Abusing Certificate Transparency Logs to Identify Vulnerable Sites

Hanna Sterneling and Robin Ellgren
TDDD17 - Information Security 2019
Linkoping University
Linkoping, Sweden
hanst665 @student.liu.se, robel708 @student.liu.se

Abstract— Certificate Transparency reformed the internet
infrastructure by enabling both users and domain owners to
monitor the issuance of certificates. Despite the substantial
improvement of security, easy access of newly issued certificates
also comes with a risk. Attackers can abuse the information
and perform attacks that jeopardize the integrity of targeted
systems. Such an attack is evaluated in this paper, specifically
targeting Wordpress sites. Experiments confirm that the stream
of certificates allows the attacker to harvest vulnerable sites
and perform an hijack attack. Even though the number of
vulnerable sites is limited and harvesting takes a long time, the
consequences of such an attack can cause major damage. We
perform this simulated attack on both a certificates extracted
from live stream of certificates as well as stored certificates. We
also define the attack surface of this attack.

I. INTRODUCTION

In 2011 an event altered the infrastructure of the entire
internet. Due to an attack on one of the Certificate Authorities
(CAs), DigiNotar, rouge certificates were issued on domains
such as Google.com, Microsoft.com etc. [1]. The attackers
could consequently impersonate the websites which the users
thought they were visiting. The browser is responsible for
determining if a site can be trusted to indeed be the site it
claims to be. This decision is based on the certificates that
are issued to validate the site. However, as these fraudulent
certificates were issued the browsers were not able to detect
the mischief. This event, along with some other similar
happenings, made it clear that the system, at that time, was
not sufficient. In order to manage this problem Certificate
Transparency (furthermore referred to as CT) evolved, as an
initiative from Google.

CT aims to solve the problem of detecting fraudulent
certificates in order for a domain owner to take appropriate
action. This is achieved by letting CAs add the issued
certificates into a publicly auditable log, which is append
only. By using modern cryptography the append-only feature
is ensured by allowing everyone to monitor the logs for proof
of inclusion and also proof of previous included certificates
[2].

CT has admittedly improved the security revolving around
the trust of websites. It benefits the users as it decreases the
risk of fraudulent certificates since domain owners are given
the opportunity to keep track on each certificate issued in
their name [3]. However, the real time display of issued
certificates also poses a problem. The logged certificates
contain a lot of information, such as domain (including

subdomains), email and expiry date. When such information
is made publicly available there is always a risk that the
information can be abused to unanticipated means. Thus, CT
logs indubitably offers an improvement by quickly making
certificates available but that feature also poses a problem.
The CT logs effectively creates a never ending public stream
of new domains. With new domains there is a stint possibility
that the owner of the domain has not yet set up appropriate
security measures, leaving a window for an attacker where
the attack-surface is sufficiently large.

More specifically, such a vulnerability origins from the
usage of Content Management Systems (CMS). WordPress
and Drupal are examples of CMS:es and they require an ini-
tial installation after uploading the files to the server. Before
the initial installation is completed, there is a window for an
attacker to hijack the server with arbitrary code execution
privileges by accessing the unauthorized installation page.
This type of attack has been described by journalist Hanno
Bock and he claimed to have found 5000 vulnerable sites
under the course of three months [4][5].

This paper aims to verify Bock’s experiment, as well as
investigate the window in which the site is in a vulnerable
state. To complete this task the following questions need to
be considered:

o Are there any existing and available tools which can
be used to extract information in CT logs? If not, what
would be required in order to build a tool?

e Are there any CT logs in particular that are more
interesting than others?

o Are Hanno Bock’s results viable and can they be
reproduced?

o For how long period of time are the detected sites in a
vulnerable state?

« Given the time distribution of detected sites in a vulner-
able state, can any conclusions be drawn with respect
to time delay of CT log appending?

II. BACKGROUND

A. Certificate Transparency

1) Certificates: As briefly described in Section [} certifi-
cates are at the center of this paper. The idea is that some
trusted node, often referred to as a Certificate Authority
(CA), issues an electronic document containing a client’s
public key and then signs it with its own private key. When

a user visits a web page the certificate is presented. From this
certificate the user can extract the site’s public key, given that
it trusts the issuing CA. If it does not, it can simply ask the
CA for it’s certificate and repeat the process. This way a
chain of trust is created until either the user trusts a CA or
if a root CA is reached. Root CAs are often hard-coded into
the user’s browsers and thus implicitly trusted by using the
service of the browser.

2) Certificate Transparency motivation: As pointed out in
Section [[IAT] the whole certificate infrastructure depends
on a chain of trust leading up to some root CA. Mentioned
in Section [I, there was an issue with the root CA DigiNotar
in 2011, where there were a large amount of fraudulent cer-
tificates issued. Obviously a problem arose when it became
clear that not even a root CA can be trusted. Enter Certificate
Transparency.

B. Certificate Transparency in practice

The concept of Certificate Transparency (CT) originates
from the idea that if domain owners can audit their domain
for issued certificates they will immediately notice faulty is-
sued certificates and can thus take appropriate action (usually
contacting the CA in question and ask for a certificate revo-
cation). Thus CT references to the task of publicly appending
all issued certificates (hence the word transparency). Another
advantage with CT, besides domain owners auditing their
domains, is that CAs also can audit other CAs. This way
they can develop systems that take into consideration the
existence of certificates from other CAs.

In 2013, a RFC was released specifying the details about
CT [6]. As of the time of writing, the RFC is still in
experimental mode but in practice it is already widely
implemented. Notable events include:

o Since 30th of April 2018, logging of certificates with
CT is a requirement for Google Chrome. If a certificate
is not logged, the user will be shown a warning that the
site is not secure [7].

o Since October 15 2018, logging of certificates with CT
is a requirement for the browser Safari. If a certificate
is not logged, a TLS connection will be refused [8].

o As for Firefox it was announced in December 2014 that
CT were to be implemented. However, since then, to the
best of our knowledge, no more announcements from
Mozilla regarding CT has been communicated [9].

C. Performing an attack

The content of this section is based on Hanno Bock’s
presentation at DEFCON25 [4] and verified by the authors.

Given that a vulnerable site has been identified, there is a
simple process of gaining full shell-access to the site. The
process is also fully automatable and hard to detect for the
actual site owner.

Firstly, the attacker goes to the vulnerable site and gets
greeted with the Wordpress installation page. Noteworthy is
that this site utilizes no authentication.

English (United States)

Afrikaans

Al

g) 3 el
st
Azarbaycan dili
Ol 58
Benapyckas moea
Brnrapcku

qieet

Bl

Bosanski

Catala

Cebuane

Ceétina

Cymraeg

Dansk

Deutsch

Deutsch (Schweiz)
Deutsch (Schweiz, Du)
Deutsch (Sie)
Deutsch (Osterreich)
m

Fig. 1. Screenshot of the Wordpress installation page

Secondly, the attacker follow the simple steps of the
installation. Wordpress requires access to a database but
has no limits on the database being located on the same
server or domain as the site itself. This opens up for the
usage of external databases. That means that any database
service will suffice, for example FreeMySQLHosting. With
the database configured the attacker now has access to the
Wordpress Dashboard with administrator privileges. Given
those privileges, the attacker can upload a plugin containing
some PHP code that will execute any terminal command on
the server. Suggestively using the system function.

<?php
if (array_key_exists('cmd', S$_GET)) {
system ($_GET['cmd']) ;

2>

Thirdly, the attacker navigates to the uploaded plugin and
can start executing commands. Navigation is as simple as a
GET request, for example:

http://<hostname>/wp—-content/
plugins/<name of plugin>/shell.php

The attacker now has shell access to the host, as illustrated
in Figure [2]

Applications
Library
letwork
System
Users
Volumes
bin
cores
dev
etc
home
installer.failurerequests
net
opt
private
sbin
Lmp
usr
ar

15 Lo odfl ok

Fig. 2. Screenshot of shell access from the web.

Fourth, the attacker wants to hide its traces as well as
possible, in order to ensure continuous access. Removing
the file wp-config.php resets the installation page to the
one in Figure |l and the actual domain owner will not be
aware of the intrusion. Then, it is simply a task of writing
a good enough description in the plugin to make sure the
user does not notice that the plugin should not reside there.
If convincing enough, continuous access is ensured.

As Hanno Bock realized the extent of the problem, he
reached out to several developers working with CMS:es.
However, only Joomla has adapted its installation process
to handle this issue.

III. METHOD

In order to answer the questions described in Section [
we had to focus on several aspects. Tools, which could
ease the process of extracting certificate information, were
researched. To validate the experiment performed by Hanno
Bock (Section [[I-C) and also evaluate the time span in which
a site generally remains vulnerable, we created our own im-
plementation, which is explained in Section However,
since the experiment performed by Hanno Bock is evidently
intrusive, we will begin by describing our experiment from
an ethical perspective.

A. Ethics

As explained in Bock’s article, he managed to install
plugins and in that way exploit the vulnerability. To avoid
any possibility of intrusion, such an installation was never
attempted in these experiments. However, we did do an attack
on localhost. For reference, see Section Instead of
performing the attack we simply identified the vulnerable
sites and wrote to file. The file containing the vulnerable
sites is used to investigate the time period in which these
sites remain vulnerable. The file will not be made available
to persons outside of the project. Hence, the experiments will
not involve any actual attack, only a detection of vulnerable
sites.

B. Implementation

The aim of the implementation is to detect vulnerable
sites from already existing logs and from a live stream of
new certificates. A vulnerable site in this context is one

that is in the installation phase of the CMS WordPress
and the configurations have not yet been completed. Bock’s
experiments contained more CMS:es but given the time
restraints we decided to focus on WordPress as it was the
most common denominator of vulnerable sites in his results.
Also, WordPress have not yet taken any action to counteract
this vulnerability.

The conducted experiments were divided into three parts:

1) detecting vulnerable sites from certificates found in

existing logs,

2) detecting vulnerable sites from certificates issued in

real time,

3) investigating the time window in which most of the

vulnerabilities where removed.

The primary step is the extraction of information from
certificates. To ease this process we used two available tools.
Certificate Transparency Tools offer the possibility to retrieve
decoded information from certificates in a given CT log
[10]. We used the logs approved by Chrome as a source
[11], however, it was not possible to process all these logs
due to too much data. To limit the data set we focused on
GoogleArgon as it is one of the biggest logs. A subset of data
was gathered from the logs with expiration date 2017, 2019
and 2021. In the interest of examining the HTML in order
to determine if the site is vulnerable, the only information
needed to be stored are the URLs.

For live stream extraction of certificates, CaliDog provides
a tool called CertStream [12]. CertStream monitors the
Certificate Transparency Log network(CT log network) [2]
for real-time issuance of certificates. In the same manner as
for Certificate Transparency Tools, the certificates are parsed,
decoded and supplied to the user.

The next phase was to establish whether or not the
URL lead to a vulnerable site. The analysis was simply
carried out by visiting each URL, extracting the HTML and
attempting to identify components that are unique to the
WordPress configuration page. As these sites where detected,
the URL was written to file. Figure (3| illustrates how all
certificates within the data set was extracted first, followed
by a check. The process differed slightly with the live stream,
as shown in Figure[d] The vulnerability check was carried out
immediately after detecting a new certificate. At this point
the implementation satisfied Part [T] and 2] of the fractioned
experiments.

Extract domains from certificates
in CT logs

Parse file with domains - examine
HTML of each URL

If site is vulnerable - write to file

Fig. 3. Flow chart for certificates extracted from CT logs.

CertStream monitors stream of
issued certificates

Extract domain information from
certificate

Visit each URL and determine if it is
vulnerable

If site is vulnerable - write to file

Fig. 4. Flow chart for certificates extracted from live stream.

For Part [3] the implementation for the live stream had
to be augmented. As the time of issuance, as well as time
of completion of the installation, had to be known, this
part of the experiment could only be conducted on the live
stream. To determine the window size of the vulnerability
we used timestamps. When a URL was deemed vulnerable
a timestamp was appended to the saved information. To
estimate when the window closes we revisited each site,
which was still considered vulnerable, every 15 minutes. If
the configuration was completed a final timestamp was added
to the file, indicating that the URL was no longer vulnerable.
Figure [5] demonstrates the process.

Every 15 minutes

Visit each vulnerable URL (from
file) that only has initial timestamp

Redo check of vulnerability

If site no longer is considered
vulnerable - add final timestamp

Fig. 5. Flow chart of timestamping sites deemed vulnerable.

IV. RESULTS

The results are divided into three sections to represent the
different parts of the experiments, established in Section
The experiments were carried out over a period of four
weeks.

A. GoogleArgon Logs

The log sizes for 2017 and 2019 are ranging from 7 million
to over 400 million. Given the time restriction of this project
we could only extract a subset and thus settled on extracting
the first four million certificates. Table [Il contains the actual
number of certificates at the time of writing found in each

GoogleArgon log. Table [lI| contains the actual number of
searched certificates for each log as well as the number of
vulnerable sites found.

TABLE I
NUMBER OF CERTIFICATES FOUND IN GOOGLEARGON LOGS
Log Actual size
of Data Set
2017 7,842,537
2019 466,000,000
2021 1.015.021
TABLE II
NUMBER OF VULNERABLE SITES FOUND IN GOOGLEARGON LOGS
Log Size of Data Vulnerable
Set Sites
2017 4,000,000 2
2019 812,758 1
2021 330,112 0

Notable regarding Table [II| is that for 2017 we aimed at
performing an attack analysis on four million certificates but
only managed 812.785. For 2021 we set out to perform
analysis on the whole log (that is, 1.015.021 certificates)
but only managed roughly 300.000. We did not meet our
goals in this aspect due to an underestimation of the time
the task would take. We did not realize this until well into
the project and could potentially have mitigated the skew
results by running the task parallel for each log.

B. CertStream

Table [I1I] contains the result of the experiment carried out
in a period of four weeks. The results indicate that one would
find one vulnerable site per 3425 issued certificates.

TABLE III
NUMBER OF VULNERABLE SITES FOUND DURING A FOUR WEEK PERIOD
OF LISTENING TO THE LIVE STREAM OF CERTIFICATES

Stream Size of Unique Percentage
Data Set Sites
CertStream 709,050 207 0.03 %

C. Window of vulnerability

Figure [6]illustrates the time window in which sites remain
vulnerable, as defined in Section The bars represent the
number of sites that completed the configuration within the
time span.

90
80 |-
70
60 |-
50
40 -
30
20
10

Number of sites (%)
I

Time span

Fig. 6. Each bar represent the accumulated number of sites that closed the
vulnerability window within that time frame.

Figure [7] illustrates the cumulative distribution function of
the vulnerability window. The increase at the end of the curve
represents all those sites that were not fixed during our trial
period. To give a better understanding of the first critical
hours, where the 50% limit is reached, Figure || illustrates
the first six hours.

0 e s e s s s
90
80 B
70 B
60 B
50 B
40 B
30 B
20 B
10 B

Actual Frequency (%)

|
PRIVISTR NS
d

I
& w o
Time span (days)

Fig. 7. CDF: Actual frequency of developers completing the configuration

50

40 © i

30 N

20 [N

Actual Frequency (%)

10 [N

0 1 15 2 25 3 35 4 45 5 55
Time span (hours)

Fig. 8. Figure [7]focused on the first 6 hours

V. ANALYSIS AND DISCUSSION

The results in Section especially Table [, clearly
show that the attack can not be carried out on the vast
majority of sites already present in the CT logs. That is,
no new inclusions from the livestream. In fact, a very
small portion of all sites registered in CT logs are actually
vulnerable. A pattern we were hoping to confirm using the
GoogleArgon logs is that the amount of vulnerable sites
decreases as time elapses. It would be logical since the more
time that has passed more site owners are able to finish
the configuration. Unfortunately, we did not collect enough
data to make that claim. As stated in Section this was
due to an underestimation of how long time analysis on the
GoogleArgon logs would take. The consequences of this is
that no real claims can be made from the analysis of the
GoogleArgon logs other than that only a few vulnerable sites
resides there. This means that an attacker can not perform
an effective attack on already published certificates. Also,
it might be considered alarming that vulnerabilities remain
exploitable for years in some sites.

Proceeding, assuming that the amount of vulnerable sites
decrease over time, determining the time distribution of
how sites addresses the issue seemed like the next logical
step. Doing this on GoogleArgon logs does not make sense
since there is no way for us to determine when a site got
fixed. Therefore we restricted this part of the experiments
to the livestream. As seen in Figure [6] around 24% is fixed
within the first 15 minutes of publication. Considering that
an additional 10%, 7% and 1% is fixed within 15-30, 30-
45 and 45-60 minutes respectively a significant 42% part of
the attack surface is reduced within the first hour. Thus, a
potential attacker has to be relatively fast to ensure maximal
effect from the attack. Looking at Figure [/| we can see that
after the first hour there is still 58% vulnerable sites.

The number 58% is especially significant because even if
there were to be a delay of e.g. one hour before appending

the certificate into the log, it would still be a considerable
amount of sites that would remain possible targets. With
enough time, an attacker could potentially take over thou-
sands of servers. Beside the obvious consequences, stealing
of sensitive information and destruction, this means that an
attacker could also build a botnet. With such a wide range
of IP addresses and domains the imaginary botnet could for
example be the source of a successful spam campaign.

Mentioned in Section [, the German researcher Hanno
Bock claims to have found 5000 vulnerable sites under the
course of three months. Looking at the results regarding this
presented in Table|lLl, we can confirm that the attack is viable
and definitely a serious threat. We are however unable to
verify the magnitude of his results. Our results show that
during the course of three months we would have found
approximately 621 vulnerable sites. This is significantly
lower and only about 1/8 of what Bock claims. One source
of error is that Hanno Bock utilized bash scripting while we
used Java, which might impact the speed of visiting sites. It
is however hard to make a direct comparison since Hanno
Bock has not spelled out the number of visited sites.

VI. CONCLUSIONS

From the results of this project and the analysis of them
we have drawn the following conclusions.

o By using a combination of openly available software
and self written software we were successful in repli-
cating Hanno Bock’s attack.

e We conclude that the attack is viable and a serious
threat, which can have major consequences.

« We were unable to confirm the possible magnitude of
the attack, as claimed by Hanno Bock. Our results show
that there are significantly less vulnerable sites than
claimed.

o We were able to determine that the amount of vulnerable
sites decreases over time and that the most critical
timeframe, from an attackers point of view, is the first
hour were around 42% of the vulnerable sites are fixed.

A. Future work

For future work we recognize that determining the poten-
tial damage of this attack is important.

1) Determining potential damage: Our project does not
take into consideration which type of certificate that is used
on the vulnerable sites. Using this information we believe
that interesting conclusions could be drawn. For example,
one hypothesis is that sites with EV-certificates might be
more likely to hold sensitive information, or many registered
users, which would consequently result in a higher potential
damage. Verifying this with a study and then investigating
the amount of EV or OV certificates with this vulnerability
could be used to help determining the potential damage
this attack can cause. Determining potential damage is also
very important with respect to any discussions regarding CT
inclusion delay. Furthermore, more work is required on the
current logs and more specifically how many vulnerable sites
they contain.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]
[10]

[11]

[12]

REFERENCES

Josephine Wolff. How a 2011 hack you’ve never heard of changed
the internet’s infrastructure. |https://slate.com/technology/2016/12/
how-the-2011-hack-of-diginotar-changed- the-internets- infrastructure.
html, 2016. [Online; accessed 8-April-2019].
Certificate-Transparency.org. What is certificate transparency? https:
/Iwww.certificate-transparency.org/what-is-ct. [Online; accessed 8-
April-2019].

Certificate-Transparency.org. Benefits and advantages. https://www.
certificate-transparency.org/benefits, [Online; accessed 8-April-2019].
Hanno Bock. Certificate transparency - hacking web applications
before they are installed. https://www.golem.de/news/certificate-
transparency-hacking-web-applications-before-they-are-installed-
1707-129172.html. [Online; accessed 8-April-2019].
Hanno Bock. Ct grab. |https://github.com/hannob/ctgrab,
accessed 6-May-2019].

A. Langley B. Laurie and E. Kasper. Rfc 6962 - certificate trans-
parency. https://tools.ietf.org/html/rfc6962. [Online; accessed 8-April-
2019].

Google / Chromium. Certificate transparency.
/Ichromium.googlesource.com/chromium/src/+/master/net/docs/
certificate-transparency.md. [Online; accessed 8-April-2019].
Inc. Apple. Apple’s certificate transparency policy. https://support.
apple.com/en-us/HT205280. [Online; accessed 10-April-2019].
Mozilla. Pki:ct. https://wiki.mozilla.org/PKI:CT. [Online; accessed
10-April-2019].

Erik Tews. Certificate transparency tools @ github. https://github.com/
eriktews/certificate-transparency-tools. [Online; accessed 8-April-
2019].

Certificate-Transparency.org. Known
certificate-transparency.org/known-logs.
April-2019].

CaliDog. Github - certstream. https://certstream.calidog.io/, [Online;
accessed 8-April-2019].

[Online;

https:

http://www.
accessed 8-

logs.
[Online;

https://slate.com/technology/2016/12/how-the-2011-hack-of-diginotar-changed-the-internets-infrastructure.html
https://slate.com/technology/2016/12/how-the-2011-hack-of-diginotar-changed-the-internets-infrastructure.html
https://slate.com/technology/2016/12/how-the-2011-hack-of-diginotar-changed-the-internets-infrastructure.html
https://www.certificate-transparency.org/what-is-ct
https://www.certificate-transparency.org/what-is-ct
https://www.certificate-transparency.org/benefits
https://www.certificate-transparency.org/benefits
https://github.com/hannob/ctgrab
https://tools.ietf.org/html/rfc6962
https://chromium.googlesource.com/chromium/src/+/master/net/docs/certificate-transparency.md
https://chromium.googlesource.com/chromium/src/+/master/net/docs/certificate-transparency.md
https://chromium.googlesource.com/chromium/src/+/master/net/docs/certificate-transparency.md
https://support.apple.com/en-us/HT205280
https://support.apple.com/en-us/HT205280
https://wiki.mozilla.org/PKI:CT
https://github.com/eriktews/certificate-transparency-tools
https://github.com/eriktews/certificate-transparency-tools
http://www.certificate-transparency.org/known-logs
http://www.certificate-transparency.org/known-logs
https://certstream.calidog.io/

	INTRODUCTION
	BACKGROUND
	Certificate Transparency
	Certificates
	Certificate Transparency motivation

	Certificate Transparency in practice
	Performing an attack

	METHOD
	Ethics
	Implementation

	RESULTS
	GoogleArgon Logs
	CertStream
	Window of vulnerability

	ANALYSIS AND DISCUSSION
	CONCLUSIONS
	Future work
	Determining potential damage

	References

