
Strong(er) Randomness

Elisabeth Hanning, Axel Pyk
Email: {eliha589,axepy855}@student.liu.se

Supervisor: Jan-Åke Larsson, {jan-ake.larsson@liu.se}
Project Report for Information Security Course

Linköpings university, Sweden

1 Abstract

John von Neumann, one of the first mathemati-
cians to extensively study random sequences, once
said: “Anyone who considers arithmetical methods
of producing random digits is, of course, in a state
of sin.”[1]

This report addresses the subject of random-
ness and random numbers, how they are created
and used in different areas of computer science.
Since randomness is a vital part of security this
report focus in, how random numbers used in
cryptography are algorithmically created, what kind
of threats exist against pseudo random number
generators and how it is possible to verify random-
ness.

The three main problems discussed are:

1. How are sequences of random numbers algo-
rithmically created?

2. Can a random number generator be verified?

3. What are the common attacks on pseudo ran-
dom number generators?

The method of work has been a literature study
of relevant articles in the area of randomness and
pseudo-random number generation.

2 Introduction

Random numbers are today used in many differ-
ent areas of computer science and especially in the

area of information security. It is for example used
for creating session keys, random IDs and white
noise. Another area within information security
where random numbers are vital is cryptography,
example for creating keys. Since there are a lot of
security mechanisms depending on random num-
bers it is important that they are truly random.
A problem occurs if the system depends on a weak
random number generator, one that an attacker can
manipulate or figure out the subsequent number.

The report gives first an introduction about what
a random number is and what is can be used
for. Then follows a more detailed analysis of how
random numbers are created using software and
external entropy sources. Regarding using soft-
ware to create random numbers a deeper study
of the Yarrow-160 design principles, incorporated
in many unix-like operating systems, including the
Linux kernel is performed, with an additional se-
curity analysis of the implementation of the Linux
Pseudo-Random Number Generator (LRNG).

The second part of the report is about verifying
a random number. The certifications that exist re-
garding random numbers and the common criteria
and standard test that are accepted is discussed.

In the third part of the report common attacks on
pseudo-random number generators are discussed.
These attacks can be divided in three different
types; direct cryptanalytic attack, input based at-
tack and state compromise extension attacks.

1



3 Background

Generating random numbers can be considered a
trivial task for humans as it has been performed
since ancient times. By rolling a fair dice or flipping
a fair coin it is impossible to predict the outcome,
meaning the result is truly random. But these tech-
niques are not efficient in combination with ma-
chines, and when computerizing the creation it be-
comes much more complicated. The problem arises
from the fact the computer operates by generating
output data from an input data, and as long the
computer is in the same state, the outcome will
be identical. This means that the computer is a
deterministic environment. But it is hard to find
non-deterministic environments in the nature due
to the fact laws rule the nature. True randomized
behaviour can first be found in quantum mechanics.

Deterministic randomness, also called pseudo
randomness are sequences generated by arithmeti-
cal methods that appears to be random, thereof the
‘pseudo’-prefix. The programs generating the num-
ber are called pseudo random number generators
(PRNGs). They trace back to the late 1940’s when
John von Neumann reinvented[1] the middle-square
method, as a complement to his work on the hy-
drogen bomb. PRNGs suffers from two downsides:
first, they are limited to a finite number generated
numbers, meaning they are periodic and second,
they are reviewable.

John von Neumann’s middle-square method,
traces back to the 13th century[2] and the algo-
rithm is very simple. Initially a seed is chosen
s0 = mid(σ,m), where σ for instance can be sec-
onds since noon, with a desired length of the out-
come m digits. Next generated number is given by
sn+1 = mid(s2n,m), with condition; if len(sn) < m,
leading zeroes is added to sn. The algorithm’s
period roots from number of digits in the desired
output m and limits the outcome to 2m generated
numbers.

To obtain true randomness within a computer it
is possible to use a so called, True Random Num-
ber Generator (TRNG). TRNGs generates random
numbers from white noise by physical processes,
such as thermal noise, the photoelectric effect and
other quantum phenomena.

“Although randomness can be precisely defined
and can even be measured, a given number cannot

be proved to be random. This enigma establishes
a limit to what is possible in mathematics.” -
Gregory J. Chaitin[3].

Consider two numbers:{
X1 = 1010101010
X2 = 0110110011

where X1 is ’10’ duplicated five times and X2 is
generated by tossing a coin ten times. If we would
ask a person what they think next digit inX1 would
be, most would say ’1’. Does that mean X2 is ran-
dom and X1 is not? No. The provenance of the
series does not certify that it is random. Both val-
ues occurs with a probability of 2−10, meaning it
should not be more surprising to acquire series with
patterns than series without patterns. The conclu-
sion contradicts the possibility of distinguishing the
random from the orderly and more paradigms are
necessary to distinguish randomness.

There are three main approaches to achieve algo-
rithmic randomness according to Fiala, Kratochvil
& Koubek [9]:

1. The incompressibility paradigm,

2. The measure-theoretic paradigm, and

3. The unpredictability paradigm.

3.1 The incompressibility paradigm

1965 introduced A. N. Kolmogorov a property of all
infinite random sequences, algorithmically random
sequences, called compressibility/complexity[4].

Kolmogorov compressibility. Given a binary
sequence s ∈ {0, 1}n, define the plain Kolmogorov
compressibility of s as C(s) = min{|τ | : U(τ) = s}.
The basic facts concerning C are that : (i) the
choice of U matters only an additive constant in
the theory and (ii) for all s, C(s) <= |s|+O(1).

Which indicates Kolmogorov defined the ran-
domness as the entropy H of a sequence with length
K, where the randomness of s increases as the en-
tropy H(s)→ K.

This tells us that iif the sequence s not can be
represented with a sequence smaller then the length
of s, K(s) >= |s|, it is so called Kolmogorov ran-
dom or incompressible.

2



X1 can be represented as ”10”∗5, which is repre-
sented by a string with length 6 and is therefore not
Kolmogorov incompressible. X2 can not be rep-
resented in another way than 0110110011 and is
therefore Kolmogorov incompressible.

The problem with Kolmogorov incompressive-
ness is, it is incomputable.

3.1.1 Entropy and randomness

As mentioned in 3.1, indicated Kolmogorov ran-
domness as the entropy of a sequence. This means
it is possible to get an indication about the ran-
domness of a word.

If a 32-bit word is completely random, its entropy
is 32 bits. But if the word only takes four different
values, each with a possibility of 25%, the entropy
is 2 bits. This means the entropy does not measure
how many bits there are in a word, it is a measure
of the uncertainty of the value.

If an attacker finds out that the 32-bit word con-
tains 18 zeros and 14 ones, there are about 228.8

possible values, compared to 232 earlier. This lim-
its the entropy to maximum 28.8 bits.

3.2 The measure-theoretic paradigm

1966 published the Swedish mathematician Per
Martin-Löf an article called ”The definition of
Random Sequences” where he defined random se-
quences as followed[9]. His definition is represented
by the measure-theoretical paradigm.

Martin-Löf randomness. A given sequence s ∈
{0, 1}n is Martin-Löf null if there is a uniformly
c.e. sequence {Ui}i∈n such that µ(Un) < 2−n.
Given iff s ∈ 2n is not Martin-Löf null, s ∈ 2n is
Martin-Löf random.

This indicates Martin-Löf defined a random se-
quence as a sequence with no “effectively rare prop-
erties”. By effectively rare properties he states a
random sequence shall not have any property that
is uncommon, for instance, the distribution should
be uniform between zeroes and ones in an infinite
sequence.

3.3 The unpredictability paradigm

Probably the most common saying when talking
about randomness, is to characterize a sequence as

random if it is impossible to predict the next out-
come. One way to define this is to use a martingale,
an class of betting strategies.

Definition. A martingale is a function d : 2<n →
<+ that satisfies for every s ∈ 2<n the averaging
condition.

2d(s) = d(s0) + d(s1)

By denoting the martingale as a betting strat-
egy, the function d is assigning a proportion of the
capital to bet on the string s.

These three paradigms defines randomness
and makes it is possible to create and test ran-
domness. By applying them when designing the
programs generating random numbers within a
deterministic environment, it should be possible to
create sequences of pseudo random numbers.

4 Pseudo Random Number
Generators

A PRNG is a program in a deterministic environ-
ment with the task of creating sequences of pseudo
random numbers. L’Ecuyer defines a Pseudo Ran-
dom Number Generator as following[6]:

Definition. A (pseudo)random number generator
is a structure Γ = (S, s0, T, U,G), where S is a fi-
nite set of states, s0 ∈ S is the initial state, the
mapping T : S → S is the transition function, U
is a finite set of output symbols, and G : S → U is
the output function.

A PRNG’s state sn always originates from
s0, also known as the seed, by recurrence
sn = T (sn−1), n ∈ N. The output in step n is given
by un = Γ(sn). Since S is finite, the sequence sn is
periodic, which leads to sp+n = sn, and up+n = un
where p is the period length.

Properties required of pseudo random
number generators. PRNGs must be secure
against internal and external attacks. When
designed, implemented and used properly, an at-
tacker with complete knowledge over the algorithm
and massive computer power still should not be
able to predict the state of the PRNG. Below is
the most basic requirements listed, using common
terminology.

3



• Pseudo randomness. The generator’s output
looks random to an outside observer.

• Forward security. If an attacker who learns
the internal state of the generator at a spe-
cific time, (s)he does not learn anything about
previous outputs.

• Break-in recovery / backward security. If an
attacker learns the internal state of the gen-
erator at a specific time, (s)he does not learn
anything about future outputs of the genera-
tor, provided that sufficient entropy is used to
refresh the generator’s state.

There are different types of PRNGs with dif-
ferent intentions. This report will focus on the
Yarrow-160 design, widely used in unix-based
operating systems to achieve cryptographic secure
PRNGs and an analysis of the implementation
of Yarrow-160 in the Linux kernel, in this report
called LRNG. To get a perspective a smaller
example of a PRNG not designed to be used in
cryptography is provided and why it is weak.

First an example of an insecure type of PRNGs
and why it is insecure.

4.1 Linear Congruential Generator

By using linear equations when generating random
sequences it is possible to create a PRNG with
the advantages of being fast and require minimal
memory to retain state, often not more than 32 or
64 bits. The programs generating the sequences
are called Linear Congruential Generators (LCGs).
The downside are they are weak and not suitable
for cryptography due to the serial correlation. The
transaction function T in LCGs is defined as fol-
lowed:

sn = (asn−1 + c)mod m m, a, c ∈ N

Below is an example to give an brief insight in
how Java’s standard PRNG works and why it is
weak.

4.1.1 java.util.Random

Java’s standard PRNG is found in the Random-
class, located in Java’s utilities package, called

java.util[7]. The PRNG operates with the preci-
sion of 48 bits, given by m in the source code, of
the seed with static constants in the transaction
function T . To ensure the user never can view the
PRNG’s state sn, it has a limit of 32 bits inte-
gers as maximum outcome. This means the 48 bit
seed must be converted to a 32 bit integer, which
is solved by bit shifting the seed to the right 16
bits. By bit shifting the seed, one generated inte-
ger is not enough to determine the seed. But if an
attacker would get hold of two generated numbers,
(s)he easily can brute-force the seed, and eventually
be able to regenerate all previous generated keys,
as well as all future numbers. Since this severe
problem violates the forward security requirement
and the backward security requirement, it is ob-
vious java.util.Random is not designed to be used
within cryptography. Here one of PRNGs down-
side becomes obvious, the code are completely re-
viewable and since the PRNG use a linear equation
reverse engineering is possible, and fairly easy.

4.2 Reseeding techniques

It is obvious, LCGs are not supposed to be used in
cryptography, rather for creating white noise. But
there are design techniques to make PRNGs more
secure. One approach is to collect information from
non-deterministic sources and use the gathered in-
formation to regularly reseed the PRNG, making
it harder for an attacker to distinguish the internal
state. The information can be gathered by moni-
tor interruptions of the mouse and keyboard, disc-
and network activities and other non-deterministic
sources.

There are different design principles to accom-
plish safer random number generators using re-
seeding, but this report discuss the Yarrow-160,
a common design used in many systems, and its
successor; Fortuna. Both rely on external non-
deterministic sources for the entropy accumulation.

4.2.1 Design philosophy

When creating PRNGs using entropy accumulation
to reseed the internal state, there are two basic
design approaches:

The first approach assumes the possibility
of accumulating and process enough entropy from

4



the samples to provide at least one bit of real
entropy per output. If more output is required
than entropy collected the PRNG stops and waits
until the mechanism has regain stability. This
means in this design, the entropy is accumulated
to be immediately reused as output and the
PRNG can be seen as a buffer, containing entropy
accumulated from different sources. The strength
of this approach is when implemented properly
and a sufficient stream of entropies, there is a
possibility of providing unconditional security.

The second approach is to accumulate enough
entropy to initially put the PRNG in a un-
predictable state, and the purpose of continue
accumulating is to recover if the key is com-
promised. The strength of this approach is
the performance gained compared to the first
approach, to the price of security.

5 Yarrow-160 design

The Yarrow-160 design was published 1999
by Bruce Schneier, John Kelsey and Niels
Fergusson[15]. The result of their report became
design principles to PRNGs, that are easily imple-
mented and better resisting existing attacks and
the design is widely used in PRNGs today. The
algorithm was developed using an attack-oriented
process with attacks in mind from the beginning.

The goal of Yarrow-160 was not to increase the
number of security primitives rather leverage the
existing ones. To achieve this Yarrow-160 rely on
one-way hash functions and block ciphers as much
as possible.

5.1 Components

The Yarrow-160 design is divided into four indepen-
dent components to fit as many systems as possible.

The components are defined as followed:

1. An Entropy Accumulator collecting and
storing samples from entropy sources in two
pools.

2. A Reseed Mechanism which periodically re-
seeds the key with new entropy from the pools.

3. A Generating Mechanism generating
PRNG outputs from the key.

4. A Reseed Control determining when a re-
seed is to be performed.

Figure 1: Generic block diagram of Yarrow-160[15]

The Entropy Accumulator collects entropy
sources into two pools; a fast pool which reseeds
the key frequently to reduce the duration of possi-
ble key compromises and a slow pool which provides
rare, but conservative reseeds of the key to ensure
the security of the reseed even when entropy esti-
mates are optimistic.

Both pools of Yarrow-160 uses the cryptographic
hash function SHA-1, designed by United States
National Security Agency (NSA) with the output
limit of 160 bits, thereof Yarrow-160. Because of
the output limit of 160 bits, naturally no more than
160 bits of entropy can be collected in the pools.
This determines the strength of the design.

To be able to distinguish when to reseed in the
Reseed Control, Yarrow-160 performs an entropy
estimation to determine how much work it would
take an attacker to guess the current content
of the pools. This is performed by estimating
each entropy collected by the accumulator and
summarizing the result.

The Reseed Mechanism performs the reseeding
process of the pools.

When the fast pool is to be reseed it uses the
current key and the hash of all inputs to the pool
since the last reseed when generating a new key.

When the slow pool is to be reseed it uses the
current key, the hash of all inputs to the fast pool
and the hash of all inputs to the slow pool when
generating a new key.

After a reseed is performed the pool is restored
and cleared of all information.

The Generating Mechanism generates the
next output by turning the block cipher into
a stream cipher and encrypting the key with a
counter using a symmetric-key block cipher Triple
Data Encryption Algorithm (TDEA) (also
called Triple DES and 3DES), displayed below.

5



Figure 2: Generating Mechanism in Yarrow-160[15]

The Reseed Control determines when to reseed
a pool, either when an client asks for a reseed or
when the entropy estimation considers it is neces-
sary. The process is enabled when the estimation
entropy is over a threshold value; 100 bits of one
source for the fast pool and 160 bits of two sources
for the slow pool.

5.2 Variants of Yarrow-160

Different variants of Yarrow-160 has been de-
vised with different hash functions (SHA-2,
Davies–Meyer & Blowfish/AES/DES) and block
ciphers (Blowfish, AES, 3DES) to strengthen the
design or improve the performance.

Many operating systems incorporate variants
of the Yarrow-160 design in their standard PRNG,
and among them is the Linux kernel. To distin-
guish the security of the Yarrow-160 design, it is
necessary to analyse an existing implementation.
This report analyse the Linux Pseudo-Random
Number Generator, in this report called LRNG.

5.3 Security analysis of LRNG

The Linux kernel is an open source project devel-
oped in the last 15 years, by a group led by Linus
Torvalds and the kernel is the common element in
various Linux distributions, on all types of devices.
The kernel has two devices handling the creation
of random numbers: /dev/random and /dev/u-
random, based on the Yarrow-160 design.

/dev/random outputs more secure random
numbers, and is based on the first design philos-
ophy, mentioned in 4.2.1. This means the LRNG
block the user until it has regain stability, if not
enough entropy is accumulated.

/dev/urandom outputs less secure random
numbers and uses the second design philosophy,

mentioned in 4.2.1, making the PRNG never to
block an user.

Structure. Since the LRNG has two inter-
faces, it has an additional pool. The structure
is as followed: A primary pool (size 512 bytes),
provides entropy to two smaller pools when they
do not have enough entropy:

A secondary pool (size 128 bytes), provides en-
tropy to the secure device /dev/random.

A urandom pool (size 128 bytes), provides
entropy to the less secure device /dev/urandom.

Accumulated entropy is primarily added into
the primary pool, if full into the secondary pool,
but never the urandom pool. Whenever entropy is
extracted from a pool, it is fed back into the pool
again.

Because the about 2500 lines of code are viewable,
its security assumable should be easily analysed.
But the code is not well documented and there is
no clear description of the implemented algorithm.

Zvi Gutterman, Benny Pinkas and Tzachy
Reinman published 2006 a security analysis based
on the LRNG, version 2.6.10 of the Linux kernel,
which was released on December 24, 2004[27]. The
analysis focused on four aspects:

1. A cryptanalytic attack on the forward security
of the LRNG

2. An analysis of the entropy added by system
events

3. Observations on the insecurity of the LRNG in
the OpenWRT Linux distribution for routers

4. Observations on security engineering aspects
of the LRNG, including a denial-of-service at-
tack

5.3.1 Forward Security

The LRNG computes an output from a pool after
the state of the pool is updated. Given this, it
is possible to compute the output extracted from
the pool at time t − 1, if the state of the pool at
time t is known. This is a violation against the
forward requirement, since an attacker who knows

6



the internal state of the pool at time t, can compute
the last output of the LRNG until the last time the
pool received an entropy update.

5.3.2 Entropy Measurements

The analysis found a severe bottleneck in LRNG,
based on the entropy estimation performed in
Yarrow-160. On a Linux machine only accumu-
lating entropy from the disc activity, there was an
average delay of about 15 minutes between pairs
of events which had a positive contribution of the
entropy count, with an average size of 16 bits. Due
to the low phase of positive contribution of the en-
tropy count, this severely affects the blocking, more
secure interface /dev/random.

5.3.3 Analysis of the OpenWRT Linux Dis-
tribution

Operating systems in routers are limited by their
number of entropy sources, since they do not have a
mouse, keyboard or hard drive (flash cards cannot
be used for entropy accumulation) and the LRNG
accumulate entropy from the network devices. The
state of the LRNG in the OpenWRT Linux distri-
bution resets on every reboot to a predictable value
(the time of day and a constant), making the LRNG
very weak.

5.3.4 Security Engineering

Denial of service. Since there is no limit on the
number of bits an user can read from the devices
per time unit, denial of service attacks, both in-
ternal and external, are a severe security problem
against the LRNG. Below is two examples on denial
of service attacks against the LRNG, one internal
and one external.

By requesting the secure interface, /dev/random,
to generate more bits than LRNG accumulate, an
attacker can block other users and successfully per-
form a denial of service attack.

A possible remote denial of service attack would
be to open many TCP-connections against the host.
For each connection, a TCP-syn-cookie is gener-
ated, which requires 128 bits, generated by the
less secure interface, /dev/urandom. The urandom
pool is fed new entropy from the primary pool and
since the primary pool block the user if its entropy

is low, it is possible to perform a successful denial
of service attack remotely.

Solution. Limiting the usage per time unit
reduces the possibility of a denial of service attack
against the LRNG.

Falsely fed the LRNG. Since the LRNG
adds the accumulated entropy to the secondary
pool when the primary pool is full, a possible
attack against the LRNG is to falsely fed it and
directly affect the generator’s output.

Solution. Separating the input and the output
in the LRNG by flushing the primary pool when
full, make it harder for an attacker to affect the
output.

Guessable passwords. The initial usage of
a rebooted system is usually for the user to provide
a password, or a username- password pair. The
problem arises from the fact that the LRNG use
keyboard type-values as entropy. Diskless systems,
as mentioned in 5.3.3, is unable to restore the
LRNG from a saved state and set by a predictable
function. This means the first state of the LRNG
might contain the user password and since the
initial state is predictable it is possible for an
attacker to brute-force the password by comparing
to the initial output of the LRNG.

Solution. Entropy collected from keyboard can
be replaced by not using type-values, rather the
timings of an event.

State reveals previous output. Mentioned
in 5.3.1, the LRNG computes the output after
updating its state.

Solution. By computing the output before
updating the state, the LRNG satisfies the forward
security requirement and an attacker cannot
compute the last output by using the state of the
LRNG.

Initialized state predictable. Mentioned
in 5.3.3, the LRNG becomes severe weakened if
the initial state is predictable.

Solution. The design always force the imple-
mentation to save the state before reboot, to be
used after reboot.

The creators of Yarrow-160, Schneier and Fergus-
son was aware about these problems even before

7



the analysis was released, since they pulished
an improved design principle to accompish even
safer PRNGs 2003. This design is called Fortuna.
To get an understanding in why Fortuna is an
improvment of Yarrow-160, it is necessary to
understand how it works.

6 Fortuna design:
Yarrow-160 improved

Fortuna is the successor of Yarrow-160 and is de-
vised by Bruce Schneier and Niels Fergusson. It
was published in their book Practical Cryptogra-
phy, (later renamed Cryptography Engineering), re-
leased 2003, as an improvement of Yarrow-160.

Fortuna is not as incorporated in operating
systems as Yarrow-160 but Microsoft Windows
uses the Fortuna design in their standard PRNG.
Patches exist[19] for most operating system to in-
corporate it.

6.1 Components

The Fortuna design has many similarities to
Yarrow-160, and the structure can be divided into
three independent components[16].

1. A Generating Mechanism taking a fixed-
size seed and generates arbitrary amounts of
pseudorandom data.

2. A Entropy Accumulator collecting and
pooling entropy from various external non-
deterministic sources and reseeds the Gener-
ator.

3. A Seed File Control which ensures the
PRNG can generate output even if the system
just been booted.

The Generating Mechanism convert a fixed-size
state to arbitrary long outputs by using a AES-like
block cipher. The internal state of the generator is
a 256-bit block cipher key and a 128-bit counter,
meaning the generator is basically a block cipher
in counter mode or a so called stream cipher. To
prevent the system if the state is compromised, the
generator generate an extra 256-bit pseudorandom
sequence to use as the next key for the block cipher.

To ensure the outcome is statistically random, For-
tuna limits the maximum size of any request to 216

blocks. This increases the forward security, a docu-
mented problem in Yarrow-160, mentioned in 5.3.4.

The Entropy Accumulator collects real
random data from various unique sources to use
when reseeding the PRNG. As in Yarrow-160,
such sources can be timings in keystrokes, mouse
movements, mouse clicks and responses from disk
drives, printers. There is no problem if an attacker
can predict or copy the collected data from a
couple sources, as long it is not all of them.

To be able to reseed there has to be enough
events stored in a pool, that an attacker cannot
enumerate the values since it has been destroyed.
Fortuna accumulates entropy into 32 pools,
P0, P1, ...P31, compared to Yarrow-160’s two and
distributes them evenly in a cyclical fashion. The
generator is reseed every time P0 is long enough,
and using the reseeds identification number r, pool
Pi is included in the process if r is a divider of 2i

and then cleared. This prevents the mechanism
if an attacker falsely fed the system, mentioned
in 5.3.4, and if compromised makes the system to
recover fast.

The Seed File Control ensures the mecha-
nism is useable after a reboot. The seed file is a
secret separate file containing collected entropy.
After a reboot the PRNG reads the file to regain
stability, then clears and rewrites the file. To
ensure the security of the file it is necessary
for the hardware and the operating system to
support fully atomic and permanent file updates.
This prevents the initial state to be predictable,
mentioned in 5.3.4.

6.2 Comparison to Yarrow-160

The main design flaw in Yarrow-160 compared to
Fortuna was the entropy estimation, mentioned in
5.3.2, used to determine when to reseed, and the
problem to get it right in all situations. An attacker
can falsely feed and affect the estimation to force
the PRNG to reseed premature, making the sys-
tem reseed the mechanism with less information, so
an attacker’s gathered information is not destroyed
and thereof could compromise the system. This is
solved by Fortuna’s simple but brilliant partition

8



part when reseeding.
As it can provide security after reboot, the seed

file in Fortuna also can imperil the security of the
system and be used by an attacker maliciously.
Compared to Yarrow-160 which make the client
wait until the PRNG has regain stability. For each
operating system incorporated in there is a need
for an investigation of the particular platform to
ensure the security.

3 March 2014 was the first analysis published
based on the Fortuna design by Yevgeniy Dodis,
Adi Shamir, Noah Stephens-Davidowitz, and
Daniel Wichs. The analysis provides some theoret-
ical modeling for entropy collection and stated the
Fortuna design to be very good, but not optimal.

Even if the PRNGs are designed to provide
high security, there is a need to verify they ac-
tually provide it. How verification of PRNGs is
performed is discussed in the next chapter.

7 Verifying a random number

The importance of random numbers in computer
science has been discussed as well as various dif-
ferent ways of creating sequences of pseudo ran-
dom numbers. However the randomness used, es-
pecially in information security, needs to hold a
certain standard. The security may very likely oth-
erwise be compromised. It is therefore important
when choosing or designing a random number gen-
erator, either a PRNG or TRNG, that the ran-
domness can be verified in some way. This can be
done as discussed further on using standard test,
common criteria or certifications. The different ap-
proaches used vary depending if the number has
been created by a PRNG or a TRNG. [11]

7.1 Standard test

Random number generators can be tested in dif-
ferent ways. The test methods can be divided in
to three different areas, statistical, which is most
used, transformation and complexity. A mix of the
three methods can also be used. Which tests that
is suitable for carrying out depends on if a PRNG
or TRNG is tested. There is no test that is de-
fined to be complete, and most often more than

one test is carried out for determining randomness.
The tests are constantly improved and therefore the
quality of random number generator is increased.
This is because it sets more stringent requirement
on the generators to pass the tests. This is however
needed since not only the test are getting more so-
phisticated but also the attacks on random number
generators is getting more advanced. [12]

7.1.1 X2-test

The X2-test is a classical statistical test. The ex-
pected distribution pattern of output data creates
a null hypothesis. The null hypothesis is then com-
pared with the distribution pattern of the actual
output. If the difference of the two sets of data,
X2, is lower then a predefined limit the hypothesis
hold and the data is chi-squared distributed. The
sum X2

s is calculated as follow:

X2 =
∑n

i=1
(Oi−Ei)

2

Ei

Oi is the observed result, Ei is the expected result
and n is the sample size. [10]

The chi-square test can be used to deter-
mine the statistical properties of both PRNG and
TRNG[11]. This test is also the foundation for a lot
of other tests regarding randomness, example the
Diehard test discussed in the next section. When
this test is used for verification of a PRNG the null
hypothesis often is that the PRNG is a random
number generator that generates uniform random
numbers.

7.1.2 Die-hard test

The mathematician George Marsaglia developed
another statistical test for randomness in 1995. It
is named the Diehard Battery of Test of Random-
ness and is composed of several smaller independent
tests. They examine if they random number gen-
erator is good enough to pass the test as a whole.
It can be used for TRNG, but it is mostly used for
PRNG. The smaller test are evaluated with a p-
value from 0 to 1, where a 0 value indicate that the
test was successful in generating a random value.
[11]

7.1.3 Transformation test

A test for verifying randomness can be designed
using transformation. One of the first to apply this

9



was the mathematician Subhash Kak. He measured
the randomness in a sequence of random numbers
using the Walsh-Fourier transformation.

”A sequence shall be said to have no pattern or be
random if the number of independent amplitudes in
the Wash-Fourier transform is equal to the length
of the sequence itself, i.e., 2k.” - Subhash Kak

Using the Discrete Fourier Transform on a binary
sequence is done as follow according to NIST. [14]

1. Each binary input, ei is put in the equation:
xi = 2ei − 1

2. A discrete Fourier Transform is then applied
on X = x1, x2, . . . , xn. A complex sinusoid is
then created, S = DFT (X), which character-
istics depend on the frequency and length of
the input.

3. A subsequent of S, S′ is taken and calculated
M = modulus(S′). This produces a series of
peaks.

4. A value, T is calculated using a predefined
threshold value.

5. The number of peaks above the value T is cal-
culated as N0 and the number of peaks below
T as N1.

6. This to numbers are then used in calculating
d

d = (N1−N0)√
n(.95)(.05)/4

Where n is the length of the bit string e =
e1, e2. . . , en. The value of d will be to low if
the distribution of peaks below and above T is
too uneven.

7. A value p is the calculated: p = erfc(|d|/
√

2),
if the value of p ≥ 0.01 the input sequence is
random.[12]

7.2 Certification

Deciding if a PRNG or TRNG is producing suffi-
ciently random numbers can be done using tests as
described. Though it exist easier ways to verify the
randomness by considering what more knowledge-
able parties regards as sufficiently random.

One organization whose opinion about computer
security is highly regarded is NIST, National Insti-
tute of Standards and Technology. They are more
thoroughly discussed further on. Another approach
is to look at what is currently used most common
by others and hold this as a standard. This is what
is done when PRNG is classed as a CSPRNG.

7.2.1 CSPRNG

A CSPRNG, Cryptographically secure pseudo ran-
dom number generator, is a PRNG that is used for
cryptography. Not every PRNG can be used for
cryptography since the security demand is rather
hard. This is because the CSPRNG must be able
to resist cryptanalysis, since this is always a threat
against cryptography. For a CSPRNG it is ex-
tremely important that the seed is kept secret. This
is because the PRNG in cryptography create for ex-
ample keys for encryption or nonce/IV for block ci-
phers. If the random number is not random enough
and an attacker then can determine the next num-
ber, the attacker can also gain the key or the start-
ing point of the cipher and then the encryption will
not be secure[26].

7.2.2 NIST

NIST, National Institute of Standards and Technol-
ogy, belongs to United States department of Com-
merce. It has six different laboratories and the In-
formation Technology Laboratory (ITL) is one of
them. One of the areas covered by ITL is com-
puter security. Therefore a lot of research for cre-
ating test and tools in cryptography is made, and
cryptography is as previously discussed dependent
on strong randomness[20].

NIST offer many different test suits for random-
ness. They also define the standards regarding in-
formation security. This includes many things, ex-
amples are which hash function or encryption algo-
rithm to use. NIST also decide when a standard is
out of date and a new one is needed.

There recommendations of standards are often
followed, voluntarily or involuntarily in prepro-
grammed applications. They have however got crit-
ics which do not like that they are an organiza-
tion linked to the authorities. The critic has in-
creased after it has been revealed that one of the
standards regarding a recommendation for random

10



number generator that contained a backdoor used
by the NSA[21]. NIST have very recently removed
there recommendation regarding this specific ran-
dom number generator[22].

8 Attacks

Even if the random number generator is a CSPRNG
or recommended by NIST it can still be the focus of
an attack. The chance of it succeeding is however
then smaller comparing to using a weaker PRNG.
The following part of the report will be concentrat-
ing on different attacks on PRNGs.

It exist several attacks on a pseudo random num-
ber generator and they can be divided in to three
different groups depending on their characteristics.
The groups are Direct Cryptanalytic Attack, Input
Based Attack and State Compromise Extension At-
tacks and they are all discussed below.

The attacks have in common that they aim at
being able to distinguish between an output from
a PRNG and a random output. Thereafter the at-
tacker wants to be able to determine the next num-
ber to be generated or figure out previous numbers.
This can be done by either generating the input and
therefore changing the entropy or by knowing the
entropy.

If an attacker can determine the next number to
be created by a pseudo random number generator
the generator is no longer secure. The security of
the system that the PRNG is part of is then com-
promised even if the rest of the system is secure the
system as a whole is not. It is therefore important
to have a PRNG that can withstand attacks.

8.1 Direct Cryptanalytic Attack

This attack is when an attacker is able to directly
distinguish between an output from a PRNG and
a random output. The attack can be carried out
on most PRNGs but not the one where the output
is not shown as for example when triple-DES keys
are generated.

8.2 Input Based Attack

This attack is when an attacker knows or can
control the input to the PRNG and thereafter
cryptanalyze the output. The attacker can then

remove existing entropy of the PRNG and replace
it with a known inputted state. The attack can
be divided in three different groups depending on
what is known about the input[23].

Known input. Some of the characteristic of
the input example the length is known to the
attacker.

Chosen input. The input can be a message
such as a password or pin-code and this comes into
the PRNG as entropy samples.

Replayed input. This is similar to the cho-
sen input but the attacker chooses to put the same
input many times.

8.3 State Compromise Extension
Attacks

This attack tries to take advantages of temporary
security breaches for example an inadvertent leak.
The attack is achievable because the eternal state
S becomes known. This can be done when the
generator starts up again and therefore the entropy
becomes insufficient and the attacker can make
an initial guess of S. Knowing the state S can
give the attacker information about future output
or being able to recover previous output. The
attack can be further divided in to four different
approaches:

Backtracking Attacks. This is when the
state S is used to figure out the previous output of
the PRNG.

Permanent Compromise Attacks. This
attack is permanent because then all future as well
as all previous output can be determined when S
is known.

Iterative Guessing Attacks. The attack
uses the knowledge of state S at time t and the
PRNG outputs over the time T and thereafter
guesses the state S′ at time t+ T .

Meet-in-the-Middle Attacks. This attack
is a combination of the previous two, Iterative
Gussing and Backtracking. Knowing the state S
at time t and state S′ at time t+ T also allow the

11



attacker to figure out the state S∗ at t+T
2 [20].

8.4 Known real attacks

There have been several examples of attacks against
pseudo random number generators, which have suc-
ceeded. They have resulted in that the security of
the system has been compromised. Often is the un-
derlying cause insufficient entropy, which makes it
possible for the attacker to guess the initial state.

Playstation3, Microsoft Windows, OpenSSL and
Netscape are just some examples of products that
have had deficient PRNGs and have therefore been
able to be attacked.

In the case of Netscape it was an early version
of the web browser that used a PRNG to create a
SSL, Secure Socket Layer. The PRNG used three
variables as a seed: the time of day, the process
ID, and the parent process ID. Neither one of these
three are hard to figure out for a determined at-
tacker. It was therefore classed unsecure and got
corrected to later versions[24].

OpenSSL up to versions before 0.9.8g-9 on
Debian-based operating systems had one impor-
tant but difficult-to-understand source code line
commented out, which led to insufficient entropy
gathering and to concrete attacks on TLS and SSH
protocols[25].

NSA was claimed of implementing a backdoor
in the NIST-recommended CSPRNG, Dual Ellip-
tic Curve Deterministic Random Bit Generator, or
Dual EC DRBG. The backdoor was found in 2007,
but was recommended by NIST until 2014, after
Reuters reported on the existence of a $10 million
deal between RSA and NSA to set Dual EC DRBG
as the default CSPRNG in BSAFE and a public
comment and review.

9 Conclusions

Due to the vitality of randomness in computer sci-
ence and information security, the importance of
an unpredictable creation of random sequences is
clear. Many systems rely on the unpredictability
and when it is compromised, the systems become
vulnerable, making the PRNGs attractive targets.

As the PRNG more and more rely on non-
deterministic information within the determinis-
tic environment to create more secure and better
pseudo random number generators, it is obvious it
never possible to create true randomness. So when
using systems with higher security levels it is rec-
ommended to use TRNGs.

The design principles of Fortuna, compared to
Yarrow-160 is recommended in a security manner,
due to their simple but brilliant idea of partition-
ing the entropy into multiple pools and use it in
different rates. It would not be surprising if the
Fortuna design appears in operating systems de-
fault PRNGs in the future.

When reviewing the open source code of the
LRNG, the lack of documentation in the code is no-
ticeable compared to other files in the open source
project. Since the ability to review source code
is a vital part of the development in open source
projects, the PRNG would benefit by being docu-
mented, and avoid security by obscurity.

The output of a PRNG can be tested, in different
ways, to verify randomness. This is however time-
consuming and a faster way is to listen to recom-
mendation from more knowledgeable parties. One
organization that has a lot of influenced over rec-
ommendations is NIST.

There is always the threat of attacks against a
random number generator. It exists many differ-
ent kinds of attacks and they can be divided into
different groups depending on there characteristics.
The characteristic can be what kind of information
the attacker aim to get or the approach of the at-
tack. It is always important that the randomness
used in a system holds a certain standard. Other-
wise the security of the system may very likely be
compromised

12



References

[1] John von Neumann, 1951, Various techniques
used in connection with random digits. Monte
Carlo Method, National Bureau of Standards
Applied Mathematics Series vol. 12 (Wash-
ington D.C.: U.S. Government Printing Of-
fice 1951): pp. 36-38,

[2] Ivar Ekeland, 1996, The Broken Dice, and
Other Mathematical Tales of Chance. Univer-
sity of Chicago Press, ISBN 978-0-226-19992-
4.

[3] Gregory J. Chaitin, 1975, Randomness and
Mathematical Proof. Scientific American 232,
No. 5 (May 1975), pp. 47-52,

[4] A. N. Kolmogorov, 1965, Three approaches
to the quantitative definition of information.
Problemy Perdachi Informatsii, Vol. 1, No. 1,
pp. 3-11, 1965,

[5] David J.C. MacKay, 2003, Information The-
ory, Inference, and Learning Algorithms.
Cambridge University Press 2003, Vol. 1, No.
1, pp. 2, 1965,

[6] Pierre L’Ecuyer, 1975, Pseudorandom Num-
ber Generators. Encyclopedia of Quantitative
Finance, R. Cont, Ed., in volume Simulation
Methods in Financial Engineering,

[7] Oracle USA, 2011, java.util.Random. Java SE
Developer Documentation,

[8] Oracle USA, 1995-2007, java.util.Random
6b14 source code. Java SE Developer Docu-
mentation,

[9] Jiri Fiala, Vaclav Koubek, Jan Kratochvil,
2004, Mathematical Foundations of Com-
puter Science. 29th International Sympo-
sium, MFCS 2004 Prague, Czech Republic,
August 22-27, 2004 Proceedings.

[10] John H. McDonald, 2009, Chi-square test for
goodness-of-fit.

[11] T.Nijm, 2002, Slumptalsgeneratorer för
säkerhetssystem,

[12] Andrew Rukhin , 2010, A Statistical Test
Suite for Random and Pseudorandom Num-
ber Generators for Cryptographic Applica-
tions,

[13] Terry Ritter , 2002, Randomness Tests: A
Literature Survey,

[14] NIST , 2010, National Institute of Standards
and Technology,

[15] Bruce Schneier, John Kelsey, and Niels Fer-
guson, 1999, Yarrow-160: Notes on Design
and Analysis of the Yarrow Cryptographic
Pseudorandom Number Generator,

[16] Bruce Schneier and Niels Ferguson, 2003,
Cryptography Engineering: Design Principles
and Practical Applications,

[17] Apple Inc., 2010, Apple Inc. Open Source
Browser,

[18] Apple Inc., 2012, Apple Inc. iOS Security,

[19] Jean-Luc Cooke, 2005, Fortuna Random-
2.6.12-rc2-mm3.patch,

[20] Bhatnagar, V Cheruvu,C, 2007, Pseudo Ran-
dom and Random Numbers,

[21] Kim Zetter, 2013, How a Crypto ’Backdoor’
Pitted the Tech World Against the NSA,

[22] Larry Seltzer, 2014, NIST finally dumps
NSA-tainted random number algorithm, .

[23] Bruce Schneier, 1998, Cryptanalytic Attacks
on Pseudorandom Number Generators,

[24] Goldberg, I. Wagner, D, 1996, Randomness
and the Netscape Browser,

[25] National Vulnerability Database, 2008, Vul-
nerability Summary for CVE-2008-0166,

[26] Carl Ellison, 2007, Cryptographic random
numbers,

[27] Zvi Gutterman, Benny Pinkas and Tzachy
Reinman, 2006, Analysis of the Linux Ran-
dom Number Generator,

13


	Abstract
	Introduction
	Background
	The incompressibility paradigm
	Entropy and randomness

	The measure-theoretic paradigm
	The unpredictability paradigm

	Pseudo Random Number Generators
	Linear Congruential Generator
	java.util.Random

	Reseeding techniques
	Design philosophy


	Yarrow-160 design
	Components
	Variants of Yarrow-160
	Security analysis of LRNG
	Forward Security
	Entropy Measurements
	Analysis of the OpenWRT Linux Distribution
	Security Engineering


	Fortuna design: Yarrow-160 improved
	Components
	Comparison to Yarrow-160

	Verifying a random number
	Standard test
	X2-test
	Die-hard test
	Transformation test

	Certification
	CSPRNG
	NIST


	Attacks
	Direct Cryptanalytic Attack
	Input Based Attack
	State Compromise Extension Attacks
	Known real attacks

	Conclusions

