason that 20 activations
were not selected, even though it apparently has a lower
misclassification rate is that when the threshold is increased
the density of malware in the data is decreased. This decrease
of malware density results in a better misclassification rate,
even if the model is not better at profiling viruses, just because
there are fewer to profile.

Fig. 1. Virus density as function of threshold

Fig. 2. Misclassification rate as related to threshold



C. Generated Tree Models

Based on the selected threshold of 13 engine activations for
the APK to be classified as a virus the following tree model
was generated. The actual tree model is presented in Appendix
A, since it was too large to include in this text. Because of
problems with the graphical representation the tree model is
included in text form.

D. Rules Extracted via Association Analysis

When the rules were generated two sets of rules were
generated, one with rules only related to the classification of
viruses and one where all rules were included. Here only the
virus classification rules are shown.

Only two of the rules generated are actually represented
since the length of the rules otherwise quickly make the report
rather unreadable. The two that were selected were two out
of the top four. The reason that not just the top four were
selected is that the rules seem to come in pairs, where every
second rule is just a slight modification of the first rule. In all
of the cases it is also such that both the right and the left hand
side include exactly the same amount of samples in both of
the rules, meaning that both of the rules relate to exactly the
same sample of apps. Because of this it seemed more relevant
to include rules which differed more, even if they were not
specified as the rules with the highest confidence.

It should be noted that even with this exclusion the rules
which are included are still quite similar, but have neither
side covering the exact same amount of apps, and also have
differing confidence. More differing rules could likely be
found if more rules were to be generated, doing this is
only prevented by a lack of time. The rules could easily be
generated by the authors upon request.

Any further generated rules would have a lower confidence
than the ones presented in this report.

The rules are in format

A,B,C, relevantforDsamples → E,Fconf(G)

To read this format it is important to know:
• A, B, C are the attributes that all apps in the rule have
• D is the amount of samples which show all of these

attributes
• E is the result of the rule (in this report that the samples

are virus)
• F is how many of the D samples which are actually virus
• G is the confidence of the rule based upon D and F
It is also the case that if the rules say A=0 or A=1 this means

that A is either false or true respectively for the samples. For
example if A is a permission this means that the samples either
have or do not have the permission. On the other hand if A
is the status of virus then it means that the samples either are
not viruses or are viruses.

1) BLUETOOTH=0,
BROADCAST STICKY=0,
CALL PHONE=0,
CHANGE NETWORK STATE=0,
INTERNET=1,
MODIFY AUDIO SETTINGS=0,
READ PHONE STATE=1,
RECEIVE SMS=0,
relevant for 1105 samples
→ virus=1, 791 conf:(0.72)

2) BLUETOOTH=0,
BROADCAST STICKY=0,
CHANGE NETWORK STATE=0,
INTERNET=1,
MODIFY AUDIO SETTINGS=0,
READ EXTERNAL STORAGE=0,
READ PHONE STATE=1,
READ SMS=0,
WRITE EXTERNAL STORAGE=1,
relevant for 1098 samples
→ virus=1, 785 conf:(0.71)

V. DISCUSSION

In this section the results are discussed, were they similar
to the expected results? Do they have good support and
confidence? Do they make sense?

A. Rule Analysis - Tree Algorithm

While analysing the resulting tree, it should be noted that the
feature on the level closest to the root is the most important,
in this case the READ PHONE STATE permission. This
being the most important feature also seems rather logical.
Data about the phone state would be useful in developing
effective malware, which is further backed by the fact that the
permission has the “dangerous” protection level. Not having
the READ PHONE STATE permission reduces the amount
of malware in the population from about 10% to about 2.7%
which is a rather significant shift, almost a factor 4.

Attributes on the second level are also rather important,
which would include the update date and the amount of shell
commands. The role of these attributes is however not possible
to determine from the tree. This is partly due to the fact that
the rules represented by these nodes are an intersection of
several different constraints, and thus not only dependent on
these attributes. Another reason as to why it is not possible
to extract any immediate meaning as to why the attributes are
important is that the intermediate nodes do not represent any
complete rules, neither do they represent any finished profiling
of the apps as malware or benign. That said there are some
interesting complete rules ending in leaf nodes which can be
discussed. The rules which are most interesting to discuss are
the ones that profile malware with a reasonable certainty, as
well as those that profile benign apps with an extraordinary
certainty, these are the ones that will be presented.



First amongst the rules is the rule ending in node 4),
profiling benign apps with a 99.8% certainty. This rule
holds for apps without the READ PHONE STATE permission
which had their latest update more than about 2.5 years ago.
This is states that apps which are somewhat older almost
entirely needed the READ PHONE STATE permission in
able to function as malware, increasing the likelihood that
the READ PHONE STATE permission at least used to be an
extremely important indicator of malware.

The next rule, the one ending in node 21, does however
present a somewhat interesting counterpoint to this, it states
that apps that do not have the READ PHONE STATE permis-
sion, but that are updated more recently than about 2.5 years
ago, which also have less than 13.5 shell commands and are
larger than 6MB, have a 70% probability of being malicious.
This seems to indicate that some way of performing malicious
activities without the READ PHONE STATE permission has
been introduced recently. It also seems likely that the code
required to perform this malicious activity is likely rather
large, leading to the larger size requirement for the rule. Based
on the previous assumptions that malware in general have a
higher amount of shell commands the final requirement does
however seem somewhat unintuitive. Overall however this rule
seems quite intuitive based on these explanations. This rule
does raise some questions as to what allowed the malware to
bypass the requirement of having the READ PHONE STATE
permission however. A potential explanation for this could
be the emergence of lower level exploits, such as Meltdown
and Spectre [7] which could allow applications to bypass
the protections of the operating system, even without special
permissions.

The third interesting rule is the rule ending with node
11. This is one of the most unintuitive rules in the gen-
erated tree. It states that if the app does not have the
READ PHONE STATE permission, it updated more recently
than 2.5 years ago, does also have more than 13.5 shell
commands, then it is with 99.7% certainty a benign app. This
rule is not nearly as intuitive as most other rules, but there
are two possibilities that can be seen as to why this would be
possible. The first of these possibilities is once again that some
important feature is missing or some unsuitable simplification
has been made in the model. The other option that can be
seen is not that there is something special with the benign
apps having more than just 13 shell commands, but rather
that the malware presented in the previous rule, at node 11,
have extraordinary few shell commands. If we are to assume
this then it might be so that if the malware profiled in rule
11 use some exploit to bypass the restrictions of the operating
system (thereby allowing for direct execution of instructions),
then the shell commands might be less necessary than for any
usual app. This combined with the assumption that malware
applications likely have less effort put into them, thus requiring
a less than average amount of shell commands than normal to
perform their other functionality, then this might result in this
specific class of malware having less than the average amount
of shell commands overall. This would somewhat explain the

shell command part of the rules, both for this rule and for the
previous rule, ending in node 11.

The final rule, ending in node 222), is rather long. It states
that, if the app uses the READ PHONE STATE permission,
has more than 30 shell commands, has more than 120 URLs,
has the ACCESS COARSE LOCATION permission and has
a version number between 64 and 115, then it is with 84%
certainty a virus. This rule has many parts to go through.
Starting with the READ PHONE STATE permission it has
earlier been stated that this is a likely predictor of malware,
meaning that it is not a surprise to see it included in the rule.
Along with this the ACCESS COARSE LOCATION permis-
sion is also included, this allows the app to access the phones
approximate location. Just as the READ PHONE STATE this
is a “dangerous” permission, meaning that it is reasonable to
find it amongst the permissions which help profile malware.
The location of a phone is valuable information that might
be of high interest to potential malware creators, if possible
to get a hold of. As to the amount of URLs it is in no
way unlikely that malware would have a higher amount of
URLs in the app, since all of the locations to both download
malicious information and all the locations to upload the user
information would need to be included in the app. Finally the
version number presented in the rule raises some questions, as
it was assumed that malware would not be updated frequently.
What is of note however, is that the version number is gotten
from the android manifest, and can thus be set at will by
the application developer. This means that the version number
does not necessarily have a direct correlation to the actual
version of the app. What this part of the rule might indicate
is that the app developers set the version number intentionally
so that it does not seem like the app is as new as it might in
fact be. The reason for this might be to give the users a false
security, assuming that the app is safe since it has been around
and been updated while this is not, in fact, actually true.

Further research would be required to confirm the validity
of these explanations. The applications could be examined to
check for the presence of exploits bypassing the operating
system, and given such a presence its effect on apk size would
also be considered.

B. Rule Analysis - Association Analysis

The rules generated seem to be logical, with a
clear correlation between sets of permissions involv-
ing one with a “dangerous” (as defined by [8])or
undefined protection level (READ PHONE STATE and
WRITE EXTERNAL STORAGE), some general permission
(INTERNET) and positive virus profiling. The inverse is in
part true with permissions of a “normal” protection level,
such as BLUETOOTH and BROADCAST STICKY, indicat-
ing negative malware profiling. Though permissions related
to making calls and sending SMS messages, which have a
“dangerous” protection level, are constrained to be missing
from the permission set in the presented rules. One explanation
could be that these particular sets of rules are given with
respect to particular malware families, in which no such



permissions are used. The permissions just mentioned would
then have to be present to differentiate from other malware
families. Analysis of the code of some of the applications
from the supposed malware families would be helpful in
determining whether or not such patterns actually exist in the
dataset.

Finally the rules chosen for presentation are similar, which
is not unexpected if the variables correlate with the malicious
truth value on their own.

C. Rule Analysis - Algorithm Comparison

A comparison of the rules generated by the algorithms, and
thereby also of the algorithms themselves, would have been
interesting. Performing such a comparison was also the plan at
the start of the project. Currently it is however impossible to do
such a comparison. This is due to the fact that the algorithms
did not run on the same data. The data that the tree did run on
was 90% benign apps and 10% malware, while the association
analysis did run on a dataset made up of 50% benign apps and
50% malware. The fact that the algorithms ran on different
sets of data means that it is impossible to fairly compare the
resulting rules as well as comparing the algorithms themselves.

D. Method Criticism

Amongst the rules a few unintuitive rules were found
one option for why this happened is that some important
underlying features were not collected. This possibility would
be rather reasonable since only easily extracted metadata from
the marketplace and from the APK were used. If this is the
case then there might be a clear pattern in the data, based on
some of missing feature(s), that the rules try to mimic based
on the currently available features. If this is the case then
it might, by happenstance, be such that a seemingly random
feature is the best available approximation of the missing
feature(s). If this is the case then the model would then select
this approximative feature in lack of a better option, leading
to seemingly random features and rules being included in the
final model.

As previously stated most of the rules generated for the
association analysis were rather similar. This means that it
is possible that only the first of these rules would have been
needed for a relevant profiling. This could probably have been
helped by the generation of more rules, since it is unlikely that
all of the rules are this similar, it is probably just the case with
the rules which have the highest confidence, since they likely
profile a similar set of APKs. Unfortunately there was not
enough time to generate these rules to see if there were any
differences amongst later rules.

Along with this another problem is that the association
analysis was only run on about 3,000 apps. This is since as
stated in the method III-I there needed to be a balance between
benign and malicious APKs for the algorithm to function
correctly.

The reason to change the number of APKs for the associa-
tion analysis was to find relevant rules, it should however be
noted that it should be possible to find the rules even if the

APKs are not removed, just that they will be present later in
the list. The problem that occurred however was that running
the algorithm long enough to try to find these rules was not
feasible on the available hardware as the algorithm was run
for five hours to then finally crash due to using more than
12GB of ram memory.

It should however be noted that changing the proportions of
the APKs will, as previously stated, change the confidence of
the rules, since it is possible that there would be more benign
APKs who would also have the same permissions, or lack of
permissions, as is presented in the rules. This would mean that
out of all of the APKs which have all of the features presented
in the rules a smaller proportion of them would be malware
and thus the confidence would be lower. The only two other
options to fix the presented problem, however, is to either buy
better hardware or to reduce the amounts of viruses as well to
keep the proportion until rules were found, neither of which
were deemed as doable or a better solution.

There was also some bias towards benign apps in the
decision tree, only a few of the rules ended up profiling
malware, most only profiled benign apps. The reason why
the data was not changed for the decision tree as well was
since there did actually did exist some rules for profiling
malware meaning that it was deemed worse to risk reducing
the generalizability only to increase the amount of rules which
profiled malware.

VI. CONCLUSIONS

This study contributes some possible rules to help profile
malware. These rules can potentially be used by security
analysts to help profile malware and identify which groups
of apps might be most relevant as to finding new malware.
These rules can also help profiling zero day exploits where the
tools to actually identify the malware are not yet developed.
Only a smaller set of rules were extracted for this report but
the frameworks for extracting more, as well as for basing the
rules on more malware, are set up and tested. Making it easy
to extract more rules if required.

Most of the rules generated seemed intuitive, with a few that
were harder to interpret. This shows that likely the method in
general is valid, but with some minor aspects which could be
improved. Seeing as the result would likely improve given a
larger set of features, it can be concluded that profiling based
on easily extracted features is possible, but not optimal.
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APPENDIX

Because of issues with the graphical representation of the
tree that could be generated, the tree is presented in text
form, because of this some explanation of the format might
be needed, the generated explanation is also presented in the
first two lines of the tree.

Each row of the tree represents a split in the tree, starting
from the root node. Each of the lines are presented on the
form of:
Node Number), split condition, amount of data points in node
(and potential children), classification value of data points in
the node (only definitive if leaf node), (percentage of data
points in node that are not viruses, percentage of data points
in node that are viruses)

To note is that the update date feature means the number of
days between the year 2000 and the date the app was last
updated this means that a larger number indicates a more
recent update, this was done to get a good and fair comparison
between different apps for the model to process. This structure
was also good since it meant that the date value of a given
app would not change from day to day, which is important
since the downloading process took several days. The size is
given in number of bytes.



node), split, n, yval, (yprob)

* denotes terminal node

1) root 9192 0 ( 0.899043 0.100957 )
2) READ_PHONE_STATE < 0.5 2394 0 ( 0.972013 0.027987 )

4) update_date < 6395.5 1864 0 ( 0.998391 0.001609 ) *
5) update_date > 6395.5 530 0 ( 0.879245 0.120755 )
10) shell_commands < 13.5 144 0 ( 0.562500 0.437500 )

20) size < 6.0739e+06 57 0 ( 0.964912 0.035088 ) *
21) size > 6.0739e+06 87 1 ( 0.298851 0.701149 ) *

11) shell_commands > 13.5 386 0 ( 0.997409 0.002591 ) *
3) READ_PHONE_STATE > 0.5 6798 0 ( 0.873345 0.126655 )

6) shell_commands < 231.5 3850 0 ( 0.810130 0.189870 )
12) shell_commands < 30.5 277 1 ( 0.469314 0.530686 ) *
13) shell_commands > 30.5 3573 0 ( 0.836552 0.163448 )

26) urls < 120.5 2530 0 ( 0.881423 0.118577 )
52) VIBRATE < 0.5 1108 0 ( 0.805957 0.194043 )
104) update_date < 6394.5 698 0 ( 0.883954 0.116046 )

208) update_date < 5011 277 0 ( 0.758123 0.241877 ) *
209) update_date > 5011 421 0 ( 0.966746 0.033254 ) *

105) update_date > 6394.5 410 0 ( 0.673171 0.326829 )
210) update_date < 6420 304 0 ( 0.572368 0.427632 ) *
211) update_date > 6420 106 0 ( 0.962264 0.037736 ) *

53) VIBRATE > 0.5 1422 0 ( 0.940225 0.059775 ) *
27) urls > 120.5 1043 0 ( 0.727709 0.272291 )

54) ACCESS_COARSE_LOCATION < 0.5 390 0 ( 0.961538 0.038462 ) *
55) ACCESS_COARSE_LOCATION > 0.5 653 0 ( 0.588055 0.411945 )
110) version < 64 352 0 ( 0.863636 0.136364 )

220) shell_commands < 153 67 0 ( 0.507463 0.492537 ) *
221) shell_commands > 153 285 0 ( 0.947368 0.052632 ) *

111) version > 64 301 1 ( 0.265781 0.734219 )
222) version < 115 254 1 ( 0.153543 0.846457 ) *
223) version > 115 47 0 ( 0.872340 0.127660 ) *

7) shell_commands > 231.5 2948 0 ( 0.955902 0.044098 ) *
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