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Abstract 

A Cryptographically Secure Pseudo Random 

Number Generator (CSPRNG) is an algorithm that 

produces random entropy for cryptographic 

purposes, requiring it to fulfill certain criteria other 

than the ones that apply to a regular pseudo random 

number generator (PRNG). In this report we take a 

look at what differentiate a CSPRNG from other 

PRNGs and how it is tested and proved. We 

investigate some instances where weaknesses in 

CSPRNGs have been found and what consequences 

they have had, resulting in our conclusion that it is 

hard to test randomness and that a weak CSPRNGs 

effects can propagate far and cause a lot of 

problems. 

1. Introduction 

The aim of this report is to give some clarity to 

what makes a pseudo random number generator 

cryptographically secure. In addition to this we will 

take a look at some examples of reports detailing 

cases when weak pseudo random generator has been 

used in cryptographic systems.  
The first sections will be dedicated to the 

difference between a good pseudo random number 

generator and a cryptographically secure pseudo 

number generator. We will later move on to look at 

which the most commonly used types of random 

number generators are. In connection with this we 

will look at what effects a cryptographically weak 

pseudo number generator has on a cryptographic 

system.  
Lastly we will look at and discuss some previous 

cases/reports on weak randomness being used in 

implementations, specifically we will take a closer 

look at the “Dual_EC_DRBG” case, addressing its 

use, how it is a problem and how problems of this 

kind can be solved.  
In short the following questions will be asked, 

addressed and answered in the report.  
● What makes a pseudo random generator 

cryptographically secure?  

● What is the difference between a good 

pseudo random generator and a 

cryptographically secure pseudo random 

generator?  

● What are most common types of pseudo 

random generators used?  

● What effect does a weak pseudo random 

generator have on a cryptographic system 

such as OpenSSL or on an elliptic curve 

discrete logarithm problem?  

● What report has there been on weak 

randomness being used in implementations 

(For example in the case of 

Dual_EC_DRBG)? 

2. Background 

PRNGs are used in many different applications in 

computer science and are central in the areas of 

simulations and cryptography [1].  

Historically tables have been used for 

mathematical computations that require random 

numbers. This changed with the invention of the 

electronic computer during the 1940s. Partly 

because of the fact that mathematical computations 

could be calculated faster, demanding an increase in 

the speed at which numbers where delivered. But 

also because the sequence of numbers needed were 

longer than before.  

Certain physical processes can create truly 

random numbers but this approach were rejected at 

the time because of  the need to be able to re run the 

same computation, with the same random numbers, 

again during testing [2].  
An arithmetic approach called the middle-square 

method was proposed by John von Neumann in 

1949. The algorithm works by taking a number and 

squaring it, taking the middle-part of the resulting 

bigger number as output, and for the next random 

number repeating the process but using the output as 

input. This algorithm was known to have flaws, for 

example if using a 4-digit input, an output of 0000, 

will continue to generate only 0000 as output. The 



algorithm was used despite this, as it was faster than 

using random numbers read from punch cards [2].  
PRNGs have since been refined and evolved and 

are today critical components of cryptographic 

systems, where if you break the random number 

generator often the whole security system is broken. 

Ideally to get good results from the PRNGs, making 

the cryptographic systems secure, we need a good 

truly random source for the seed and high entropy.  
Often, practically, more random numbers are 

needed than hardware generation can provide and 

PRNGs can then use the existing entropy and 

“stretch” it to provide larger random numbers. This 

generation of random numbers in the PRNG uses 

entropy obtained from a higher quality source, like a 

hardware random number generator or an 

unpredictable system process, and then generates 

larger random numbers based on this entropy, 

circumventing the slow processes for extracting 

randomness from a running system.  

2.1 Concepts 

Randomness in the form of a sequence means we 

have a series of numbers or symbols without a 

predictable pattern, unordered and without 

coherence. A random sequence, in the mathematical 

cryptology field, consists of numbers that does not 

conform to a deterministic pattern.  
Determinism is the view that for every event 

there exist conditions that could cause no other 

event. In the context of cryptology the concept of 

determinism can be viewed as “cause and effect”, 

prior events completely determine later events. 
Entropy, within computer science and cryptology, 

is the randomness collected by the OS or application 

to be used for cryptographic purposes or other 

purposes requiring random data. Usually collected 

through hardware, examples include mouse 

movements, keyboard, IDE timings or other similar 

sources of random noise [3]. The original term stems 

from physics and is a measurement of the degree of 

a system’s disorder, a property of the system’s state 

[4]. 

2.2 Terminology 

PRNG (pseudo random number generator) also 

called DRBG (deterministic random bit generator), 

will be used in the report to describe the algorithms 

designed to generate a sequence of numbers with 

properties as close as possible to truly random 

numbers.  
Seed, is the number used to initialize the PRNG, 

often crucial to the security of the cryptographic 

system since having the seed will often allow one to 

obtain the output of the PRNG. Random seeds for 

the PRNG are usually generated by collecting 

entropy from the computer system on which the 

PRNG is running.  
CSPRNG is a PRNG that is suitable for 

cryptographic purposes, and it is an abbreviation for 

cryptographically secure pseudo random number 

generator. 
Procedural generation, a term widely used within 

media production. It refers to content generated 

algorithmically rather than manually, meaning 

spontaneous or extemporaneous created content and 

not content created prior to distribution. 

3. General overview 

3.1 PRNG requirements 

PRNGs are algorithms that generate sequences of 

numbers that approximates the properties of random 

numbers, the sequence is not truly random but based 

upon a set of initial values called a seed. PRNGs are 

important in practice due to their ability to generate 

larger quantities of numbers than otherwise would 

have been possible through hardware during the 

same time.  
PRNGs are generally used in applications such as 

simulations and procedural generation, these kinds 

of applications usually require less elaborate 

algorithms than PRNGs aimed at cryptographic 

applications. Common types of PRNG algorithms 

include linear congruential generators, Lagged 

Fibonacci generators (an improved variant of the 

linear congruential generator) and linear feedback 

shift registers. [5][6][7]  
To make sure the output produced by the PRNG 

is sufficiently random, careful mathematical analysis 

usually has to be performed to validate the statistical 

properties of the PRNG. This is means the PRNG 

will be put through a battery of statistical tests, 

measuring the quality of the PRNG and its statistical 

randomness.   

3.1.1 Statistical randomness and 

statistical tests 

A numeric sequence is considered statistically 

random when it does not contain any recognizable 

patterns or regularities. Statistical randomness is not 

the same as true randomness and only implies an 

objective unpredictability, a pseudo randomness 

suitable for statistics, hence the name statistical 

randomness.  
There are a lot of different tests relating to 

statistical randomness, some of the first were four 

test developed by M.G. Kendall and B.B. Smith in 

the 1930s [8]. These four test was, the frequency test 

(checking that there were about the same number of 

0s, 1s, 2s etc.), the serial test (basically checking the 



same thing but for 00s, 01s etc.), the poker test 

(checking the distribution of sequences like xxxxx, 

xxxxy, xxxyy etc.) and the gap test (looked at the 

distance between numbers, here for example 00 

would have a distance of 0, 010 a distance of 1 and 

01230 a distance of 3). 
As the use for random numbers have increased, a 

greater number of test with increasing sophistication 

has been created to verify the randomness of the 

sequences. One of more modern would be the 

“Diehard tests” developed by George Marsaglia. 

This test suite was first released in 1995 and consists 

of a battery of test designed to measure the statistical 

randomness quality of a PRNG. The following are 

some (not all) of the test that are included in the test 

suite [9], with a short description of what the test 

might involve (not intended as complete 

explanation). 
● Birthday spacing’s. The spacing’s between 

randomly chosen points on an interval 

should be asymptotically exponentially 

distributed. The name is derived from “the 

birthday paradox”.  

● Overlapping permutations. Analyzes 

sequences of five consecutive random 

numbers and checks if the 120 possible 

orderings of these occur with statistically 

equal probability.  

● Ranks of matrices. Involves selecting a 

number of bits from a number of random 

numbers, then forming a matrix. 

Determining the rank of this matrix and 

counting the ranks.  

● Monkey tests. Sequences of numbers are 

seen as words and the overlapping words in 

a stream are counted. The number of 

sequences that do not appear should follow 

a known distribution. The name is derived 

from “the infinite monkey theorem”.  

● Count the 1s. Involves counting the 1 bits 

in successive or chosen bytes, then 

converting this number to a “letter”, and 

counting occurrences of five-letter "words".  

● The squeeze test. Involves multiplying 231 

with random floats until reaching 1. 

Repeating this, a great number of times, 

then looking at the distribution of the 

number of floats needed to reach 1.  

If a sequence given by a PRNG is able to pass a 

statistical test, it usually does it with a certain degree 

of significance that is used to determine the degree 

of statistical randomness for the algorithm. PRNGs 

require these tests as verification of their 

randomness, since they are based on deterministic 

algorithms and not truly random. 

3.1.2 Mersenne twister 

The Mersenne twister is the most widely used 

PRNG, the period length of the algorithm is chosen 

to be a Mersenne prime (a prime number on the 

form 2
n
-1) [10], hence the name. It was developed 

by Makoto Matsumoto and Takuji Nishimura in 

1997, providing fast generation of high quality 

pseudo random integers.  
The most commonly used versions of the 

Mersenne twister is based upon the prime 2
19937

-1, 

and there are two standard implementations; 

MT19937 using a 32-bit word length and MT19937-

64 using a 64-bit word length. One advantage the 

Mersenne twister has, a desirable property, is its 

long period (2
19937

-1), not a guarantee of quality for 

a PRNG but there can be problems with short 

periods.  
The Mersenne twister in its original form is 

however not suitable for cryptographic purposes, 

observing a sufficient number of iterations will 

allow an attacker to predict all future iterations. For 

the MT19937 the exact number of iterations needed 

is 624, which corresponds to the state vector from 

which all future iterations are generated.  
These kind of cryptographic disadvantages are 

not due to faulty programming, and can often not be 

fixed with a tweak, but a result of the algorithm not 

fundamentally designed to be cryptographically 

secure. A CSPRNG often needs to be designed from 

the ground up to be secure and not modified from an 

non-secure PRNG. 

3.2 Difference between PRNG 

and CSPRNG 

CSPRNGs can be seen as a subclass to PRNGs, 

since it is a kind of PRNG with some additional 

requirements to make sure it is suitable for 

cryptographic use.  
A requirement for a CSPRNG is that it must pass 

all polynomial time statistical tests in connection 

with the seed, compared to a regular PRNG which is 

only required to pass certain statistical tests. It 

should also be impossible to reconstruct the stream 

or predict future values of the stream even if the 

seed is revealed. These properties cannot be proven. 

However they can be reduced to hard mathematical 

problem, such as integer factorization, that in turn 

can provide strong evidence for the security of the 

CSPRNG.  
Among the most common types of CSPRNGs 

used are stream ciphers, block ciphers (with counter 

or output feedback mode running), combinations of 

PRNGs (where several primitive PRNGs are 

combined in an attempt to create a higher degree of 

randomness), PRNGs designed around especially 



hard mathematical assumptions (usually these 

provide a strong security proof, however they can be 

slow compared to the others and be impractical for 

many applications) and PRNGs that are designed to 

be cryptographically secure such as Yarrow’s 

algorithm and Fortuna. 
These common types could be classified under 

the following three classes. 
● Cryptographic Primitives. Includes the 

PRNGs based upon cryptographic 

primitives, such as stream ciphers, block 

ciphers and cryptographic hashes. It is 

important to keep the initial values of these 

cryptographic primitives secret, otherwise 

all security will be lost. Some examples 

include a block cipher running in counter 

mode, a hash of a counter or a stream 

cipher combining a pseudo random stream 

with plaintext. 

● Hard mathematical problems. Includes the 

PRNGs based upon difficult mathematical 

problems. Here we have examples like the 

Blum Blum Shub algorithm based on the 

quadratic residuosity problem [11]. The 

only known way to solve the problem is to 

factor the modulus, and integer 

factorization is generally regarded as hard 

mathematical problem capable of providing 

security proof. Other examples include 

algorithms based on the discrete logarithm 

problem [12] or algorithms like 

Dual_EC_DRBG, which is based upon the 

assumed hardness of the decisional Diffie–

Hellman (DDH) assumption [13].  

● Special designs. Often introduce additional 

entropy if available, the output is not 

always determined by the initial state which 

can prevent attacks even if the initial state 

is compromised. There are a number of 

PRNGs specially designed to be 

cryptographically secure. Some examples 

include the Yarrow algorithm, the Fortuna 

algorithm and CryptGenRandom (from 

Microsoft’s Cryptographic Application 

Programming Interface).   

The difficulty of measuring security in a 

CSPRNG means that CSPRNGs often require years 

of review before certification.  

3.3 CSPRNG requirements 

CSPRNGs needs to fulfill the same requirements 

as an ordinary PRNG, which means that they will 

need to pass statistical randomness test, and in 

addition to this they need to stay secure even in the 

event where the initial state or the running state of 

the CSPRNG is revealed to the attacker. 

A lot of PRNGs will be able to pass statistical 

randomness test, and have output that appears 

random. However many of them will not be able to 

pass more specialized test, such as determined 

reverse engineering tests checking for state 

compromise, showing that their output is not truly 

random. This means most PRNGs are not suitable as 

CSPRNGs. 

Some CSPRNGs based on cryptographic 

primitives and hard mathematical problems are used, 

however all of these do not ensure protection against 

state compromise, but relies on keeping states and 

values hidden or secret. CSPRNGs that want to 

ensure security should be designed explicitly to 

withstand this sort of cryptanalysis. 

3.3.1 Next-bit test 

This means that a CSPRNG need to pass 

something called the “Next-bit test”, passing this test 

will ensure that the PRNG will pass all other 

polynomial time statistical tests for randomness 

which was proved in 1982 [14].  
The “Next-bit test” consist of, given the first k 

bits of a random sequence, the attacker will not be 

able to predict the (k+1)th bit in polynomial time. 

Passing this test will not ensure that the PRNG is 

safe for cryptographic use however, since it does not 

guarantee that it passes tests aimed at testing if it can 

withstand state compromise.  
An example of this would be if we looked at a 

PRNG that produces output by computing bits of pi 

in sequence, starting from an unknown point in its 

binary expansion (the term in base-2 power). This 

could pass the “Next-bit test”, but an attacker that 

determines which bit is currently in use (current 

state of algorithm) will be able to calculate all 

preceding bits as well. This leads us to the next type 

of test that needs to be performed to provide proof 

that a PRNG is cryptographically secure, the state 

compromise tests.   

3.3.2 State compromise tests 

The state compromise tests are applied to the 

special deigns class of CSPRNGs. The proof of 

security for the other classes (cryptographic 

primitives and hard mathematical problems) does 

not rely on passing this type of tests. 

This type of tests deal with the case of an attacker 

compromising a single state of the PRNG, and then 

using the information gained from that to reconstruct 

past or future output. Usually performed on the 

initial seed state or some other vulnerable state 

where insufficient entropy has been used.  
This means that it is an requirement for these type 

of tests to check, in the case that a state has been 



revealed or guessed correctly, that it is impossible to 

reconstruct the CSPRNG stream prior to the 

revelation. As well as check, in the case of entropy 

being revealed while running, that it is impossible to 

predict future values of the stream.  

3.4 Dual_EC_DRBG 

The U.S. Government releases a standard for 

DRBGs, where the most recent contained four 

different approved techniques for implementing this 

official standard for random number generators [15]. 

The four approved techniques is based on; hash 

functions, HMAC (Hash-based message 

authentication code), block ciphers and elliptic 

curves, and it is generally a good idea to use one of 

these few well-trusted cryptographic primitives.  
However one of these four, the last called 

Dual_EC_DRBG for short (Dual Elliptic Curve 

Deterministic Random Bit Generator), is no longer 

considered secure. NSA has been involved in the 

making and breaking of a great deal of cryptography 

standards, so it is not weird that they have been a 

part of NISTs (the U.S. Commerce Department's 

National Institute of Standards and Technology) 

standard. But there are some additional 

circumstances that make Dual_EC_DRBG look a bit 

suspicious [16].  
In 2006 a small bias in the random numbers 

produced were described, a cause for concern, 

however an optional workaround for this was 

mentioned in Appendix E of the NIST standard, of 

which the first draft was released in 2005 [17]. The 

problems concerning Dual_EC_DRBG has however 

continued to grow and in an informal presentation at 

the CRYPTO conference in 2007 [18] it was 

demonstrated that there exist a possibility of a 

backdoor.  
In Appendix A of the NIST standard we are 

presented with a set of constants used to define the 

algorithm’s elliptic curve, however the origin of 

these constants are never explained and what the 

informal presentation from the 2007 CRYPTO 

conference shows is that these numbers could have 

been created with a second set of secret numbers. 

This second set of secret numbers could work as a 

skeleton key, enabling anyone in possession of them 

to predict future output from the RNG after 

collecting only 32 bytes of output. 
The only person that knows if there is a set of 

secret numbers created in tandem is the person who 

produced the constants, so it is not known if there 

exist any at all, but if it does they can be used to 

break any instantiation of Dual_EC_DRBG. And 

even if no secret numbers exist it makes 

Dual_EC_DRBG vulnerable, if one instance of the 

algorithm’s elliptic curve problem were solved it 

would render every implementation insecure. 
This whole problem can be avoided if the 

optional method of implementation, in Appendix A 

of the NIST standard, is used to generate new 

constants using another secure PRNG. However 

most implementations will probably not. 

3.5 Debian Linux RNG bug 

In 2008, May 13th, the Debian team reported a 

vulnerability in the OpenSSL package they 

distribute. The bug appeared when some lines of 

code which caused warnings about uninitialized data 

were removed, accidentally crippling the seeding 

process for the PRNG. A lot of the random data 

going into the seed was lost and the only remaining 

data consisted of the current process ID, limited to 

32768, resulting in a very small number of seed 

values for the PRNG.  
As a result of this cryptographic key material 

may be guessable, and affected keys include SSH 

keys, OpenVPN keys, DNSSEC keys, SSL/TLS 

keys, as well as all DSA (Digital Signature 

Algorithm) keys ever used on an affected Debian 

system, signing or authenticating, since these rely on 

a secret random value during signature generation 

[19]. 
The bug itself was introduced in September 2006, 

resulting in the bug propagating to both the testing 

and the current stable distribution of Debian (etch), 

the old stable distribution (sarge) however remained 

unaffected. Systems not based upon Debian should 

remain unaffected as well, since it is a Debian 

specific vulnerability, however it is possible that 

other systems will be indirectly affected if importing 

weak keys.   

4. Discussion 

PRNGs are used in a great deal of places when it 

comes to cryptography, both for short term and for 

long term applications. And something we can 

deduce from the examples in this report, is that flaws 

are easily introduced in PRNGs, both accidentally 

and purposely, and that these flaws usually are very 

hard to discover. This is partly because of the 

difficulty of testing if the output of a PRNG is truly 

random and partly because of the impossibility of 

proving that there is no state compromise 

vulnerability.  
These problems are one reason why some 

vulnerabilities in PRNGs takes a long time to 

discover. For example in the case of 

Dual_EC_DRBG, where it took a couple of years 

from the first draft was made public until the first 

presentation was held discussion the possibility of a 



backdoor in the standard. These kinds of situations 

occur when it is difficult to prove the security of the 

CSPRNG and when that proof requires specialized 

tests.  
Another thing to note is that a flaw affecting a 

PRNG often propagates, affecting the systems that 

are using the PRNG. As with the accidental removal 

of a couple of lines of code in the Debian OpenSSL 

package, causing the need for renewal of keys for 

several cryptographic systems using the 

implementation. Even if the problem itself was 

corrected fairly quickly within the package once 

discovered, the vulnerabilities and insecure keys it 

created down the chain takes significantly more time 

before they are solved or exchanged for secure keys, 

this is also directly affected by the amount of time 

the vulnerability has been in place. 

5. Conclusion 

PRNGs and CSPRNGs are pseudo random per 

definition and their purpose is to speed up creation 

of random numbers by “stretching” or “extending” 

the entropy from another source, often hardware in 

comparison with the PRNGs which are software 

based, meaning they are running on a deterministic 

machine. This makes it inherently hard to create a 

PRNG with high entropy and even harder to create a 

CSPRNG. For this reason it is also very hard to 

create tests that “prove” that a PRNG produces a 

high entropy sequence.  
CSPRNGs are even harder to determine if they 

are suitable for their purpose since they in addition 

to the criteria for a PRNG also need to be able to 

withstand state compromise attacks, which is also 

hard to test and prove, often requiring quite 

advanced math and a lot of scrutiny. Because of this 

we conclude that CSPRNGs benefit from open 

implementations allowing for a more in depth 

analysis of the CSPRNG to facilitate the discovery 

of potential vulnerabilities, also avoiding the 

possibility of intentional nefariously placed 

vulnerabilities.  
If a vulnerability exists in a CSPRNG, making it 

a weak CSPRNG, this can easily propagate causing 

a lot of problems, since CSPRNGs are widely used 

(especially standardized CSPRNGs). Accidental and 

purposeful weaknesses are easily introduced, and 

often affect a large amount of users. 
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