
Strong(er) Randomness

Robert Edquist Linus Back

Email: {robed335,linba708}@student.liu.se

Supervisor: Jan-Åke Larsson, {jan-ake.larsson@liu.se}

Project Report for Information Security Course

Linköpings universitet, Sweden

Abstract

A Cryptographically Secure Pseudo Random

Number Generator (CSPRNG) is an algorithm that

produces random entropy for cryptographic

purposes, requiring it to fulfill certain criteria other

than the ones that apply to a regular pseudo random

number generator (PRNG). In this report we take a

look at what differentiate a CSPRNG from other

PRNGs and how it is tested and proved. We

investigate some instances where weaknesses in

CSPRNGs have been found and what consequences

they have had, resulting in our conclusion that it is

hard to test randomness and that a weak CSPRNGs

effects can propagate far and cause a lot of

problems.

1. Introduction

The aim of this report is to give some clarity to

what makes a pseudo random number generator

cryptographically secure. In addition to this we will

take a look at some examples of reports detailing

cases when weak pseudo random generator has been

used in cryptographic systems.
The first sections will be dedicated to the

difference between a good pseudo random number

generator and a cryptographically secure pseudo

number generator. We will later move on to look at

which the most commonly used types of random

number generators are. In connection with this we

will look at what effects a cryptographically weak

pseudo number generator has on a cryptographic

system.
Lastly we will look at and discuss some previous

cases/reports on weak randomness being used in

implementations, specifically we will take a closer

look at the “Dual_EC_DRBG” case, addressing its

use, how it is a problem and how problems of this

kind can be solved.
In short the following questions will be asked,

addressed and answered in the report.
● What makes a pseudo random generator

cryptographically secure?

● What is the difference between a good

pseudo random generator and a

cryptographically secure pseudo random

generator?

● What are most common types of pseudo

random generators used?

● What effect does a weak pseudo random

generator have on a cryptographic system

such as OpenSSL or on an elliptic curve

discrete logarithm problem?

● What report has there been on weak

randomness being used in implementations

(For example in the case of

Dual_EC_DRBG)?

2. Background

PRNGs are used in many different applications in

computer science and are central in the areas of

simulations and cryptography [1].

Historically tables have been used for

mathematical computations that require random

numbers. This changed with the invention of the

electronic computer during the 1940s. Partly

because of the fact that mathematical computations

could be calculated faster, demanding an increase in

the speed at which numbers where delivered. But

also because the sequence of numbers needed were

longer than before.

Certain physical processes can create truly

random numbers but this approach were rejected at

the time because of the need to be able to re run the

same computation, with the same random numbers,

again during testing [2].
An arithmetic approach called the middle-square

method was proposed by John von Neumann in

1949. The algorithm works by taking a number and

squaring it, taking the middle-part of the resulting

bigger number as output, and for the next random

number repeating the process but using the output as

input. This algorithm was known to have flaws, for

example if using a 4-digit input, an output of 0000,

will continue to generate only 0000 as output. The

algorithm was used despite this, as it was faster than

using random numbers read from punch cards [2].
PRNGs have since been refined and evolved and

are today critical components of cryptographic

systems, where if you break the random number

generator often the whole security system is broken.

Ideally to get good results from the PRNGs, making

the cryptographic systems secure, we need a good

truly random source for the seed and high entropy.
Often, practically, more random numbers are

needed than hardware generation can provide and

PRNGs can then use the existing entropy and

“stretch” it to provide larger random numbers. This

generation of random numbers in the PRNG uses

entropy obtained from a higher quality source, like a

hardware random number generator or an

unpredictable system process, and then generates

larger random numbers based on this entropy,

circumventing the slow processes for extracting

randomness from a running system.

2.1 Concepts

Randomness in the form of a sequence means we

have a series of numbers or symbols without a

predictable pattern, unordered and without

coherence. A random sequence, in the mathematical

cryptology field, consists of numbers that does not

conform to a deterministic pattern.
Determinism is the view that for every event

there exist conditions that could cause no other

event. In the context of cryptology the concept of

determinism can be viewed as “cause and effect”,

prior events completely determine later events.
Entropy, within computer science and cryptology,

is the randomness collected by the OS or application

to be used for cryptographic purposes or other

purposes requiring random data. Usually collected

through hardware, examples include mouse

movements, keyboard, IDE timings or other similar

sources of random noise [3]. The original term stems

from physics and is a measurement of the degree of

a system’s disorder, a property of the system’s state

[4].

2.2 Terminology

PRNG (pseudo random number generator) also

called DRBG (deterministic random bit generator),

will be used in the report to describe the algorithms

designed to generate a sequence of numbers with

properties as close as possible to truly random

numbers.
Seed, is the number used to initialize the PRNG,

often crucial to the security of the cryptographic

system since having the seed will often allow one to

obtain the output of the PRNG. Random seeds for

the PRNG are usually generated by collecting

entropy from the computer system on which the

PRNG is running.
CSPRNG is a PRNG that is suitable for

cryptographic purposes, and it is an abbreviation for

cryptographically secure pseudo random number

generator.
Procedural generation, a term widely used within

media production. It refers to content generated

algorithmically rather than manually, meaning

spontaneous or extemporaneous created content and

not content created prior to distribution.

3. General overview

3.1 PRNG requirements

PRNGs are algorithms that generate sequences of

numbers that approximates the properties of random

numbers, the sequence is not truly random but based

upon a set of initial values called a seed. PRNGs are

important in practice due to their ability to generate

larger quantities of numbers than otherwise would

have been possible through hardware during the

same time.
PRNGs are generally used in applications such as

simulations and procedural generation, these kinds

of applications usually require less elaborate

algorithms than PRNGs aimed at cryptographic

applications. Common types of PRNG algorithms

include linear congruential generators, Lagged

Fibonacci generators (an improved variant of the

linear congruential generator) and linear feedback

shift registers. [5][6][7]
To make sure the output produced by the PRNG

is sufficiently random, careful mathematical analysis

usually has to be performed to validate the statistical

properties of the PRNG. This is means the PRNG

will be put through a battery of statistical tests,

measuring the quality of the PRNG and its statistical

randomness.

3.1.1 Statistical randomness and

statistical tests

A numeric sequence is considered statistically

random when it does not contain any recognizable

patterns or regularities. Statistical randomness is not

the same as true randomness and only implies an

objective unpredictability, a pseudo randomness

suitable for statistics, hence the name statistical

randomness.
There are a lot of different tests relating to

statistical randomness, some of the first were four

test developed by M.G. Kendall and B.B. Smith in

the 1930s [8]. These four test was, the frequency test

(checking that there were about the same number of

0s, 1s, 2s etc.), the serial test (basically checking the

same thing but for 00s, 01s etc.), the poker test

(checking the distribution of sequences like xxxxx,

xxxxy, xxxyy etc.) and the gap test (looked at the

distance between numbers, here for example 00

would have a distance of 0, 010 a distance of 1 and

01230 a distance of 3).
As the use for random numbers have increased, a

greater number of test with increasing sophistication

has been created to verify the randomness of the

sequences. One of more modern would be the

“Diehard tests” developed by George Marsaglia.

This test suite was first released in 1995 and consists

of a battery of test designed to measure the statistical

randomness quality of a PRNG. The following are

some (not all) of the test that are included in the test

suite [9], with a short description of what the test

might involve (not intended as complete

explanation).
● Birthday spacing’s. The spacing’s between

randomly chosen points on an interval

should be asymptotically exponentially

distributed. The name is derived from “the

birthday paradox”.

● Overlapping permutations. Analyzes

sequences of five consecutive random

numbers and checks if the 120 possible

orderings of these occur with statistically

equal probability.

● Ranks of matrices. Involves selecting a

number of bits from a number of random

numbers, then forming a matrix.

Determining the rank of this matrix and

counting the ranks.

● Monkey tests. Sequences of numbers are

seen as words and the overlapping words in

a stream are counted. The number of

sequences that do not appear should follow

a known distribution. The name is derived

from “the infinite monkey theorem”.

● Count the 1s. Involves counting the 1 bits

in successive or chosen bytes, then

converting this number to a “letter”, and

counting occurrences of five-letter "words".

● The squeeze test. Involves multiplying 231

with random floats until reaching 1.

Repeating this, a great number of times,

then looking at the distribution of the

number of floats needed to reach 1.

If a sequence given by a PRNG is able to pass a

statistical test, it usually does it with a certain degree

of significance that is used to determine the degree

of statistical randomness for the algorithm. PRNGs

require these tests as verification of their

randomness, since they are based on deterministic

algorithms and not truly random.

3.1.2 Mersenne twister

The Mersenne twister is the most widely used

PRNG, the period length of the algorithm is chosen

to be a Mersenne prime (a prime number on the

form 2
n
-1) [10], hence the name. It was developed

by Makoto Matsumoto and Takuji Nishimura in

1997, providing fast generation of high quality

pseudo random integers.
The most commonly used versions of the

Mersenne twister is based upon the prime 2
19937

-1,

and there are two standard implementations;

MT19937 using a 32-bit word length and MT19937-

64 using a 64-bit word length. One advantage the

Mersenne twister has, a desirable property, is its

long period (2
19937

-1), not a guarantee of quality for

a PRNG but there can be problems with short

periods.
The Mersenne twister in its original form is

however not suitable for cryptographic purposes,

observing a sufficient number of iterations will

allow an attacker to predict all future iterations. For

the MT19937 the exact number of iterations needed

is 624, which corresponds to the state vector from

which all future iterations are generated.
These kind of cryptographic disadvantages are

not due to faulty programming, and can often not be

fixed with a tweak, but a result of the algorithm not

fundamentally designed to be cryptographically

secure. A CSPRNG often needs to be designed from

the ground up to be secure and not modified from an

non-secure PRNG.

3.2 Difference between PRNG

and CSPRNG

CSPRNGs can be seen as a subclass to PRNGs,

since it is a kind of PRNG with some additional

requirements to make sure it is suitable for

cryptographic use.
A requirement for a CSPRNG is that it must pass

all polynomial time statistical tests in connection

with the seed, compared to a regular PRNG which is

only required to pass certain statistical tests. It

should also be impossible to reconstruct the stream

or predict future values of the stream even if the

seed is revealed. These properties cannot be proven.

However they can be reduced to hard mathematical

problem, such as integer factorization, that in turn

can provide strong evidence for the security of the

CSPRNG.
Among the most common types of CSPRNGs

used are stream ciphers, block ciphers (with counter

or output feedback mode running), combinations of

PRNGs (where several primitive PRNGs are

combined in an attempt to create a higher degree of

randomness), PRNGs designed around especially

hard mathematical assumptions (usually these

provide a strong security proof, however they can be

slow compared to the others and be impractical for

many applications) and PRNGs that are designed to

be cryptographically secure such as Yarrow’s

algorithm and Fortuna.
These common types could be classified under

the following three classes.
● Cryptographic Primitives. Includes the

PRNGs based upon cryptographic

primitives, such as stream ciphers, block

ciphers and cryptographic hashes. It is

important to keep the initial values of these

cryptographic primitives secret, otherwise

all security will be lost. Some examples

include a block cipher running in counter

mode, a hash of a counter or a stream

cipher combining a pseudo random stream

with plaintext.

● Hard mathematical problems. Includes the

PRNGs based upon difficult mathematical

problems. Here we have examples like the

Blum Blum Shub algorithm based on the

quadratic residuosity problem [11]. The

only known way to solve the problem is to

factor the modulus, and integer

factorization is generally regarded as hard

mathematical problem capable of providing

security proof. Other examples include

algorithms based on the discrete logarithm

problem [12] or algorithms like

Dual_EC_DRBG, which is based upon the

assumed hardness of the decisional Diffie–

Hellman (DDH) assumption [13].

● Special designs. Often introduce additional

entropy if available, the output is not

always determined by the initial state which

can prevent attacks even if the initial state

is compromised. There are a number of

PRNGs specially designed to be

cryptographically secure. Some examples

include the Yarrow algorithm, the Fortuna

algorithm and CryptGenRandom (from

Microsoft’s Cryptographic Application

Programming Interface).

The difficulty of measuring security in a

CSPRNG means that CSPRNGs often require years

of review before certification.

3.3 CSPRNG requirements

CSPRNGs needs to fulfill the same requirements

as an ordinary PRNG, which means that they will

need to pass statistical randomness test, and in

addition to this they need to stay secure even in the

event where the initial state or the running state of

the CSPRNG is revealed to the attacker.

A lot of PRNGs will be able to pass statistical

randomness test, and have output that appears

random. However many of them will not be able to

pass more specialized test, such as determined

reverse engineering tests checking for state

compromise, showing that their output is not truly

random. This means most PRNGs are not suitable as

CSPRNGs.

Some CSPRNGs based on cryptographic

primitives and hard mathematical problems are used,

however all of these do not ensure protection against

state compromise, but relies on keeping states and

values hidden or secret. CSPRNGs that want to

ensure security should be designed explicitly to

withstand this sort of cryptanalysis.

3.3.1 Next-bit test

This means that a CSPRNG need to pass

something called the “Next-bit test”, passing this test

will ensure that the PRNG will pass all other

polynomial time statistical tests for randomness

which was proved in 1982 [14].
The “Next-bit test” consist of, given the first k

bits of a random sequence, the attacker will not be

able to predict the (k+1)th bit in polynomial time.

Passing this test will not ensure that the PRNG is

safe for cryptographic use however, since it does not

guarantee that it passes tests aimed at testing if it can

withstand state compromise.
An example of this would be if we looked at a

PRNG that produces output by computing bits of pi

in sequence, starting from an unknown point in its

binary expansion (the term in base-2 power). This

could pass the “Next-bit test”, but an attacker that

determines which bit is currently in use (current

state of algorithm) will be able to calculate all

preceding bits as well. This leads us to the next type

of test that needs to be performed to provide proof

that a PRNG is cryptographically secure, the state

compromise tests.

3.3.2 State compromise tests

The state compromise tests are applied to the

special deigns class of CSPRNGs. The proof of

security for the other classes (cryptographic

primitives and hard mathematical problems) does

not rely on passing this type of tests.

This type of tests deal with the case of an attacker

compromising a single state of the PRNG, and then

using the information gained from that to reconstruct

past or future output. Usually performed on the

initial seed state or some other vulnerable state

where insufficient entropy has been used.
This means that it is an requirement for these type

of tests to check, in the case that a state has been

revealed or guessed correctly, that it is impossible to

reconstruct the CSPRNG stream prior to the

revelation. As well as check, in the case of entropy

being revealed while running, that it is impossible to

predict future values of the stream.

3.4 Dual_EC_DRBG

The U.S. Government releases a standard for

DRBGs, where the most recent contained four

different approved techniques for implementing this

official standard for random number generators [15].

The four approved techniques is based on; hash

functions, HMAC (Hash-based message

authentication code), block ciphers and elliptic

curves, and it is generally a good idea to use one of

these few well-trusted cryptographic primitives.
However one of these four, the last called

Dual_EC_DRBG for short (Dual Elliptic Curve

Deterministic Random Bit Generator), is no longer

considered secure. NSA has been involved in the

making and breaking of a great deal of cryptography

standards, so it is not weird that they have been a

part of NISTs (the U.S. Commerce Department's

National Institute of Standards and Technology)

standard. But there are some additional

circumstances that make Dual_EC_DRBG look a bit

suspicious [16].
In 2006 a small bias in the random numbers

produced were described, a cause for concern,

however an optional workaround for this was

mentioned in Appendix E of the NIST standard, of

which the first draft was released in 2005 [17]. The

problems concerning Dual_EC_DRBG has however

continued to grow and in an informal presentation at

the CRYPTO conference in 2007 [18] it was

demonstrated that there exist a possibility of a

backdoor.
In Appendix A of the NIST standard we are

presented with a set of constants used to define the

algorithm’s elliptic curve, however the origin of

these constants are never explained and what the

informal presentation from the 2007 CRYPTO

conference shows is that these numbers could have

been created with a second set of secret numbers.

This second set of secret numbers could work as a

skeleton key, enabling anyone in possession of them

to predict future output from the RNG after

collecting only 32 bytes of output.
The only person that knows if there is a set of

secret numbers created in tandem is the person who

produced the constants, so it is not known if there

exist any at all, but if it does they can be used to

break any instantiation of Dual_EC_DRBG. And

even if no secret numbers exist it makes

Dual_EC_DRBG vulnerable, if one instance of the

algorithm’s elliptic curve problem were solved it

would render every implementation insecure.
This whole problem can be avoided if the

optional method of implementation, in Appendix A

of the NIST standard, is used to generate new

constants using another secure PRNG. However

most implementations will probably not.

3.5 Debian Linux RNG bug

In 2008, May 13th, the Debian team reported a

vulnerability in the OpenSSL package they

distribute. The bug appeared when some lines of

code which caused warnings about uninitialized data

were removed, accidentally crippling the seeding

process for the PRNG. A lot of the random data

going into the seed was lost and the only remaining

data consisted of the current process ID, limited to

32768, resulting in a very small number of seed

values for the PRNG.
As a result of this cryptographic key material

may be guessable, and affected keys include SSH

keys, OpenVPN keys, DNSSEC keys, SSL/TLS

keys, as well as all DSA (Digital Signature

Algorithm) keys ever used on an affected Debian

system, signing or authenticating, since these rely on

a secret random value during signature generation

[19].
The bug itself was introduced in September 2006,

resulting in the bug propagating to both the testing

and the current stable distribution of Debian (etch),

the old stable distribution (sarge) however remained

unaffected. Systems not based upon Debian should

remain unaffected as well, since it is a Debian

specific vulnerability, however it is possible that

other systems will be indirectly affected if importing

weak keys.

4. Discussion

PRNGs are used in a great deal of places when it

comes to cryptography, both for short term and for

long term applications. And something we can

deduce from the examples in this report, is that flaws

are easily introduced in PRNGs, both accidentally

and purposely, and that these flaws usually are very

hard to discover. This is partly because of the

difficulty of testing if the output of a PRNG is truly

random and partly because of the impossibility of

proving that there is no state compromise

vulnerability.
These problems are one reason why some

vulnerabilities in PRNGs takes a long time to

discover. For example in the case of

Dual_EC_DRBG, where it took a couple of years

from the first draft was made public until the first

presentation was held discussion the possibility of a

backdoor in the standard. These kinds of situations

occur when it is difficult to prove the security of the

CSPRNG and when that proof requires specialized

tests.
Another thing to note is that a flaw affecting a

PRNG often propagates, affecting the systems that

are using the PRNG. As with the accidental removal

of a couple of lines of code in the Debian OpenSSL

package, causing the need for renewal of keys for

several cryptographic systems using the

implementation. Even if the problem itself was

corrected fairly quickly within the package once

discovered, the vulnerabilities and insecure keys it

created down the chain takes significantly more time

before they are solved or exchanged for secure keys,

this is also directly affected by the amount of time

the vulnerability has been in place.

5. Conclusion

PRNGs and CSPRNGs are pseudo random per

definition and their purpose is to speed up creation

of random numbers by “stretching” or “extending”

the entropy from another source, often hardware in

comparison with the PRNGs which are software

based, meaning they are running on a deterministic

machine. This makes it inherently hard to create a

PRNG with high entropy and even harder to create a

CSPRNG. For this reason it is also very hard to

create tests that “prove” that a PRNG produces a

high entropy sequence.
CSPRNGs are even harder to determine if they

are suitable for their purpose since they in addition

to the criteria for a PRNG also need to be able to

withstand state compromise attacks, which is also

hard to test and prove, often requiring quite

advanced math and a lot of scrutiny. Because of this

we conclude that CSPRNGs benefit from open

implementations allowing for a more in depth

analysis of the CSPRNG to facilitate the discovery

of potential vulnerabilities, also avoiding the

possibility of intentional nefariously placed

vulnerabilities.
If a vulnerability exists in a CSPRNG, making it

a weak CSPRNG, this can easily propagate causing

a lot of problems, since CSPRNGs are widely used

(especially standardized CSPRNGs). Accidental and

purposeful weaknesses are easily introduced, and

often affect a large amount of users.

References
[1] “Pseudorandom number generator”,

[http://en.wikipedia.org/wiki/Pseudorandom_nu

mber_generator], [Accessed: 2014-05-14]

[2] John von Neumann, 1949, “Various

techniques used in connection with random

digits”, [http://www-

apr.lip6.fr/~lumbroso/References/VonNeumann5

1.pdf]

[3] “Entropy”,

[http://en.wikipedia.org/wiki/Entropy_(computin

g)], [Accessed: 2014-05-02]

[4] “Entropy”, [http://www.merriam-

webster.com/dictionary/entropy], [Accessed:

2014-05-12]

[5] “Linear congruential generator”,

[http://en.wikipedia.org/wiki/Linear_congruentia

l_generator], [Accessed: 2014-05-15]

[6] “Lagged Fibonacci generator”,

[http://en.wikipedia.org/wiki/Lagged_Fibonacci_

generator], [Accessed: 2014-05-15]

[7] “Linear feedback shift register”,

[http://en.wikipedia.org/wiki/Linear_feedback_s

hift_register#Uses_in_cryptography], [Accessed:

2014-05-15]

[8] M.G. Kendall and B. Babington Smith,

1938, "Randomness and Random Sampling

Numbers", Journal of the Royal Statistical

Society

[9] “The Marsaglia Random Number CDROM

including the Diehard Battery of Tests of

Randomness”,

[http://www.stat.fsu.edu/pub/diehard/],

[Accessed: 2014-05-14]

[10] “Mersenne prime”,

[http://en.wikipedia.org/wiki/Mersenne_prime],

[Accessed: 2014-05-12]

[11] “Quadratic residuosity problem”,

[http://en.wikipedia.org/wiki/Quadratic_residuosi

ty_problem], [Accessed: 2014-05-15]

[12] “Discrete logarithm”,

[http://en.wikipedia.org/wiki/Discrete_logarithm

_problem], [Accessed: 2014-05-15]

[13] “Decisional Diffie–Hellman assumption”,

[http://en.wikipedia.org/wiki/Decisional_Diffie%

E2%80%93Hellman_assumption], [Accessed:

2014-05-15]

[14] “Next-bit test”,

[http://en.wikipedia.org/wiki/Next-bit_test],

[Accessed: 2014-05-02]

[15] Elaine Barker and John Kelsey, January

2012, “Recommendation for Random Number

Generation Using Deterministic Random Bit

Generators”,

[http://csrc.nist.gov/publications/nistpubs/800-

90A/SP800-90A.pdf], [Accessed: 2014-04-26]

[16] Bruce Schneier, 2007-11-15, “The Strange

Story of Dual_EC_DRBG”,

[https://www.schneier.com/blog/archives/2007/1

1/the_strange_sto.html], [Accessed: 2014-05-06]

[17] Matthew Green, 2013-11-18, “The Many

Flaws of Dual_EC_DRBG”,

http://en.wikipedia.org/wiki/Pseudorandom_number_generator
http://en.wikipedia.org/wiki/Pseudorandom_number_generator
http://www-apr.lip6.fr/~lumbroso/References/VonNeumann51.pdf
http://www-apr.lip6.fr/~lumbroso/References/VonNeumann51.pdf
http://www-apr.lip6.fr/~lumbroso/References/VonNeumann51.pdf
http://en.wikipedia.org/wiki/Entropy_(computing)
http://en.wikipedia.org/wiki/Entropy_(computing)
http://www.merriam-webster.com/dictionary/entropy
http://www.merriam-webster.com/dictionary/entropy
http://en.wikipedia.org/wiki/Linear_congruential_generator
http://en.wikipedia.org/wiki/Linear_congruential_generator
http://en.wikipedia.org/wiki/Lagged_Fibonacci_generator
http://en.wikipedia.org/wiki/Lagged_Fibonacci_generator
http://en.wikipedia.org/wiki/Linear_feedback_shift_register#Uses_in_cryptography
http://en.wikipedia.org/wiki/Linear_feedback_shift_register#Uses_in_cryptography
http://www.stat.fsu.edu/pub/diehard/
http://en.wikipedia.org/wiki/Mersenne_prime
http://en.wikipedia.org/wiki/Quadratic_residuosity_problem
http://en.wikipedia.org/wiki/Quadratic_residuosity_problem
http://en.wikipedia.org/wiki/Discrete_logarithm_problem
http://en.wikipedia.org/wiki/Discrete_logarithm_problem
http://en.wikipedia.org/wiki/Decisional_Diffie%E2%80%93Hellman_assumption
http://en.wikipedia.org/wiki/Decisional_Diffie%E2%80%93Hellman_assumption
http://en.wikipedia.org/wiki/Next-bit_test
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
https://www.schneier.com/blog/archives/2007/11/the_strange_sto.html
https://www.schneier.com/blog/archives/2007/11/the_strange_sto.html

[http://blog.cryptographyengineering.com/2013/

09/the-many-flaws-of-dualecdrbg.html],

[Accessed: 2014-05-04]

[18] Dan Shumow and Niels Ferguson, August

2007, “On the Possibility of a Back Door in the

NIST SP800-90 Dual Ec Prng”, In: Rump

session, CRYPTO, [http://rump2007.cr.yp.to/15-

shumow.pdf], [Accessed: 2014-04-28]

[19] “DSA-1571-1 openssl -- predictable random

number generator”,

[http://www.debian.org/security/2008/dsa-1571],

[Accessed: 2014-05-04]

http://blog.cryptographyengineering.com/2013/09/the-many-flaws-of-dualecdrbg.html
http://blog.cryptographyengineering.com/2013/09/the-many-flaws-of-dualecdrbg.html
http://rump2007.cr.yp.to/15-shumow.pdf
http://rump2007.cr.yp.to/15-shumow.pdf
http://www.debian.org/security/2008/dsa-1571

