
Security features in NoSQL systems with a
focus on graph-based NoSQL systems

Matildha Sjöstedt, Adam Andersson
matsj696@student.liu.se, adaan690@student.liu.se

TDDD17 - Information Security
Linköping University
Linköping, Sweden

Abstract—NoSQL DBMSs have become a more
common way to store and organize data. Although,
the interest in security features in these systems have
not been that great and is not to well documented
outside the documentation of each system. The focus
in this study have been on finding security features
in property graph systems and organizing these. The
study ended in categorizing twelve different system in
six security categories were only a few had features
in all six categories. After the research the study
chose two systems that seemed the most interesting
to take a closer look at.

The conclusion of the study is that there are
security features in property graph systems but there
are also flaws in the systems, so further development
in security features could be made.

Index Terms—NoSQL, graph-based NoSQL,
property-graphs, database security

I. INTRODUCTION

Security features in DBMSs (Database
Management Systems) is a topic that has been
studied for many years. During the recent years
it has become more common to use NoSQL
(Not Only SQL) DBMSs as a way to create and
manage databases with an alternative structure,
for example graph-based. A reason for the rising
popularity is that NoSQL DBMSs offer increased
performance, flexibility and agility compared to
systems for traditional, relational databases –
such as SQL-systems. The issue here though is
that control measures to provide security in these
NoSQL systems are not that well catalogued and
this could in turn be a problem if insecure database
systems are being used to handle sensitive data.

The expected result of this project is a report
that catalogues various security features and
control measures regarding access control,
inference control, flow control and data encryption
in different types of NoSQL DBMSs, mainly
focusing on Property Graph Systems. Hopefully
we will find that there is some kind of security in
the systems we investigate and that this could help
others when choosing an effective but also secure
database to use when handling sensitive data.

II. BACKGROUND

This section presents the method of our study and
relevant theory and definitions needed to understand
the content of our report.

A. Method

To get an overview of how well-equipped differ-
ent graph-based NoSQL systems are in terms of se-
curity, we will start by studying the documentation
for 12 different systems that offer property graph
databases. These systems are:

• Neo4J
• JanusGraph
• TigerGraph
• Oracle Spatial and Graph
• AgensGraph
• Sparksee
• Apache S2graph
• Dgraph



• Amazon Neptune
• Microsoft Cosmos
• ArangoDB
• OrientDB
While reading the documentation we will add

the security features we find in a comparison
table, together with a classification of the feature –
such as access control or encryption – and a short
description if needed. This way we will be able
to see what types of features are more and less
common as well as get an idea of which systems
offer the most security features.

The next step is to compile the above result
in some orderly way. Depending on the result this
may for example be done by adding up features for
each system and for each category or by creating a
table where we check if a certain system has any
features belonging to the different categories.

Finally we will select a few (two or three)
of these systems to look into more closely. This
means reading the documentation more carefully,
possibly looking up the techniques/protocols used
with the mentioned security features and also see
if there have been other studies made that point
out for example security flaws in these systems.

As part of the result we will also present
any security features or adaptations that was made
specifically for graph-based databases. This may be
complemented by information from other sources,
such as academic reports.

B. Theory

To know what kind of systems that are being
investigated in this report we first need to give
a little background about NoSQL and property
graph systems. In comparison to SQL, NoSQL is
different in a couple of ways:

• SQL databases are called relational databases
and NoSQL databases are called non-relational
databases

• NoSQL has dynamic schema so documents can
be created without having a defined structure.

• NoSQL are horizontally scalable so you can
handle more traffic by adding more servers to
your database in comparison to SQL that is
vertically scalable which means that you can
increase the load by increasing hardware.

• SQL databases are table based whereas
NoSQL databases are either key-value pairs,
document-based, graph databases or wide col-
umn stores.

• SQL databases guarantee ACID properties and
NoSQL (mostly) guarantees the BASE proper-
ties.

The above criteria are for all kinds of NoSQL
databases [1], but this report have focused on
property graph systems and what security aspects
they possess. So what is a property graph? A
property graph system is a system where the
data is organized as nodes, relationships and
properties. The nodes are the entities in the
graph and can hold any number of attributes
called properties. Nodes can be tagged with
labels representing their different roles in your
domain. Relationships in property graphs provide
directed named connections between two nodes,
for example HAS CEO is a relationship between
the nodes Company and Employee in figure 1 on
the next page. Just like nodes, relationships can
have properties. [2]

Now that a little theory about NoSQL and
property graphs have been given, you might ask
yourself why property graphs are good and why
their security aspects should be investigated?

Graph databases have three key advantages over
SQL databases:

• Graph databases improve performance by sev-
eral orders of magnitude for intensive data
relationship handling.

• In property graphs it is easy adding to existing
graph structure without endangering current
functionality.

• Development today is very agile and test-
driven so using graph databases align perfectly
with this way of working with development.

Below is a list of definitions in this report:



Fig. 1. Example of a property graph [2]

Definition Explanation
ACID Short for Atomicity,

Consistency, Isolation
and Durability

AES Advanced Encryption
Standard. A block cipher
using symmetric keys.
[3]

CSRF Stands for Cross-Site Re-
quest Forgery. A type
of attack which tricks/-
forces/causes the victim
to execute an action or
submit a request unwill-
ingly. [4]

DES Data Encryption
Standard. A block cipher
using symmetric keys.
DES is an older than
AES, uses shorter keys
and are not considered
secure anymore. [5]

SSL Secure Socket Layer.
Cryptographic protocol
used to secure network
communications.

TLS Transport Layer Security.
SSL and TLS are often
referred to synonymously,
but TLS is a more up-
dated protocol.

BASE A model that stand for
Basic Availability, Soft
State and Eventual con-
sistency.

C. NoSQL security concerns in related work

With the increased usage of NoSQL systems and
consequently the increased number of available

systems, it seems probable that the security
aspect may have struggled to keep up with the
development. In a report concerning the security
of so called sharded NoSQL databases (sharded
basically means that a large database is separated
into several smaller ones) it is pointed out that the
design of NoSQL-systems initially had little focus
on security. They also describe the security aspect
as being ”one of the most difficult challenges” for
this type of systems. [6]

In an article published in 2018 by the Technical
University of Sofia, a good overview of some
common security issues in NoSQL systems is
given. The first issue they bring up is regarding
access control, which is often limited or completely
missing. They also comment on bad habits of using
default configurations and credentials. Some other
common issues are no support of TLS/SSL (see
section II-B) and sometimes no encryption for
stored data. Bad query attacks – known as SQL-
injection for traditional relational databases – is a
well-known type of attack that also can be used
against NoSQL systems. The article points out that
the fact that these systems often make use of JSON
or XML, may lead the execution of malicious
code injected by an attacker. When it comes to
NoSQL systems it is also common with self-made,
custom API:s that lay on top of the database.
This can enable you to add more security features
yourself, but can also leave the system vulnerable
to injection attacks and so called cross-site request
forgery attacks (CSRF) (see section II-B). [7]

Case studies and active attacks to real NoSQL
databases were made in a study against two well-
known NoSQL systems, Neo4J and OrientDB. This
highlighted several issues, some of them related
to configurations, both bad default configurations
that come with the system as well as bad use of
configurations in real systems. Their study also
found weaknesses regarding protection against
brute-force attacks and bad query attacks. [8]



DBMS Access control Backup tools Logging SSL/TLS
Encryption for 
data at rest

Firewall 
features

Apache 
S2graph
Sparksee
AgensGraph
JanusGraph

TigerGraph

Through 
underlying 
software/tools

Dgraph
ArangoDB
Neo4J Through add-on
Oracle Spatial 
and Graph
OrientDB
Amazon 
Neptune
Microsoft 
Cosmos

Fig. 2. Overview of supported security features

III. RESULT

In this section we present the findings of our
study.

A. Comparison of DBMSs that offer property graph
databases

After inspecting relevant documentation for
all NoSQL graph DBMSs mentioned in section
II-A we found slightly under 100 mentions of
security features across the different systems. We
could later sort them into 12 different categories.
These categories include broad categories such as
access control, firewall, encryption for stored data,
connection encryption, fault tolerance, consistency,
back-up and logging. But we also have a few more
narrow categories like key management, certificate
management and incident handling – for these we
only recorded one or two features. At first we
used the category authorization, but later decided
to merge it with access control. For many of these
categories we failed to take equal notice of features
for all systems, making it unfair to directly compare
the systems with regard to these categories. But
despite this and even though the degree of
delimitation for what we recorded as a ”feature”

turned out to vary somewhat, it still presented us
with some useful results. We got a good idea of
what type of features are the most common and
which systems seem to tackle most security aspects
and which offer less security features or none at all.

In figure 2 we have compiled the initial result into
a simple overview which shows which systems
have any features from the six most relevant
categories identified. These categories were the
ones for which we studied the documentation
and recorded features most equally across the
systems – as discussed above. The systems in the
rows of the chart are sorted based on how many
categories they offer features in. The categories
in the columns are sorted based on how well
represented they are. We can see that we have an
almost linear distribution in how many categories
are represented, i.e. we see one system that is
represented in no security categories and some that
are represented in one, two, three etc. and finally a
couple that is represented in all or all but one.

Looking at the categories, features offering
some form of access control seem to be the most



common among the graph systems we have looked
at. This is followed by back-up and logging.
The logging category includes any feature that
logs for example actions or transactions made to
the database. From what we could find in our
inspection of the documentation only half of the
systems (7/12 counting Neo4j) provide secure
connections through SSL or TLS (see list of
definitions in II-B). Less than half offer encryption
for data at rest (data stored at disk which is
not currently in transit or under operation). We
could only find that two of the systems provide
some kind of firewall features. Oracle Database –
which offers Spatial and Graph – has an extension
package ”Audit Vault and Database Firewall”, but
it was difficult to find whether this works together
with their graph system.

B. A closer inspection of some systems

After looking at our initial results and
comparisons we have decided to look more
closely at two systems: Neo4j and OrientDB.
We chose these systems because they are both
among the most popular graph DBMSs (according
to db-engines current ranking in May 2019 [9]).
Neo4j currently sits at the top of the rankings, but
does – according to our findings – not offer any
encryption for data at rest, firewall features and
only secure connections through an add-on. Neo4j
and OrientDB were also the only two systems
we found that mentioned access control features
clearly adapted to graph databases.

Neo4j: Neo4j is one of the bigger actors in
graph databases and has customers like Microsoft,
Cisco and Linkedin. The fact that they are so well
known they have a good set of documentation.
They claim that Neo4j, that is built from the
ground up to be a graph database, is designed
for storage, optimizing fast management and the
traversal of nodes and relationships.

Also, join operation performance will, with
the number of relationships, degrade exponentially.
But in Neo4j the performance is linear since the

corresponding action is performed as navigation
from one node to another.[10]

The documentation of Neo4j is very extensive
since it at first glance have a chapter about security
which brings up things like securing extensions and
SSL framework. Other than this chapter you can
find chapters like Backup, that instructs on how to
perform and restore backups, or Authentication and
Authorization that covers role management and
access control for subgraphs or property-levels.

When looking more closely at the system we
find that there are two types of role management
available. The first type is the normal role
management where you can assign a specific role
to a user and that role gives you specific privileges.
These kind of roles, that are predefined in Neo4j,
are reader, editor, publisher, architect and admin.
The differences are the following:

• Reader: Read-only access to the data graph.
• Editor: Read/write access to the data graph.

Write access are limited to creating and chang-
ing existing data in the graph.

• Publisher: Read/write access to the data graph.
• Architect: Read/write access to the data graph

and set/delete access to indexes along with any
other future schema constructs.

• Admin: Read/write access to the data graph
and set/delete access to indexes along with any
other future schema constructs. An admin also
has the possibility to view/terminate queries.

So for example if you have a user that only should
be able to read and write to existing property keys,
node labels and relationship types you should make
that user an editor. The commands to create a user
and make that an editor are the following:
CALL dbms.security.createUser(JohnDoe,
password, requirePasswordChange)
CALL dbms.security.addRoleToUser(Editor,
JohnDoe
It is also possible for an admin to create custom
roles, these are solely for executing certain
custom developed procedures. These roles come
in handy when you want to use the other type of
role management, subgraph access control. The



subgraph access control is a way to restrict a users
access to specified portions of the graph. This is a
very good security feature in property graphs since
you can restrict a users access to certain portions
of the graph depending on the labels on nodes or
relationships with certain types.

An example of when you could use subpgraph
access control is when you have a company and
you want the accounting department to have
restricted access. Then you could create a custom
role called ”accounting”:
CALL dbms.security.createRole(’accounting’)
Then you assign the role to a user e.g.
”stephenmoneymaker”:
CALL dbms.security.addRoleToUser(’accounting’,
’stephenmoneymaker’)
Lastly you choose what procedures the role
”accounting” should have access to and then all
users that are assigned that role gets the specified
procedures:
dbms.security.procedures.roles=apoc.load.json.*
:accounting
The above command gives all users with the role
accounting the ability to execute procedures in the
apoc.load.json namespace.

Another security aspect that Neo4j supports
is sandboxing. Sandboxing means that you
run your program in a separate and controlled
environment, a ”sandbox”. It is a copy of the
regular environment but anything that happens in
the sandbox cannot affect anything on the outside.
This way you can analyze when the program runs
and see if there is any odd behaviour that could
potentially injure the rest of your system. Neo4j
uses sandboxing to ensure that procedures do not
use insecure APIs since it is possible to access not
publicly supported APIs when writing custom code.

Neo4j also uses white listing if you only want to
use specific procedures from bigger libraries. By
white listing specific procedures you will only load
these ones into your system. For example if you
want to use all methods in apoc.coll and no other
extensions from the apoc library you could write:

dbms.security.procedures.whitelist=apoc.coll.*
This way only the methods in apoc.coll will be
loaded and available to your system.

Lastly, Neo4j brings up a security checklist
in the end of their Security chapter. This checklist
brings up things a user of Neo4j can do to ensure
an appropriate level of security for the users
application. This checklist both include security
aspects regarding Neo4j e.g ”Ensure the correct
file permissions on the Neo4j files.” and security
aspects that doesn’t only concern Neo4j e.g. ”Use
subnets and firewalls.”

OrientDB: In their own documentation,
OrientDB themselves claims to be giving more
attention to security than any other NoSQL system,
and in our comparative overview it did indeed end
up second only to the systems provided by the two
large companies Amazon and Microsoft. OrientDB
makes use of what they refer to as ”roles”, which
defines a users permissions, with regard to specific
resources and so called CRUD-operations (Create,
Read, Update, Delete). The permissions can be
adjusted for resources at the ”schema-level” –
such as classes, queries and configurations. [11]
Classes in OrientDB can be thought of as classes
in the context of object-oriented programming.
In the documentation classes are described as
being comparable to tables in relational databases,
whereas the properties of the classes represent
columns. In the graph-database both edges and
vertices are classes, which can be inherited from in
the creation of new classes. [12] Permissions can
in that way be set for individual types of edges and
vertices. For an existing record – edge or vertex in
a graph database – permissions can also be set for
individual users. [11]

Say for example that we have two nodes
with an edge connecting them, the nodes are
of classes student respectively course and the
edge represents a student registered on a course.
If Alice is a student she can be set to only have
permissions to change the properties of the student



node representing herself, while Bob who is a
course administrator can be allowed to change
all course-typed nodes and the registered-relation
edges connecting to them.

The above example can be realized with the
following commands to the OrientDB console:

1) INSERT INTO ORole SET name =
’student_user’, mode = 0

2) INSERT INTO ORole SET name =
’course_admin’, mode = 0

3) CREATE CLASS student_node
EXTENDS V, ORestricted

4) CREATE CLASS course EXTENDS V
5) CREATE CLASS registered_on

EXTENDS E

On line 1 and 2 we create two roles,
student_user and course_admin. The
zero after mode means that the rules are applied
to the role as ”white-listing”, that is the role
has no permissions from the start. On lines 3-5
we create the two node classes and the edge
class. The student_node class extends the
Orestricted class which allows permissions to
be set for individual records of student_node.
V and E stands for ”vertex” respectively ”edge”.

6) UPDATE ORole PUT rules =
"database.class.course", 15
WHERE name = "course_admin"

7) UPDATE ORole PUT rules =
"database.class.registered_on",
15 WHERE name = "course_admin"

8) UPDATE ORole PUT rules =
"database.class.student_node",
2 WHERE name = "course_admin"

9) UPDATE #a:b ADD _allowUpdate #c:d

The above commands set the permissions. Lines 6-
7 gives the role course_admin full permissions
– which is indicated by 15 (binary vector 1111)
– to the classes course and registered_on.
For student_node, course_admin only
gets read permission, indicated by the number
2. The last line gives Alice, who has user id
#c:d, permission to update the record with id #a:b,
which is the student class node representing herself.

In OrientDB there also exists a ”special
permission”, referred to as ”bypassRestriced”

in the database configurations, which is said to
bypass security restrictions – the admin user has
this by default. It is not clearly expressed in the
documentation exactly what restrictions can be
bypassed, but as no limitations are specified it
might be assumed that the ”special permissions”
allows for any access and modification of the
database. [11]

The documentation section for the OrientDB
server security contains a couple of prompts about
what the user should do to ensure security. For
example to protect the server within a private
network, change default passwords and to restrain
access to configuration files. The server section
also describes how to restore the admin user and
even reset the root password. [13] A recently
added feature to OrientDB is symmetric key
authentication. They seem to support AES (see
section II-B) with 128-bit keys, based on the given
example in the documentation. As far as we could
find the documentation does not explain or present
any support on how to exchange these keys. [14]
The connections – through HTTP and OrientDB’s
binary protocol – to the OrientDB server can be
secured by TLS (see section II-B ). This does
not however seem to be enabled by default. The
connection encryption feature is referred to as
SSL in the configurations and the documentation,
but they emphasize that TLS is what is actually
used. The system uses the Java Keytool to manage
certificates. [15] Java Keytool can be used to
generate public and private keys and import/export
certificates from the Java KeyStore. [16]

OrientDB supports encryption for stored data.
They offer two algorithms – AES and DES (see
section II-B). The encryption feature does not
yet work through access on ”remote protocol”.
Individual clusters – groups of records – can be
encrypted separately. As with the OrientDB server,
the documentation for stored data encryption does
not mention any support or features concerning the
management or generation of encryption keys –
other than that the key is not stored in the database
and if the user loses the key they will lose the



encrypted content. [17]

IV. ANALYSIS

In this section we discuss and analyze the results
and the method that has been used in the study.
There will also be further comparisons between our
findings and the security concerns brought up in the
background section.

A. Result evaluation

Out ff the twelve DBMSs with graph-database
support which we investigated, ten of them provide
some sort of access control. Before the study of
these particular systems, but after some initial
research on the topic of NoSQL security, we did
not expect such a high number. In the report [7]
(as mentioned in section II-C), it is described
that access control is often limited or missing.
Considering this, it should be noted that our
comparative chart does not provide any qualitative
comparisons. An inadequate access control scheme
that can easily be bypassed or made useless with
for example exposure of passwords on unencrypted
channels, might be more dangerous to the user
than a system with no access control at all. The
risk being that a less security-aware user might
fall under a false sense of security and not being
concerned about adding sensitive data into the
database.

In contrast to the support of access control,
we see that secure connections and data at rest
encryption are a lot less frequently supported.
These are also categories of features mentioned in
[7]. As mentioned above insecure connections can
lead to a lot of problems, like man-in-the-middle
attacks which might result in unauthorized access
to data or modifications of for example queries or
operations made by a user which are transmitted
over an insecure channel. Encryption for data
at rest can sometimes be one of the last lines
of defense against hackers obtaining sensitive
information. If such a feature is missing, more
effort will likely have to be made in different

security areas, to reducing the risk of a hacker
gaining access to plain data from the database.
Physical thefts of storage disks are another aspect
to consider when this type of encryption is not used.

The two systems which we decided to look
more closely on – Neo4J and OrientDB – both
showed some types of security flaws when
investigated in [8] (see section II-C). For OrientDB
one of the issues mentioned was problems with
default configurations. In the closer inspection
of this system we did indeed find that OrientDB
for example seems to not have TLS (see section
II-B) enabled by default and there exists default
users with default passwords that also need to be
changed before one can safely use the database.
Another issue which was mentioned in [8] was
vulnerabilities to bad-query attacks. Not in the
documentation for any system could we find any
concrete mentions of countermeasures against
such attacks. A flaw Neo4J is that they do not
offer encryption for data at rest. Although in the
checklist to ensure appropriate level of security that
they provide in their chapter called Security they
are mentioning that you should protect data-at-rest.
In the checklist they say that you should use
volume encryption (e.g. Bitlocker) and manage
your access to database dumps and backups.
Lastly they mention that you should ensure correct
file permissions on your Neo4J files. This is the
information they give you to protect data-at-rest,
so they know what has to be done but has not
implemented their own software to do so.

If we look at the different kind of security features
the DBMSs provided, there were sometimes
features that were specific for one or only a few
of the DBMSs. Each of these features were then
classified in one of the categories mentioned in
the section III to give a view on what security
categories each DBMS covers. Considering that a
DBMS might have some of these exclusive features
while they may lacked some features supported
in most other DBMSs made it hard to make any
analysis on which DBMS that is the most secure.
One example of a specific feature is Sandboxing



in the DBMS Neo4j, a feature that allows you to
test procedures so they do not use insecure APIs.
This feature has not been found in any of the other
DBMSs but is a very useful security feature for
Neo4j.

B. Method evaluation

The biggest concern we experienced with the
method of our study was that we failed to inves-
tigate available documentation and record features
in an equal manner for all systems. This resulted
in several categories of features which we could
not compare directly, seeing as for some systems
we had not had these categories in mind when
reading through the documentation. In the end time
prevented us from going through the documentation
again for more detailed recording of features. An
obvious improvement for a similar study would thus
be to clearly define a set of categories beforehand
and also set up some definition on what can be
considered a single feature. With more equal and
fair recording for each systems more comparisons
might have been possibly. For further investigation
considerations should also be taken to the qualita-
tive properties of each security feature.

V. CONCLUSIONS

In this section we summarize the most important
findings in our result together with some further
reflections from our part.

The findings of our study shows that the amount
of provided security for the twelve investigated
graph-based DBMSs (see section II-A) varies a lot.
We have a few systems that provides features for
all or close to all the categories covered in figure 2,
whereas some provide none or only a few. We can
see that the systems with features in all categories
are systems developed by large companies with a
well-established IT-infrastructure in general. The
fact that these companies have more resources to
provide DBMSs with more security features than
for example free open-source projects or newer,
less-established companies are quite natural. This

also means that there exists options for users with
varying needs, both with regard to the amount of
security needed and what needs and abilities they
have to develop a custom client or API for the
database to cover up for the lack of native security
features.

We could only find that two of the systems
we looked at provided access control adapted to
graph databases, these were Neo4J and OrientDB.
Here the a user’s permissions and access can be
configured on the subgraph level – smaller parts
of the graph or for single nodes or edges. For
OrientDB nodes and edges can also be further
divided into different classes, resulting in a very
flexible way of setting permissions for each user.
But there also seems to be some cons and possible
vulnerabilities for these to systems, as presented
by [8] in section II-C and discussed in IV-A.

Seeing that the study started with finding security
features in the documentation of the DBMSs and
then categorizing these into six different categories
gives us no result in what DBMS that is the most
secure other than if they have covered the six
categories that we made our priority. This means
that a database that only covers three of the six
categories could have more security features than
one that covers all of the categories. Although
finding the most secure property graph system was
not the aim of this study – but rather trying to find
any security features and then categorizing them –
this could be an interesting subject for a follow-up
study.

REFERENCES

[1] ”Difference between SQL
and NoSQL”, GeeksforGeeks,
https://www.geeksforgeeks.org/difference-
between-sql-and-nosql/ accessed: 2019-05-
06.

[2] ”What is a Graph Database?”, Neo4J,
https://neo4j.com/developer/graph-database/,
accessed: 2019-05-06.



[3] ”Advanced Encryption Standard (AES)”,
SearchSecurity, updated: March 2017,
https://searchsecurity.techtarget.com/definition/
Advanced-Encryption-Standard, accessed:
2019-05-09.

[4] ”Cross-Site Request Forgery
(CSRF)”, OWASP, updated: 2018,
https://www.owasp.org/index.php/Cross-
Site Request Forgery (CSRF), accessed:
2019-05-10.

[5] ”WHAT ARE THE DIFFERENCES
BETWEEN DES AND AES
ENCRYPTION?”, Townsend security, 2014,
https://info.townsendsecurity.com/bid/72450/what-
are-the-differences-between-des-and-aes-
encryption, accessed: 2019-05-14.

[6] ”Security of Sharded NoSQL Databases: A
Comparative Analysis”, Anam Zahid et. al.,
2014, Conference on Information Assurance
and Cyber Security (CIACS).

[7] ”Overcoming the security issues of NoSQL
databases”, Tony Karavasilev and Elena So-
mova, 2018, Technical University - Sofia,
Plovdiv branch.

[8] ”(In) Security in Graph Databases Analysis
and Data Leaks”, Miguel Hernández Boza
and Alfonso Muñoz Muñoz, 2017, Proceed-
ings of the 14th International Joint Confer-
ence on e-Business and Telecommunications.

[9] ”DB-Engines Ranking of Graph
DBMS”, Db-engines, https://db-
engines.com/en/ranking/graph+dbms,
accessed: 2019-05-06.

[10] ”The Neo4j Operations Manual v3.5”,
p.2, Neo4j, https://neo4j.com/docs/pdf/neo4j-
operations-manual-3.5.pdf, accessed: 2019-
05-06.

[11] ”Database Security”, OrientDB
documentation for ver. 2.2.x,
https://orientdb.com/docs/2.2.x/Database-
Security.html, accessed: 2019-05-06.

[12] ”Classes”, OrientDB documentation for ver.
2.2.x, http://orientdb.com/docs/last/Tutorial-
Classes.html, accessed: 2019-05-14.

[13] ”Server Security”, OrientDB
documentation for ver. 2.2.x,

https://orientdb.com/docs/2.2.x/Server-
Security.html, accessed: 2019-05-06.

[14] ”Symmetric Key Authentication”,
OrientDB documentation for ver. 2.2.x,
https://orientdb.com/docs/2.2.x/Security-
Symmetric-Key-Authentication.html,
accessed: 2019-05-06.

[15] ”SSL”, OrientDB documentation for ver.
2.2.x, https://orientdb.com/docs/last/Using-
SSL-with-OrientDB.html, accessed: 2019-
05-14.

[16] ”Java Keytool”, Jenkov.com - Tech and
Media Labs, http://tutorials.jenkov.com/java-
cryptography/keytool.html, updated: 2018-
01-18, accessed: 2019-05-14.

[17] ”Database Encryption”, OrientDB
documentation for ver. 2.2.x,
https://orientdb.com/docs/last/Database-
Encryption.html, accessed: 2019-05-14.


