
Deduplication as an attack vector

Marcus Einar Carl-Henrik Eriksson
Email: {marei265,carer706}@student.liu.se

Supervisor: Jan-Åke Larsson, {jan-ake.larsson@liu.se}
Project Report for Information Security Course

Linköpings Universitet, Sweden

Abstract
In this report we investigate if data deduplication in

cloud storage services can be used as an attack vector. We
investigate which of the cloud services are using data-
deduplication and if they deduplicate across user accounts.
We illustrate an attack on deduplication where a file is
wrongfully deduplicated using the hash function MD5. We
also discuss the likelihood of an attack where the much
stronger SHA-256 function is used, and the limited brute
force attack which relies on a limited set of changeable data
(like a pin number) that can still be used to extract
information even when the hash function is strong.

1. Introduction
Can data deduplication be used as an attack vector? That

is a question we would like to find an answer to during this
project. Data deduplication can be used in a broad spectrum
of implementations. We have chosen to narrow it down to
analysing how deduplication commonly works in cloud
storage services, and whether it compromises file integrity
and availability.

Several cloud storage providers use deduplication to save
bandwidth and storage costs, and also to make the user
experience better. In a common (yet simplified)
implementation of deduplication, a hash-value of the file is
calculated before it uploads. The hash is sent to the cloud
and is used to check whether the file already exists. If it
does exist, the file is not transmitted to the server again, and
instead a reference to it is provided. Any of the providers
may of course use other mechanisms in combination with
hashes, to protect against exploits.

Our hopes is to find out which of the cloud storage
services are using deduplication and if possible what hash
functions are used to identify files. The later task has proven
to be hard since most services are not open with their
implementations.

To discuss this further we illustrate how attacks against
file integrity and availability and confidentiality might be
done by using hash collisions. We also try to shed some
light on how probable a collision is using a hash function
that is considered secure today. The results will be used to
draw conclusions if it is feasible to craft attacks on file

integrity and/or availability and the probability of collisions
spontaneously occurring when a system has many files and
users.

2. Background
This chapter covers a theoretical background on the

concepts of data deduplication and cryptographic hash
functions and how they are linked together. Attacks on hash
functions and in turn deduplication are also introduced.

2.1 Data Deduplication
In general, data deduplication is a data compression

method that makes sure that identical data is only stored
once. This can of course save both bandwidth and storage
costs, but may also come with privacy and security
drawbacks. Data deduplication can be used across a variety
of services, including mail providers, backup services and in
cloud storage.

There are a couple of different implementations of
deduplication. Firstly, we make the distinction between
source-based and target-based deduplication. Source based
deduplication happens at the source, i.e. in the application at
the uploaders end. This saves bandwidth, but does nothing
to hide the fact that deduplication has been used. In target-
based deduplication it’s the other way around, the file is
uploaded before the deduplication occurs [2].

Deduplication can also be used on the file-level or block-
level, meaning that an entire file can be deduplicated at
once, or it can happen block by block (the size of the block
varies in different implementations). The difference is that if
two files exist on the server that are mostly the same, but
not identical, deduplication can still be beneficial when it’s
block based [2].

It can also be implemented per-user, or cross-user. In the
latter, redundant data is shared between accounts [2].

The common way to distinguish between different files
or blocks is by using its hash value.

2.2 Hash Functions
In general, data deduplication is a data compression

method that makes sure that identical data is only stored
once. This can of course save both bandwidth and storage
costs, but may also come with privacy and security

drawbacks. Data deduplication can be used across a variety
of services, including mail providers, backup services and in
cloud storage.

There are a couple of different implementations of
deduplication. Firstly, we make the distinction between
source-based and target-based deduplication. Source based
deduplication happens at the source, i.e. in the application at
the uploaders end. This saves bandwidth, but does nothing
to hide the fact that deduplication has been used. In target-
based deduplication it’s the other way around, the file is
uploaded before the deduplication occurs [2].

Deduplication can also be used on the file-level or block-
level, meaning that an entire file can be deduplicated at
once, or it can happen block by block (the size of the block
varies in different implementations). The difference is that if
two files exist on the server that are mostly the same, but
not identical, deduplication can still be beneficial when it’s
block based [2].

It can also be implemented per-user, or cross-user. In the
latter, redundant data is shared between accounts [2].

The common way to distinguish between different files
or blocks is by using its hash value.

2.2.1 Cryptographic Hash Functions
In addition to the properties of a hash function a

cryptographic hash function must satisfy three more
properties [1]:

The function must be preimage resistant, which means
it should be hard to find a message with a given output.
(Also called a one way function.)

The function must be 2nd preimage resistant (or
weakly collision free), which means that given any message
it should be hard to find another message that gives the
same hash.

The function must be collision resistant (or strongly
collision free). This means that it should be hard to find any
two inputs that result in the same hash value.

Here “hard” can be interpreted as infeasible with respect
to the computational resources that is available at the time.

2.2.2 Common Cryptographic Hash functions
Since most file sharing services are not very open about

their implementation we have had little success in
discovering what hash functions are being used. Instead we
decided to use MD5 and SHA-256 as a weak and a strong
(respectively) cryptographic hash function for
demonstrative purposes. We will use MD5 to illustrate how
a broken hash function can be exploited and SHA-256 to
attempt to quantify the probability and likelihood of an
attack and/or hash collision.

2.2.3 MD5
Since most file sharing services are not very open about

their implementation we have had little success in

discovering what hash functions are being used. Instead we
decided to use MD5 and SHA-256 as a weak and a strong
(respectively) cryptographic hash function for
demonstrative purposes. We will use MD5 to illustrate how
a broken hash function can be exploited and SHA-256 to
attempt to quantify the probability and likelihood of an
attack and/or hash collision.

2.2.4 SHA-256
We use SHA-256 as an example of a secure

cryptographic hash function. It is relatively secure as there
are no known collisions that have been published to date of
this report. It also has a message digest bit-length of 256
which is much more secure than the 128 bits of MD5. The
SHA-2 family was published in 2002 [6] and approved as a
standard in 2003 [7].

Even though weaknesses have been found in the
algorithm [8] [9] we do not believe that it has any notable
security impact at the current state since the weakness only
applies to special cases where the rounds in the function are
reduced.

2.3 Attacks on Cryptographic Hash Functions
There exists some attacks that are theoretically

applicable to all hash functions. Three of them are discussed
in the section below.

2.3.1 Brute Force Attack
A brute force attack is carried out by an attacker that tries

to exhaust all possible combinations until a collision,
preimage or second preimage is found. This is theoretically
always possible but not applicable in practice when the
message digest is long since in a worst case scenario the
attacker has to try combinations, where n is the bit-
length of the output.

2.3.2 Limited Brute Force Attack
Assume there are a limited set of possible preimages

which are known to an attacker. The attacker also knows of
a hash value and wants to know which preimage it belongs
to, the attacker could calculate the hash value of all the
preimages in the set until a collision is found. This attack is
much more applicable in practice than the pure brute force
attack since the worst case is equal to the number of
preimages/hashes. This type of attack is useful against all
types of hash functions where no other measures have been
put in place, like digital signatures.

2.3.3 Birthday Attack
The name “birthday attack” are given to the attacks that

is derived from the birthday paradox. The name describes a
statistical (and maybe surprising) fact that if 23 people are
in the same room the probability of two of them having the
same birthday is over 50%. An approximation of the

probability of r randomly selected values of N equally
possible values, where N is large, could be calculated as
[10]:

When looking for collisions in hash functions, r and N

would correspond to r preimages and N possible digests.
We will use the birthday attack later on to quantify the
probability of hash collisions in deduplication.

2.4 Attack on deduplication using hash
collisions

Where data deduplication is used, hash collisions could
pose a great threat to file integrity, confidentiality and
availability. We will use three examples to describe how
this could work in theory. All examples will handle the case
where two users are using the same file sharing service.

2.4.1 Example 1
User Alice (A) has a file F1 that hash the hash h(F1) = H

and user Bob (B) has a file F2 that also has the hash h(F2) =
H. Both users are using the same file sharing service that
uses the function h(x) to get a fingerprint from files that are
to be uploaded and stored. If deduplication is used, the
following scenario might occur:

1. A tries to upload the file F1 to the server.
2. The server checks if h(F1) exists already. Since it

doesn’t, A uploads the file.
3. B tries to upload the file F2.
4. The server checks if h(F2) exists already. Since

h(F1) = h(F2), the system thinks the file already
exists, and B’s file gets wrongfully deduplicated.

5. When B tries to download the file F2 from another
client he will get the file F1 instead.

The described scenario shows how user B is unable to
reach his file F2 which is a threat to the availability. In the
case that the file F1 is a classified file this is also a threat to
confidentiality. If the files were deduplicated at a block
level and only a part of F1 and F2 had the same hash but
contained different data, user B might end up with a corrupt
version of F2 This would also deny B the availability of the
file.

2.4.2 Example 2
In a similar scenario Alice (A) and Mallory (M) are

using the same file sharing service. M knows that A is likely
to upload a file F1 to the service at a future point. If M were
able to forge a malicious file F2 so that h(F1) = h(F2) the
following scenario might occur:

1. M uploads the file F2 to the server.
2. The server checks if h(F2) already exists. Since it

doesn’t, M uploads the file.
3. A tries to upload the file F1.

4. The server checks if h(F1) already exists. Since
h(F1) = h(F2), A’s file gets wrongfully
deduplicated.

5. When A tries to access F1 at a later time she will
get the malicious file F2 instead.

The described example shows how the integrity of a file
can be compromised. This attack would be harder to carry
out if files were deduplicated at a block level. Although the
attack would still be valid if the size of F1 and F2 both were
smaller than the block size.

2.4.3 Example 3
Eve applies the limited brute force attack as described in

a previous chapter. Eve knows that Alice has uploaded a
standard document containing a 4 digit PIN code to her file
sharing service. Eve also knows that the document is
created from a standard template where only the PIN is
changed from document to document. Eve can now create
different documents for all 10000 possible PIN code
combinations (ranging from 0000 to 9999) and try to upload
all of them to the file sharing server. If any one
deduplicates, Eve will know that this is the document Alice
received.

This shows how confidentiality could be compromised
where the existence of a file and it’s internal structure is
known. This attack is valid in both the cases of file and
block level deduplication.

This attack, however, is a bit naive since the document
might contain signatures and/or other security barriers
against such attacks, but naive attacks will work on naive
implementations. However, the attack works independently
on the implementation of the deduplication. The attack can
view the system used in the attack as a black box.

3. Methods

3.1 Finding if deduplication is used
First we create a 10MB file with random data (to ensure

the file is unique) using TrueCrypt, that we upload to the
server. We then rename the file and upload it to a different
folder. If the amount of data that uploads is significantly
smaller than the file size, deduplication has occured. We
then try the same thing again, but with two different
accounts to see if the deduplication is implemented cross-
user.

3.1.1 Which type of deduplication is it?
To find out which type of deduplication is used we can

examine the tcp stream of an upload using, for instance,
Wireshark. If we follow a single tcp stream we can
immediately see if the transfer is done using blocks (and
find a rough estimate of the block size) or if the entire file is
transferred at once.

If it’s block-based, we want to know the size of the
blocks used. As stated previously, we can find an estimate
of this size by examining the stream, but we also want to
test this and see if it holds in practice. This can be done
using the following method:

1. Create differently sized (unique) blocks of data
(e.g. 2MB, 4MB, 6MB, 8MB)

2. Upload each file individually and measure the
amount of data that actually transfers (should be
the size of the file, plus some handshaking)

3. Concatenate each file with itself using the “cat”
command, in order to create files twice as lage
consisting of two identical blocks

4. Upload the new files and measure the data
transferred

Relatively large files should be used (>1MB) to ensure
that it can be seen in the traffic if it deduplicates or not.
Since the traffic itself will be encrypted, smaller files will
make it difficult to determine what has been transferred by
only looking at the tcp packets.

3.2 Finding the services hash methods
This is hard to find evidence for, since all transmissions

are encrypted. However, there was an open source project in
2011 called Dropship, which used SHA-256 to exploit
deduplication in Dropbox by making it possible to
download a file by only providing a hash [3]. Since then,
Dropbox have implemented precautions against this kind of
“attack”, but it is unlikely that they changed their method of
hashing, since that would do nothing to prevent Dropship-
like applications.

There is no data on what hash-functions the other
services use for deduplication.

3.3 Attack using hash collisions

3.3.1 Illustrated Attack using MD5 exploit
To illustrate how an attacker could craft two different

programs with the same hash value, where one program is
“good” and the other “evil”, we will use a C-library called
“evilize” developed in 2006 by Peter Selinger of Dalhousie
University, Canada. This tool takes advantage of the block
structure of MD5 and the technique developed by Xiaoyun
Wang and Hongbo Yu [4]. The library contains two main
programs:

• evilize: Can calculate an initialization vector and
compile 2 programs with the same hash

• md5col: Finds a collision for the initialization
vector

The process is done in four steps:
1. Write and compile the “good”/”evil” programs

and link them to the “goodevil.o” file in the library
2. Use “evilize -i” on the compiled file to calculate

the initialization vector.

3. Find a collision for the initialization vector using
md5coll.

4. Build the program using evilize and the collision
found in the previous step.

We will write two programs, both named “program”,
each of which will print a text message displaying if the
program is “good” or “evil”. This demonstration will
illustrate how an attack could be carried out against a cloud
storage service that deduplicates files using a hash function
in which a flaw has been found.

3.3.2 Atack on SHA-256
SHA-256 has no known collisions to date, although it is

theoretically weakened [8][9]. We will not try to use this
weakness since it only applies to reduced versions of the
algorithm. Instead we will try to apply previously
mentioned attacks on cryptographic hash functions.

3.3.2.1 Brute force
We do not believe that SHA-256 is susceptible to brute

force attacks since it is a relatively modern algorithm. We
will try to quantify how hard it would be to use this method
to find a SHA-256 collision.

3.3.2.2 Bithday Attack
There might exist a birthday attack if a cloud storage

provider has many users which in their turn store many
unique files. We will use the birthday attack method
described in section 2.2.3 to calculate how many preimages
it would take to have a 50% chance of a collision.

Dropbox offers their users to automatically backup their
photos from their desktop or mobile applications. Such sync
features could possibly generate a lot of unique files. Given
that dropbox now have over 275 million users [11] and all
of them probably have some unique files each there might
very well exist a birthday attack. An interesting number in
such a case would be how many files per user gives a 50%
chance of a hash collision.

4. Results
In this section we present the results of how

deduplication is done and what hash functions are used in
the cloud storage services and what weaknesses they
present.

4.1 Deduplication
Using the method described in section 3.1 we have

examined the following providers:
• Dropbox
• Google Drive
• OneDrive
• Amazon Cloud Drive
• SpiderOak

• Box
• Memopal
• AltDrive
• Wuala

4.1.1 Dropbox
In diagram 1 below we can clearly see that the 4MB and

8MB blocks deduplicates “perfectly”, while the 6MB block
benefits from some deduplication, which means that
Dropbox use block-based deduplication with a block size of
4MB.

Diagram 1. Expected transfer size vs. Actual transfer size

for Dropbox and Wuala

Note that there is a margin of error in the size of the

transmission due to hand shaking and occasional
retransmissions. If no deduplication is used, the actual
transfer size should be slightly larger than the expectation,
which it is.

While the files are still stored on one account, we try to
upload some of the files to a different account to see if
deduplication occurs cross-user. In diagram 2 we can
clearly see that this is not the case. If dropbox uses cross-
user deduplication, they hide this from the users.

Diagram 2: Expected vs actual transfer size between

accounts

4.1.2 SpiderOak
When the same file (but with a different name) is

uploaded more than once, the total uploaded data doesn’t

exceed 20KB for any given file. When we examine
different block sizes we see no deduplication at all (diagram
3). This is also supported by the fact that when we examine
the tcp stream of a file transfer, we see the whole file upload
at once. This means SpiderOak deduplicates data at the file-
level. They don’t, however, deduplicate data cross-user (see
diagram 2).

Diagram 3: Test for block-level deduplication in

SpiderOak/Memopal/AltDrive/Wuala

4.1.3 Memopal
Memopal is one of the only two services we’ve found

that deduplicates files cross-user. When a file is uploaded
first to one account, and then to a second account, the
second transfer is nearly instantaneous. They implement
deduplication at the file-level (See diagram 3).

4.1.4 AltDrive
When testing for deduplication of individual blocks, we

see no deduplication at all (see diagram 3). AltDrive
deduplicates at the file-level. They do not deduplicate cross-
user (see diagram 2).

4.1.5 Wuala
Wuala is, alongside Memopal, the other service that

deduplicates files cross-user. Unlike Memopal, they use
block-level deduplication with a block size of 4MB (see
diagram 1).

4.1.6 The other services
Google Drive, OneDrive, Amazon Cloud Drive, and

Box isn’t using any type of source-based deduplication. If
the same 10MB file is uploaded twice (to different folders,
and with a different name), 10MB of data will be
transferred both times. This means that if they are using
deduplication at all, they are hiding it from the user, and we
can do nothing to examine it.

4.2 Hash function weaknesses
Here we discuss the weaknesses of different hash

functions and what possible weaknesses they present. We

also mention something about the probability of collisions
in the hashes.

4.2.1 Illustrative attack using MD5 exploit
The illustrated attack as described in chapter 3.3.1 was

successful. The most time consuming step was to calculate
a collision for the initialization vector, which took about an
hour on a Macbook from 2009 but can sometimes take up to
several hours on the same hardware. Both program files
created share the same MD5 hash-value
“b402794a9890eeb6898cc519110bb58b” and name
“program”. When the good program is executed it prints a
text stating that it is a good program:

“$./good-files/program
This is a good program created for TDDD17 by:
Carl-Henrik Eriksson
 and
Marcus Einar
(press enter to quit)”.
The evil program states that it indeed is a program meant

to harm the user who executes it:
“$./evil-files/program
This is an 3V1L program created for TDDD17 by:
Carl-Henrik "H4kkZ0r" Eriksson
 and
Marcus "M1sChi3V0us" Einar
(press enter to quit)”
This example of an attack shows that where a weak hash

function is used it is very possible for a malicious party to
create harmful files that share the same hash values with
another not-harmful file.

4.2.2 Attack on SHA-256

4.2.2.1 Brute force and limited brute force
Since SHA-256 has an output of 256 bytes, that is
possible values, brute forcing is simply not possible. As

a comparison there are approximately atoms on the
earth, according to Wolfram Alpha, and one of the fastest
hashing computers we have found can calculate
approximately 348 billion hashes per second[12]. If every
atom on earth was such a computer it would still take over
100 million years to calculate all possible hashes.

A limited brute force attack would depend on the
number of possible preimages and not the possible output
values of SHA-256 and if other security barriers have been
put in place.

4.2.2.2 Birthday attack
When calculating a birthday attack probability on SHA-

256 with possible different combinations of outputs it
would take approximately preimages to
get a probability of 50% of a spontaneous collision. This

would mean that every user in a system that, like Dropbox,
has 275 million users would have to own more than

 files each. This corresponds to more files than
the estimated content in the web as of 2001 (according to
Wolfram Alpha) per user if all files were one bit small.

Since these numbers are too high to ever be realised we
have tried to approximate how likely a collision actually is.
If we assume that every user has at least 5000 unique files
and there are 275 million users like in the dropbox case we
get the approximate probability of . This shows that a
spontaneous collision is highly unlikely to occur.

5. Conclusions
Our investigation of different cloud storage services

show that the majority of them does not use cross-user
deduplication. This might be due to the controversy about
Dropbox privacy concerns when they were using it in their
service, and we were surprised when we found that they no
longer implement a cross-user strategy. We think they
might have dropped this approach after the successful
exploit “Dropship” [3] was published which might have
given them concerns of facing future lawsuits from
violation of copyrighted files.

Our calculations on the currently strong hash function
SHA-256 show that it is very unlikely that collisions will
occur spontaneously where cross-user deduplication is used.
It is even more unlikely that a malicious party would be able
to use deduplication as a vector to infuse malware into
someone elses file systems. We believe that the integrity
and availability of the files are relatively safe at the current
state.

Special cases of SHA-256 is has been weakened, but it is
far from broken in the full implementation. However, what
is considered safe today might be proven unsafe tomorrow,
and “attacks never get worse; they always gets better” is a
somewhat famous quote when speaking about security.
There is also the risk of unpublished attacks that work from
either malicious hackers, organisations or governments.
There is also a risk of there being backdoors that are built in.
It is important to always stay in the loop when it comes to
security, and when SHA-256 gets closer to being broken,
cloud services need to be ready to update to a safer method
of hashing.

The limited brute force attack can still be used regardless
of hash-function. In naive implementations naive attacks
will work which means that further security measures needs
to be taken to guarantee security.

6. References
[1] A. Menezes, P. van Oorschot and S. Vanstone,

“Handbook of Applied Cryptography”

[2] D. Harnik, B pinkas, A Shulman-Peleg, “Side
Channels in Cloud Services: Deduplication in Cloud
Storage”, 2010

[3] W. van der Laan, “Dropship”, 2011
(https://github.com/driverdan/dropship)

[4] X. Wang, H. Yu, “How to break MD5 and other hash
functions”, 2005

[5] R. Rivest, “RFC 1321”, 1992
(http://tools.ietf.org/html/rfc1321)

[6] “FIPS180-2”, 2002
(http://csrc.nist.gov/publications/fips/fips180-2/fips180-
2withchangenotice.pdf)

[7] “Approval of FIPS180-2”, 2003
(https://www.federalregister.gov/articles/2002/08/26/02
-21599/announcing-approval-of-federal-information-
processing-standard-fips-180-2-secure-hash-standard-a)

[8] D. Khovratovich, C. Rechberger, A. Savelieva,
Bicliques for Preimages: Attacks on Skein-512 and the
SHA-2 family, 2011
(http://eprint.iacr.org/2011/286.pdf)

[9] M. Lamberger, F. Mendel, “Higher-Order Differential
Attack on Reduced SHA-256”,
2011(http://eprint.iacr.org/2011/037.pdf)

[10] W. Trappe, L.C. Washington, “Introduction to
Cryptography with Coding Theory”, 2006

[11] A. Wilhelm, “Dropbox Hits 275M Users And
Launches New Business Product To All”, 2014
(http://techcrunch.com/2014/04/09/dropbox-hits-275m-
users-and-launches-business-product-to-all/)

[12] P. Roberts, “New 25 GPU Monster Devours Passwords
In Seconds”,2012,
(https://securityledger.com/2012/12/new-25-gpu-
monster-devours-passwords-in-seconds/)

