
Android Malware
Jennifer Lindgren and Hampus Eriksson
{jenli414, hamer848}@student.liu.se

Supervisor: Alireza Mohammadinodooshan
Linköping University, Sweden

Abstract—With over two billion Android users and millions of
available applications, detecting malware before it is installed is
essential. This report identifies application attributes that may
indicate if an application is malicious or not. The results are
based on a feature selection done using Principal Component
Analysis (PCA) and random forest methods on APK data. The
data was collected from a popular Chinese marketplace, Anzhi,
using a Python web crawler, and from parsing the downloaded
APK files with a third-party Python library, APK parse3.

The study shows that with a data set of about 28 000 APKs,
including 1 500 that were classified as malicious by more than
30 % of the virus scans provided by VirusTotal, the selected
features in the report extracted from APK metadata are not
enough to determine whether an APK is malicious or not.
However, analyzing more intricate features, larger data sets, data
sets containing more malware or using other analysis methods
may yield better results.

I. INTRODUCTION

Android has over two billion users, as Google announced
during their 2017 Google I/O conference. Spread across dif-
ferent markets, there are millions of applications available to
these users [1]. On Google Play alone, there were over two
million applications in 2018. While this means that many
market options, and an immense amount of functionality,
is available to the users, it also means that the threat of
malware in Android Application Package (APK) files can
not be ignored. In March 2018 alone, 420 795 new Android
malware were discovered [2]. It is also worth noting that only
5.2 % of all Android users ran the current Android version
equipped with the latest security updates in July 2018, 11
months after its release. In fact, one third of all Android
devices run on outdated operating systems that no longer
receive security updates and few use effective virus protection.

One security measure that has been taken to prevent mal-
ware is the Android permission system. It requires the user
to grant permissions to the application before it can perform
certain tasks [3]. For example, special permission is required
before accessing the phone storage or using the camera. How-
ever, this does not necessarily stop the malicious applications
as users tend to blindly grant the required permissions.

There clearly exists a need for malware to be detected before
it is installed. This study identifies a set of attributes that
are obtainable before installing the application and determines
whether they could indicate if an APK file is malicious or
not. The attributes were derived using Principle Component
Analysis (PCA) and random forest on application data. The
data was collected directly from the marketplace Anzhi using

a web crawler, and from parsing the APK files downloaded
from there.

This report introduces the reader to the relevant topics in
Section II. Section III describes the limitations of the study as
well as how it was conducted. Section IV contains the results
from the study as well as an analysis of those results. Section
V contains a discussion of the results and the method of the
study. Section VI and Section VII contain related work, an
analysis of the results and conclusions.

II. BACKGROUND

In order to understand the contents of this report, short
introductions to relevant concepts are presented in this section.
The Android Application Package (APK) file is explained
in the first subsection. The second subsection describes web
crawling, the following two cover Principal Component Anal-
ysis (PCA) and random forest and the final two describe k-
nearest neighbor and R2.

A. The Android Application Package File

Android applications are compiled and packaged into An-
droid application package (APK) files [4]. APK is an archive
file format similar to ZIP. An overview of the main compo-
nents is shown in Figure 1. This section will only explain the
Android manifest, as it is the only component that is relevant
to this study.

The Android manifest contains important information about
the application such as names of Java packages and libraries,
required permissions and minimum Android API level [4]. It
also contains information about activities, services, receivers
and providers [5]. An activity is an entry point for an applica-
tion to interact with the user. A service is an entry point used
to keep an application running in the background. A receiver
enables the system to notify the application of events even
when the application is not running. A content provider can
be used to manage application data that other applications can
query and/or modify.

The manifest played an important role in this study as
required permissions as well as the number of activities,
services, receivers and providers were aspects that were
considered when looking for malicious patterns in Android
malware.

B. Web Crawling

Web crawling allows users to extract information from the
web by downloading web page content and querying it to

1



Android Manifest

META-INF/ (Signatures)

resources.arsc (Compiled Resources)

classes.dex (Dalvik Bytecode)

assets/

lib/

res/

APK Structure

Fig. 1. APK Structure.

retrieve desired information [6]. The system is often called
a web crawler, a robot, or a spider. Web crawling can be
utilized in a variety of software, some examples are web search
engines, web archiving and web data mining.

C. Principal Component Analysis

Principal Component Analysis (PCA) can be used to reduce
the dimensions of large data sets while preserving most of the
variation [7]. By doing so, the features that have the largest
impact will be extracted. PCA achieves this by using the
covariance matrix of the data to compute the eigenvectors and
eigenvalues and keeping only the eigenvectors with the largest
eigenvalues.

D. Random Forest

Decision trees can be used to create models for data in both
classification problems where the outcome variable is discrete
and in regression problems where the outcome variable is
continuous [8]. It is a popular method in for example spam
filtering and medical diagnosis.

Decision trees have a tree structure where the leaf nodes
represent classifications and the nodes above them represent
decisions [8]. The goal is to achieve a result as accurate as
possible using as few decisions as possible. The method is
useful when looking for features that have a large impact on
the classification result, as not only the outcome is visible, but
all decisions that lead to it. The resulting decision nodes will
contain the features with the largest impact on the data.

In order to improve the results, a large number of trees
can be generated randomly to determine the most popular
classification [9]. There are many ways to generate the trees,
but a common element is that for each tree, a random vector
is independently generated and used to get a classifier. When
a large number of trees have been generated, the most popular
classifiers can be identified. This method is called random
forest.

E. K-nearest Neighbour

K-nearest neighbour (KNN) is a classifier that uses previ-
ously labeled observations to assign new observations to the
class with the most similar labeled observations [10]. The k in
k-nearest neighbour represents how many of the most similar
observations it should consider when determining the label.

K-nearest neighbour can be used to evaluate the feature
selection performed by random forest or using a PCA model.
An example of this is dividing the available data into training
and test sets and do training using the features selected by the
other models. The trained k-nearest neighbour model is used
to label the test data. The accuracy of the result will show how
robust the model is.

F. Coefficient of Determination (R2)

The coefficient of determination, R-squared (R2), is a well-
known method for measuring the goodness-of-fit in a regres-
sion model. The measure ranges between [0, 1] where a higher
value of R2 corresponds to a better model fit [11].

R2 is calculated with a handful sums of squares [12].
Specifically, these are the residual sum of squares (SSDres), the
model sum of squares (SSDmod) and the total sum of squares
(SSDtot). Each definition are presented in Equation 1.

SDDres =

n∑
i=1

(yi − µ̂i)
2

SSDmod =

n∑
i=1

(µ̂i − ȳ)2

SSDtot =

n∑
i=1

(yi − ȳ)2.

(1)

ȳ represents the mean value of the response variable y,
µ̂i denotes the fitted value and lastly yi denotes the actual
observation.

R2 =
SDDmod

SSDtot
= 1− SDDres

SSDtot
(2)

Equation 2 defines how R2 is calculated with the aforemen-
tioned sum of squares.

III. METHOD

This section describes how the study was carried out and
is divided into three parts. First, the limitations of the project
are discussed and then the theoretical and practical methods
are presented.

A. Limitations

Due to a number of factors, some of which stated by the
supervisor and some found when reading previous work during
the research phase, there was a need to define limitations of
the study. One of the first factors that had to be taken into
consideration was the fact that the web crawling needed to
be throttled to some degree. Otherwise, the project could have
been put to a halt by an IP ban from Anzhi or VirusTotal. Web
sites, including those used in this study, reside on servers that

2



are in charge of handling incoming requests by clients. Servers
can only handle a certain number of requests at a time, and
there are specific attacks that leverage this fact [13]. Therefore
servers need to protect themselves, usually by banning the
attacker. The crawlers used in this project are able to operate
at very high speed and thus, not restricting them would most
likely have resulted in a ban. Furthermore, the VirusTotal API
has stated in their guidelines that a regular user is only allowed
to make four requests per minute [14].

While researching previous work done on the subject, the
group found that other research groups have used more than
one app market. It was also common to see a large data
set of APK information used for the analysis. Due to the
time frame of this project there was no room to handle data
from more than one market. To understand how to scrape and
collect information from one market would be time consuming
enough. Nor could it be expected that this project would obtain
such a large data set as previous studies. This was both a
consequence of the given time frame, and of the fact that the
scraping had to be throttled.

B. Theoretical Methods

The first step in the project involved reading previous work
in order to get a better understanding of the subject and what
could be relevant to investigate. It included examining what
attributes may be correlated to the maliciousness of an app,
which markets appear to host malicious apps, and how the
information should be collected.

Selecting an App Market

When searching for a suitable market place, the most
important factor was that it actually had to host malicious
apps. Large marketplaces such as Google Play have extensive
virus protection and so they were not good choices for this
project. After looking at previous work, it was decided that the
marketplace Anzhi should be used, which had a good amount
of malware found previously [15].

Evaluating Web Crawling Frameworks

In order to fetch data from the app market the group needed
to decide on a framework to parse HTML documents. Prior to
the project, the group had no experience with web scraping.
Thus an evaluation of different frameworks and libraries was
needed. The two candidates were Beautiful Soup and Scrapy.
Both were found to be popular choices when it came to
web scraping, however having some important differences.
Beautiful Soup was found to be a powerful tool to extract
data from HTML documents, while it lacked functionality
to fetch the documents themselves or further process the
data [16] [17]. On the contrary, Scrapy was a fully-fledged
framework that could retrieve HTML documents from a given
website, extract relevant data and process it further [18]. Since
the group was looking for a complete framework that could
fetch website HTML and work with said data, it was decided
that Scrapy should be used for the project. Additionally,
Scrapy was built with Twisted, a networking framework that

operates asynchronously [19]. That meant that the group could
take advantage of multiprocessing of data, without having to
implement it themselves.

Selecting relevant attributes

When deciding what attributes about the APKs to analyze,
previous work was again looked at. The goal was to include as
many features as possible, if they could easily be gathered by
a web crawler or by the chosen APK tool, APK parse3, they
would be gathered. Some features were gathered as sums and
others as binaries. For example the total number of permissions
were stored as a sum but the top 20 most common permissions
found in malware by other authors were also filtered out as
binaries. i.e. 1 if they are requested and 0 if not [20]. The
chosen features originated from two sources, the marketplace
web page and the APK file.

From the market:

• APK ID
• APK URL
• Number of versions
• Number of days since last update
• Rating (1-5)
• Number of downloads
• Number of comments

From the APK file:

• APK file size
• Needs Internet permission
• Needs read phone state permission
• Needs access network state permission
• Needs write external storage permission
• Needs access WiFi state permission
• Needs read SMS permission
• Needs receive boot completed permission
• Needs write SMS permission
• Needs send SMS permission
• Needs receive SMS permission
• Needs vibrate permission
• Needs access coarse location permission
• Needs read contacts permission
• Needs wake lock permission
• Needs access fine location permission
• Needs call phone permission
• Needs change WiFi state permission
• Needs write contacts permission
• Needs write APN settings permission
• Needs kill background processes permission
• Number of permissions
• Number of activities
• Number of services
• Number of receivers
• Number of providers
• Number of components (the sum of four above)
• Number of libraries
• Indication of being malware (% based on VirusTotal scan)

3



Methods of Analyzing the Data

To analyze the data when it had been collected, the group
wanted to use more than one method for feature selection. The
requirements on the methods were that feature selection could
be done and that the features involved could be identified.
The methods random forest and Principal Component Analysis
(PCA) were selected as they both fulfill the requirements but
use slightly different approaches. For PCA, a requirement that
was set was that the at least 80 % of the variance in the data
had to be covered by the selected components.

To compare the results of the two feature selections per-
formed, a third method had to be used. The group decided to
use k-nearest neighbor for this. The selected components from
the two methods would be used to classify the data and the
robustness of each result would be determined.

C. Practical Methods

When it was clear what should be collected from the
market and with what framework, the task of collecting the
information began. This section describes how market data
was scraped and how APK data was extracted.

Gathering ID and URLs

The first step of the data collection was to scrape the
marketplace for IDs and URLs associated with all available
APKs. The ID is a unique number given by Anzhi to each
APK that can be used to send PHP requests to download or
get information about the APK. The URL collected is the URL
that leads to the application page containing information to be
collected later.

The IDs and URLs were collected using a Scrapy crawler
that visited all pages containing APK listings on Anzhi. This
was achieved by iterating through the categories that are
represented by numbers in the URL. For each category page,
the crawler was able to navigate through all pages and then
proceed to the next category when all pages had been parsed.
About 220 000 pairs of IDs and URLs were collected.

Gathering Marketplace Information

The IDs and URLs that were gathered previously were now
used by a second crawler to visit each of the APK URLs. The
rating (1-5) was gathered by analyzing the element showing
1-5 stars. The number of downloads was shown as a number
followed by the Chinese sign for e.g. thousand or million, this
information was used to store the number of downloads in the
database. In order to get data about comments, the URL was
slightly modified resulting in the source code for the comments
being accessible. From that, the number of comments could be
extracted. Finally, a PHP-request was made using the ID to get
information about versions. The total number of versions and
number of days since last update was stored in the database.
All 220 000 IDs and URLs were used resulting in the same
amount of marketplace information gathered.

Downloading and Parsing the APKs

The final piece of software used in the data collection
utilized the APK ID to send a PHP-request to Anzhi to
download each APK. After downloading the APK, it was sent
to VirusTotal for scanning. While waiting for the results, the
APK was parsed using APK parse3 to get the remainder of
APK information about permissions, components and libraries.
The file size was also collected. After fetching the VirusTotal
results, all data was stored in the database and the next APK
was parsed.

This step in the data collection process was the main
bottleneck. It wasn’t an option to run this software at full speed
as that would have overloaded the servers of both Anzhi and
VirusTotal. As previously mentioned, VirusTotal state in their
guidelines that a maximum of four requests per minute and
API key can be made. In this project, a total of eight API keys
were used spread across four Raspberry Pi units, meaning the
software could be run at a maximum pace of 32 APKs/min.
However, some of the units were used for the crawlers initially,
so the average pace was lower than that. A total of about 30
000 APKs were downloaded and parsed in this step.

Analysis Using Random Forest and PCA

Once the data collection was up and running, the focus
of the project shifted to data analysis. Since the data was
spread across several Raspberry Pi units, their data had to be
merged before analysis could be performed. The columns in
the database was also spread across several databases because
some features had been gathered by the crawler and some by
the parser as described in Section III-C.

Once the data set was complete, analysis began by using
a random forest library in R. From the forest, the increase
in mean squared error (MSE) when removing each of the
components was derived. This described the impact of each
of the components on the classification, which was important
when determining what attributes could indicate malware.

Another analysis was performed using PCA to decrease the
dimensionality while still covering a majority of the variance
in the data. From this analysis, new components containing
several features were derived. Further examination of each
component was done to see how much features contributed
to them.

The results from the two analyses were evaluated by creat-
ing a K-Nearest Neighbour (KNN) model and deriving the R2

value for each of the them. The final R2 value was calculated
from the test data predictions that the models made and the
actual test data values. Test data was not introduced to the
model during training, that way R2 could be seen as an
evaluation of the model on new data. The optimal k for the
models were found with a 10-fold cross-validation on the
training data. Additionally, both KNN models were be created
with the same number of predictors. The difference was that
the model based on random forest used the top number of
variables in the importance plot, while the PCA-based model
used components. This led to a more fair comparison between
the two feature selection models. The number of components

4



needed to achieve 80 % variation coverage in PCA dictated
how many predictors were used in the KNN models.

IV. RESULTS AND ANALYSIS

This section will present malware scan results, as well as
the Principal Component Analysis (PCA) and random forest
made in R from the collected data set. A brief analysis of the
result will also be presented.

A. Malware in the Collected Data

Out of the 28 237 APKs scanned, 1 457 were classified as
malware in more than 30 % of the virus reports provided by
VirusTotal, which corresponds to 5 %.

B. Random Forest

write_sms_permission
downloads
access_network_state_permission
write_contacts_permission
read_sms_permission
libraries
providers
versions
read_contacts_permission
send_sms_permission
rating
kill_background_processes_permission
access_wifi_state_permission
comments
receive_boot_completed_permission
vibrate_permission
access_fine_location_permission
change_wifi_state_permission
wake_lock_permission
receive_sms_permission
access_coarse_location_permission
call_phone_permission
services
days_since_update
read_phone_state_permission
receivers
components
activities
permissions
size

20 40 60 80 100

Variable Importance

%IncMSE

Fig. 2. Variable importance as measured by effect on mean squared error.

The results from the random forest show the importance of
each variable by describing for each component how the mean
squared error (MSE) changes if it is permuted (%IncMSE).
A high value of %IncMSE corresponds to a high variable
importance in the classification. The results are shown in
Figure 2. The attributes that affect MSE the most, by more
than 100 %, are size and number of permissions. There is a
slight gap between those two attributes and the rest, but other
significant attributes that affect MSE by more than 60 % are
number of receivers, components and activities, as well as the
read phone state permission.

C. Principal Component Analysis

The principal component analysis generated components af-
fected by multiple attributes to different degrees. The variance
coverage for each of the components is illustrated in Figure 3.
16 of the PCA components are required to cover 82 % of the
variance in the data. The dimensionality of the data can thus
be reduced from 34 to 16 while retaining 80 % of the variance.

The largest component, which covers 25 % of the variance,
is affected by many different attributes, where the individual
contributions are not notably high. This means that many
variables will affect the classification. The features with the
largest contributions were number of permissions (6.4 %),

number of components (5.5 %), the access WiFi state permis-
sion (5.4 %), change WiFi state permission (5.3 %), access
fine location permission (5.3 %), number of activities (5.2 %),
the read phone state permission (5.2 %) and access coarse
location permission (5.0 %). It is worth noting that the second
component is mostly affected by features relating to SMS
permissions, read, write, send and receive SMS permissions
and read and write contacts permissions, which contribute
with 8-10 % each. The fifth component seems to be especially
affected by market-related data, number of comments (18 %),
number of downloads (18 %) and number of versions (11 %).

0

10

20

1 2 3 4 5 6 7 8 9 10

Dimensions

P
er

ce
nt

ag
e 

of
 e

xp
la

in
ed

 v
ar

ia
nc

es

Scree plot

Fig. 3. Scree plot of the principal components.

D. Evaluation Using K-nearest Neighbour

Running the 10-fold cross-validation for each of the feature
selection models yielded the best k such that k = 5.

10 20 30 40 50 60

0.
45

0.
50

0.
55

0.
60

k Neighbours

R
 S

qu
ar

ed

PCA
Random Forest

Fig. 4. R2 value for each tested k in knn cross-validation.

Observing Figure 4, each R2 value for each k tested during
cross-validation of the KNN models can be seen. The values
decrease with increasing k. The optimal R2 values for each
KNN model can be observed in Table I.

5



TABLE I
R2 VALUES FOR THE KNN MODELS.

PCA Random Forest
0.5733959 0.6170968

V. DISCUSSION

This section will discuss the results presented in the pre-
vious section and what they indicate. It will also evaluate
the methods used and discuss if there may be better ways
to perform the study. Finally, it includes a discussion of how
limitations such as time and knowledge may have affected the
results.

A. Malware Data Results

While one could argue that the fact that only 5 % of the
APKs collected were classified as malware by more than 30 %
of the virus scanners is positive in general, it is negative for
this study. Less malware data means less chance of creating a
good model for feature selection. If a study similar to this one
is to be performed in the future, an overall larger data set or
just a higher percentage of malicious APKs would most likely
be preferable.

B. Results from the Analysis

The results from the model validation using R2 indicate
that both the random forest and PCA models perform equally
and both have a quite high R2. However, it could be better.
There are two possible reasons as to why the models are not
performing optimally. One could argue that the models are
simply bad, and that the supplied data is not the problem.
On the other hand, the models could be performing well; the
problem is that the ground truth, the data itself, is insufficient.
This project made two independent feature selection models
with roughly the same outcome. Thus, it is more plausible
that the data supplied during feature selection is not enough
to then make a good regression model with the results.

C. Indications from the Results

What can be said about the random forest result is that
it indicates that permissions, file size and components affect
the classification the most. This can be seen in Figure 2.
Out of the component types, activities, services, receivers and
providers, the number of providers has the lowest impact while
the other three all have quite high importance. Activities and
services provide entry points for the malware to interact with
the user and also keep the application running in the back-
ground. Receivers enable the malware to be aware of events
occurring when the application is not running. It is reasonable
that these things are beneficial to malicious software, while
content providers that manage application data and help other
applications seem less useful.

It is harder to pinpoint specific features from the PCA
results, as the component that represents the largest portion of
the data variation contains a mix of many features. However,
it is interesting how the second largest component is affected

by SMS related permissions and the fifth by market related
data. Perhaps this is of some importance.

As stated, both models could have performed better if it
were not for the data collected. What this essentially means is
that the features that the PCA and random forest models had
to choose from are not enough to indicate what is malware or
goodware.

D. Impact of Limitations and Possible Improvements

The study was performed during a relatively short period
of time, about 2 months. The knowledge the group members
were able to obtain within the domain and the size of the data
set that could be collected during that time were both limited.
If there had been more time, the results could probably have
been improved by collecting more data and more features.
There may also exist better methods for analyzing the data.
Finally, this study mainly focuses on the manifest part of the
APK file. As shown in Figure 1, there are more attributes that
could be studied. One could also study the different activities,
services, providers and receivers more closely.

VI. RELATED WORK

In other studies, authors have used similar methods to
collect data and find attributes that indicate malware. However,
one big difference is that other authors have studied much
larger datasets than the one in used in this project. They usually
studied more features. Martı́n et al. studied a set of 100 000
apps and over 20 000 features, compared to our smaller dataset
of 28 237 apps and 34 selected features [21]. The results
are however not completely different from the ones derived
from this project. Martı́n et al. conclude that permissions play
a big role in their classification which was also one of our
conclusions.

Ignacio et al. also performed a study similar to ours, and
their top 15 features also included features such as number
of permissions, days since last update and file size [22]. It
is worth noting that their top features were developer and
certificate issuer reputation, accounting for the percentage of
applications that each developer and certificate issuer have
labeled as malware, which was not something we considered
in this project.

VII. CONCLUSIONS

The main goal of the study was to investigate the effective-
ness of meta data features in telling if an APK is malicious
or not and examine the presence of Android malware. From
the analysis performed on the collected data, the conclusion
is that the features studied can not be used to determine if an
APK is malicious or not. Regarding the presence of malware,
the marketplace targeted in this study, Anzhi, had a malware
rate of 5 %, ultimately a low percentage. Perhaps studying
more intricate attributes of APKs, larger data sets or data sets
containing more malware samples would yield more fruitful
results. Trying different analysis methods in the latter steps of
the study might also improve the results.

6



REFERENCES

[1] Statista, “Number of apps available in leading app stores,” 2018.
[Online]. Available: https://www.statista.com/statistics/276623/number-
of-apps-available-in-leading-app-stores/ [Accessed:
2019-04-12].

[2] AV-TEST, “The av-test security report 2017/2018: The latest analysis
of the it threat scenario,” 2018. [Online]. Available:
https://www.av-test.org/en/news/the-av-test-security-report-20172018-
the-latest-analysis-of-the-it-threat-scenario/ [Accessed:
2019-04-12].

[3] M. H. H. G. Daniel Arp, Michael Spreitzenbarth and K. Rieck,
“Drebin: Effective and explainable detection of android malware in
your pocket,” 02 2014.

[4] M. Lubyová, “The security of android apks,” 2017. [Online]. Available:
https://is.muni.cz/th/f43em/thesis.pdf [Accessed: 2019-04-12].

[5] Android, “Application fundamentals.” [Online]. Available:
https://developer.android.com/guide/components/fundamentals
[Accessed: 2019-04-12].

[6] C. Olston and M. Najork, “Web crawling,” Foundations and Trends®
in Information Retrieval, vol. 4, no. 3, pp. 175–246, 2010. [Online].
Available: http://dx.doi.org/10.1561/1500000017

[7] X. L. Tsuhan Chen, Yufeng Jessie Hsu and W. Zhang, “Principle
component analysis and its variants for biometrics,” in Proceedings.
International Conference on Image Processing, vol. 1, Sep. 2002.

[8] K. Chumachenko, “Machine learning methods for malware detection
and classification.” 2017. [Online]. Available:
http://urn.fi/URN:NBN:fi:amk-201703103155 [Accessed: 2019-04-12].

[9] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, Oct 2001. [Online]. Available:
https://doi.org/10.1023/A:1010933404324

[10] Z. Zhang, “Introduction to machine learning: k-nearest neighbors,”
Annals of translational medicine, vol. 4, no. 11, Jun 2016. [Online].
Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916348/pdf/atm-04-
11-218.pdf

[11] S. Menard, “Coefficients of determination for multiple logistic
regression analysis,” The American Statistician, vol. 54, no. 1, pp.
17–24, 2000. [Online]. Available:
https://www.tandfonline.com/doi/abs/10.1080/00031305.2000.10474502

[12] T. Tjur, “Coefficients of determination in logistic regression models—a
new proposal: The coefficient of discrimination,” The American
Statistician, vol. 63, no. 4, pp. 366–372, 2009. [Online]. Available:
https://doi.org/10.1198/tast.2009.08210

[13] Cloudflare, “What is a denial-of-service attack?” [Online]. Available:
https://www.cloudflare.com/learning/ddos/glossary/denial-of-service/
[Accessed: 2019-04-18].

[14] VirusTotal, “Frequently asked questions.” [Online]. Available:
https://www.virustotal.com/en/faq/ [Accessed: 2019-04-18].

[15] F. K. Y. T. E. S. M. A. T. Y. B. S. Yuta Ishii, Takuya Watanabe and
T. Mori, “Understanding the security management of global third-party
android marketplaces,” in Proceedings of the 2Nd ACM SIGSOFT
International Workshop on App Market Analytics, ser. WAMA 2017.
ACM, 2017, pp. 12–18. [Online]. Available:
http://doi.acm.org.e.bibl.liu.se/10.1145/3121264.3121267

[16] L. Richardson, “Beautiful soup documentation,” 2015. [Online].
Available:
https://www.crummy.com/software/BeautifulSoup/bs4/doc/#beautiful-
soup-documentation [Accessed:
2019-05-02].

[17] K. Lopuhin, “Scrapy frequently asked questions,” 2017. [Online].
Available: http://docs.scrapy.org/en/latest/faq.html [Accessed:
2019-05-02].

[18] H. Yi, “Scrapy overview,” 2018. [Online]. Available:
https://docs.scrapy.org/en/latest/intro/overview.html [Accessed:
2019-05-02].

[19] A. Patel, “Event-driven networking,” 2019. [Online]. Available:
https://docs.scrapy.org/en/latest/topics/architecture.html#event-driven-
networking [Accessed:
2019-05-02].

[20] C. S. Yang Wang, Jun Zheng and S. Mukkamala, “Quantitative
security risk assessment of android permissions and applications,” in
Data and Applications Security and Privacy XXVII. Springer Berlin
Heidelberg, 2013, pp. 226–241.

[21] M. A. J. K. G. G. Guillermo Suarez-Tangil, Santanu Dash and
L. Cavallaro, “Droidsieve: Fast and accurate classification of
obfuscated android malware,” 03 2017.

[22] A. M. Ignacio Martı́n, José Alberto Hernández and A. Guzmán,
“Android malware characterization using metadata and machine
learning techniques,” 07 2018.

7


