

Clickjacking

Martin Kaldma Martin Nordén

Email: {marka291,marno512}@student.liu.se

Supervisor: Ulf Kargén, ulf.kargen@liu.se

Project Report for Information Security Course

Linköpings universitetet, Sweden

Abstract

This paper highlights the concept of clickjacking,

defenses against it and practical real life examples of it.

Clickjacking is viewed as a social engineering attack

which exploits peoples' ignorance against web attacks.

There are several preventions but none are fully protective

as there are several workarounds. However, three main

protective methods are described, one which is built into

the browser and that honors certain HTTP headers, one

that uses client side script to prevent it and one where the

entire site is designed against clickjacking. The paper

concludes by recognizing clickjacking as a new and

potentially dangerous attack.

1. Introduction

1.1. Background

Clickjacking is an attack of deceiving a web user into

interacting with an UI component from another untrusted

source. This interaction is meant to triggering an event not

intended by the user, leading to the untrusted source

acquiring sensitive or confidential data from the user.

The attack has been known since 2008 after a couple of

researchers found an attack involving Adobe Systems

Flash apps that could give the attacker remote access to a

victim's web camera and microphone. Plenty of websites

and browser creators have acknowledged the problems

and produced defences against clickjacking. However

there are still multiple sites unprotected against this kind

of attack. This attack is not limited to a single browser but

is an issue throughout all browsers.

1.2. Purpose

This paper will study the problems and threats

involving different clickjacking attacks, as well as the

defences and different solutions to protect against it.

Another issue highlighted in this paper is the threats

arising from combining clickjacking with other powerful

attacks.

1.3. Method

Methods for creating the live demonstration attack will

be through programming a web GUI and inserting a iframe

over it. For gathering information for the report we will use

scientific papers and similar items.

2. What is clickjacking?

Clickjacking is a malicious attack where the attacker

hijacks a UI component on a website. In technical terms

an invisible iframe is placed above a clickable component

on the page and instead of doing the action that was

intended, the attackers iframe is run instead [4], resulting

in a completely different action than the one intended by

the user. Clickjacking is an issue throughout all browsers

and sites using graphical items. The attack can be

especially dangerous on websites performing interactions

between principals on different websites, for example a

site where it is possible to 'like' Facebook pages [1].

 There are different approaches for creating a

successful clickjacking attack. The attacker could hijack

an already existing site and insert his malicious code on to

that page directly, for example via a XSS attack. Though

when this is possible, clickjacking attacks might be

unnecessary for the attacker to achieve its goals [2]. An

easier approach would be to insert the clickjacking on a

known principal on an already existing site (e.g., the wall

on Facebook). Also, a clickjacking attacker is viewed

upon as having all the available web attacker resources,

such as web servers and ability to draw traffic to them [1].

Thus, the attacker can set up a brand new site, for example,

a site containing a 'Click here for a free iPad' link, where

clicking on the link would result in something different

than getting a free iPad.

There are different methods for attacking UI

components in a clickjacking attack, for example the

Facebook like button. The attacker could insert an iframe

directly over the sensitive component on the site, for

instance an invisible like button above another button,

where the user likes a predetermined page when the button

is clicked without ever knowing. The attacker could even

put the iframe directly under the mouse cursor, resulting

in the attacking script being run no matter where the user

clicks [4]. Another approach is making the iframe visible

and looking like a part of the legit page, this is known as

UI redressing [2]. This attack could be set up on a bank

site asking for the user's bank credentials.

Different attackers most likely have different agendas.

Some agendas might be of financial nature, for example

adding a new UI component on a bank site asking for

credit card numbers. A lot of attacks lately have had the

purpose of stealing unwilling likes on Facebook or

follows on twitter. When this clickjacking attack is

performed, not only will the target start 'liking' or 'follow'

the attacker, but also post a link on their own page for their

friends to interact with and spreading the attack [1]. There

have also been recorded attacks on user's webcams and

microphones through Adobe Flash [4].

2.1. Real-life examples

Since social media sites works as hubs for the latest

updates and news, clickjackers most commonly target

these sites [5]. Therefore, Facebook and Twitter, which

have both been under multiple variants of the attack, will

be used as examples for how a couple of attack variants

are performed.

2.1.1. Redirects to malicious content

This attack works by setting up a legitimate webpage

that seems to be providing additional meaningful content

to an end user. However, that page will redirect to another

page with malicious content. When posting such a link on

a social media site, it looks like the user will be taken to a

legitimate site and thus the user will effectively be lured

into clicking the link and ending up on the malicious page.

[5] This variant of the clickjacking attack have been used

against both Facebook and Twitter both in the past and

present.

The recent disappearance of Malaysian flight MH370

provides examples of social engineering in combination

with clickjacking. Attackers took advantage of people’s

fascination with this curious event and soon created scam

news stating that MH370 was found, which spread

through the Twitter account @OfficialCNN. The tweet

contained a link to a fake news page containing the article

[6]. Even though this particular attack was not used to

harm the end user that clicked the link, it shows how

powerful the attack could be if used maliciously.

Another example of this attack which was used

maliciously is the creation of a Facebook Valentine’s

theme. It was spread through Facebook posts which when

clicked redirected to a site asking the user to install an

extension to their browser. The extension in turn

contained a Trojan that injected ads and monitored the

user’s browser. [7]

The same technique were used on a Twitter attack

when Whitney Huston passed away in 2012. The user was

then redirected to a survey page which asked for a phone

number. [8]

2.1.2. Taking unwanted actions

Another variant of clickjacking lures users into

clicking links that directly shares, likes or retweets content

that was not intended to be [1]. An example is the ‘Don’t

click’ link that attacked Twitter in 2009. It worked by

tweeting a message that told others not to click a following

link. Curiosity then made large amounts of users to click

the link, which if the user were logged in to Twitter

directly tweeted the same message by the account of the

clicking user. No direct purpose other than the spread of

the message were found for that particular attack. [9, 10]

Similar attacks can be seen on Facebook still. One

example is to Facebook external pages which mimics the

look and feel of the original Facebook site to trick users

into confirm age, press join to see more content or similar

social engineering techniques that makes users click

hidden like or share buttons, thus called likejacking by

many [1, 11]. This type of attack have for example been

used by affiliates to the controversial advertising firm

Adscend in 2011. Adscend put into system a way of

spreading the word of their customers by placing code that

automatically liked and shared their customers’
promotional Facebook pages without the end user’s

permission [12].

Also, the introduction of the external Like button,

where web developers can choose to implement them

directly on their own pages have increased the

vulnerability of this type of attack both since Facebook

buttons have been more common on external sites and that

it is easier to hide them behind other content.

3. Twidder

Twidder is an assignment performed in the course

TDDD24 and it is the graphical user interface we will be

Figure 1. Twidder GUI.

Figure 1. Twidder GUI.

using for our practical work. Twidder is a twitter like

application with a start page looking like figure 1.

The attack will focus on the login button from figure 1.

For our attack to be successful we will need to insert an

iframe and a “scam script” into the page. The scam script

will be looking like figure 2. The iframe is invisible and

located above the login button from figure 1. The scam

button and JavaScript from Figure 1 is loaded into this

iframe. When a user interacts with the login button on the

GUI, instead of only login to the page, the user

information will be sent to a server hosted by us, the

attackers. Then this server will email the information to

our respective emails. After this our script will call the

login procedure and the user access his account as normal.

This is to prevent detection, if we want our scam to

succeed it is best for it not to be noticed at all.

4. How an attack is performed

Clickjacking attacks seldom uses technical weaknesses to

attack a system. Instead the attack build upon the concept of

social engineering, where human weaknesses are used to create

a system to trick the user into taking unwanted actions. [5] A

few of those concepts are described in section 2, and this section

will cover the common technical concepts used.

As described in the cases of Twitter and Facebook, two basic

concepts that differs both functionally and technically exists

within the clickjacking field. In the case where a site redirects

to malicious content, a goalkeeping webpage is first set up to

shield the malicious page from being seen in the link name

posted in social media. [5] This goalkeeping page also contains

the social engineering of the attack since it needs to look like

providing interesting content that the user wants to get access

to. It is therefore important to construct it so that it has ‘real’
content, like the case with the scam MH370 article. According

to Trend Micro this goalkeeping site is most often set up as a

blog on a pre-existing blogging platform such as Blogger or

WordPress.

When the user has been tricked into clicking the link posted

in social media, the goalkeeping site will contain a script that

after some time redirects the user to the real malicious site. [5]

This is the exact same concept as used in the Whitney Huston

Twitter attack where the malicious site then tried to get the users

phone number. [8]

The concept of taking unwanted actions will instead hide

either the real site or the malicious one, and then intercept the

click events on the hidden one and issue unwanted actions. The

basic approach for this will be explained technically within the

context of likejacking [11]. To achieve this, the attacker creates

a page that contains a Facebook like button, which when

clicked likes a predetermined Facebook page on behalf of the

logged in user. That button is then made invisible and placed on

top of a link that claims to do something else, for example

enrolling in a competition or a lottery. When the user clicks the

enroll link, it really clicks the like button and secretly likes the

predetermined Facebook page.

Taking this concept even further, one way of attacking is to

place the entire legitimate page, for instance Facebook in a so

called iframe. An iframe is a way of incorporating a complete

webpage into another one and enables the two pages to interact

and communicate with each other both visually and

programmatically through HTML, JavaScript and CSS. That

iframe is then made invisible on the new page and another user

Figure 2. Scam script page.

interface is shown instead. By placing the components of the

new interface strategically at the same places as certain links or

buttons on the hidden Facebook page, the user can be tricked

into clicking a flow of links and buttons in the new interface that

corresponds to some advanced operations on Facebook. Since

the clicks are actually intercepted by the Facebook iframe, it is

an effective way of making the user do what you want it to do.

Also, there are so called pointer integrity attacks and

temporal attacks. The first one works by programmatically with

JavaScript changing the actual position of the mouse pointer

and thus making the user click unwanted items. The second one

will instead give the user little time to decide what to do, which

increases the probability of it clicking something harmful. [1]

Both these attacks work well with either of the two types

described above.

What is especially dangerous with all these attacks is that

when a Facebook like button or even the whole Facebook

iframe is put into another page, a possible active user session

will also be forwarded with it. It means that if a user is logged

in to Facebook in another browser window, or even has been

recently, that session can be used to issue authorized requests.

This is also the case with most session based login systems, not

only a vulnerability of Facebook.

4.1. Prevention

Clickjacking is an issue for both browser and websites

and both of these principals need and can implement

different solutions to prevent clickjacking. Clickjacking is

a rising issue and as a result a lot of preventions have been

proposed and some have been implemented [1].

One way of preventing attacks is to design the system

to ask the user for confirmation of clicks [1]. When a user

clicks on a UI component on the page, a confirmation

window pops up. The user can now see if the click was for

the component he wanted to click or something entirely

different. If it is a different component the user can decline

his interaction and report it.

Another way to prevent clickjacking is UI

randomization, changing the way the page looks on

unknown intervals [1]. This is not a particular robust

defense, but it is a way to making the attack harder.

One particular effective defense against clickjacking is

so called frame busting, which will hinder elements in an

iframe from being displayed on a page [4]. It can be

achieved through JavaScript which at page load time will

check if the active page is the top-level in the browser

window. If it is not, the script will automatically remove

the frame and make the page being shown at the top level

[3], and thus busting the frame. However, JavaScript was

never intended to be operated in this manner. A new way

of achieving frame-busting was introduced in Internet

Explorer 8[3]. This prevention was a new HTTP header

called X-FRAME-OPTIONS that is to be added on every

authenticated page. All the other major browsers have

nowadays added different implementations of this header

[3].

An alternative to frame-busting or completely

disallowing framing is visibility detection on click [2].

This will block clicks if the browser detects the clicked

component being an invisible component from a cross-

origin principal, such as website containing a Facebook

like button. The Facebook like button is a component

loaded from another domain than the rest of the page,

which then is denoted as a cross-origin component. A big

drawback with this protection is that it only works on the

specific component that it’s added to. This is what adobe

did to prevent clickjacking attacks on users’ webcams [2].

HTML5 has introduced a better solution than most

existing ones [3]. The solution is to run the server in a

HTML5 sandbox implementation. This sandbox will

prevent any JavaScript from running on the server, which

might not always be suitable. Still, this solutions also have

implementations for allowing certain components to be

run, for example, if the webpage is to allow post request

from forms, the sandbox environment can be set to do so.

Unfortunately as of now this is only implemented in

Chrome and Safari [3].

5. Comparison with other attacks

A few other web attacks are especially connected to

clickjacking. So called cross site scripting (XSS) and

phishing are two that in this section will be discussed

within the context of clickjacking.

5.1. Differences in purposes

The three attacks differs somewhat in their purposes.

The most technical attack is the XSS which sends

malformed form data to a web server which then echoes it

back. When the form data contains client script code, that

code is being run as would any code the server sends to the

client, when it echoes it back [13]. The purpose of that

attack is thus to gain measures of further attacks against the

system by using the trusted script code that the server have

sent to the client.

For phishing the purpose is clearer. By using social

engineering and false webpages the attackers intend to

steal money or sensitive information from you by tricking

you into giving up your personal information such as credit

card number or bank account number. [14]

When it comes to clickjacking its technical purpose is,

according to the description in previous sections, to lure

you into clicking things that perform stuff that you don’t

really want to do.

5.2. Working together

Were these three attacks and their purposes really

becomes powerful is in the combination of the three. We

will here describe a powerful scenario where all of these

attacks are combined into a system that effectively could

steal not only information but also financial means from an

end user.

Suppose a web shop using all possible state of the art

web security mechanisms except from two; it is not

protected against cross site scripting in one of its search

fields and does not provide a protection system against

clickjacking. An attack could then be constructed as

follows. Firstly, a cross site scripting attack is issued

against the site creating a mechanism for altering and

stealing information that the user enters in form fields on

the page. Also, the script redirects the “Proceed to

payment”-button of the checkout page to a different one. A

URL could then be constructed to automatically inject that

code whenever a user enters the page from that URL.

Secondly, a social media campaign is created using

clickjacking techniques that for example tells the user a

popular piece of equipment is on sale at the moment.

Whenever a user clicks on the false link, an equal post is

made on behalf of the user, which thus spread the word

quickly to all its connections.

Thirdly, the social media campaign redirects with the

malicious link to the infected web shop and the desired

product. Whenever a user then proceeds to payment, a

phishing site is shown that asks you to provide your credit

card details.

As a whole this method is probably not the best way to

attack the system, and one could argue that by only using

the XSS attack you will gain enough access to steal all

customer’s sensitive information and that this attack would

soon be discovered. While that could be the case, the

example still shows how to spread the word and maximize

the revenue from the attack in a way that we think many

attackers would do. Therefore, it still shows how an

effective and fast spreading attack could be constructed

using all the concepts of XSS, phishing and clickjacking in

a realistic way.

6. Conclusions

Clickjacking is a relatively new web attack that most

users are unaware of. That open up for threats where users

can’t fully control their own internet actions, which makes

the attack conceptually powerful. However, many attempts

at clickjacking has not been of hazardous nature. The

concept of the attack, to use social engineering and the

user’s inability to fully understand clickjacking, makes it

hard to protect sites and their users. There will almost

always be a way for circumventing protections, especially

when they are so tied to web techniques that are needed for

daily use.

As the technique uses social engineering to spread, an

attack could easily spread to a broad public. Thus, it could

be a way into user’s systems that is easily overlooked even

by a security conscious computer user. All in all, the simple

concept and the possible power of an attack makes

clickjacking something to watch out for in the future,

where the attacks might not be as harmful as they have

been previously.

References

[1] Huang, Lin-Shung, et al. "Clickjacking: attacks and
defenses." Proceedings of the 21st USENIX Security
Symposium. 2012.

[2] Stone, Paul. "Next generation clickjacking." BlackHat
Europe. 2010.

[3] Lundeen, Brigette, and Jim Alves-Foss. "Practical
clickjacking with BeEF." Homeland Security (HST), 2012
IEEE Conference on Technologies for. IEEE, 2012.

[4] Hansen, Robert, and Jeremiah Grossman.
"Clickjacking." SecTheory Retrieved 5.03 (2008): 2012.

[5] Trend Micro. “Think Before You Click: Truth Behind
Clickjacking on Facebook.” [Online] http://about-
threats.trendmicro.com/fr/webattack/108/Think+Before+
You+Click+Truth+Behind+Clickjacking+on+Facebook
[Retrieved 2014-04-07]

[6] Chandra Kharel, Gopi. ”‘MH370 Found’ Hoaxes go

Viral: Fake CNN Accounts Post ‘Clickjacking’ Scams,

False Claims” International Business Times. March 2014.

[Online]

http://www.ibtimes.co.in/articles/544711/20140324/mh37

0-found-hoax-fake-cnn-accounts-scams.htm [Retrieved

2014-04-17]

[7] Talampas, Christopher. “Facebook Valentine’s Theme
Leads to Malware” Trend Micro. February 2012. [Online]
http://blog.trendmicro.com/trendlabs-security-
intelligence/facebook-valentines-theme-leads-to-malware/
[Retrieved 2014-04-10]

[8] Talampas, Christopher. “Cybercriminals Leverage
Whitney Huston’s Death” Trend Micro. February 2012.
[Online] http://blog.trendmicro.com/trendlabs-security-
intelligence/cybercriminals-leverage-whitney-houstons-
death/ [Retrieved 2014-04-10]

[9] Mills, Elinor. “Twitter hit with ‘Don’t click’
clickjacking attack” Cnet. February 2009. [Online]
http://www.cnet.com/news/twitter-hit-with-dont-click-
clickjacking-attack/ [Retrieved 2014-04-07]

[10] Stone, Biz. “Clickjacking Blocked” Twitter. February
2009. [Online] https://blog.twitter.com/2009/clickjacking-
blocked [Retrieved 2014-04-10]

[11] Sophos. “What is ‘Likejacking’?” Sophos. [Online]
http://www.sophos.com/en-us/security-news-
trends/security-trends/what-is-likejacking.aspx [Retrieved
2014-04-17]

[12] Cluley, Graham. “Facebook sues alleged clickjacking
firm” Sophos Nakedsecurity. January 2012. [Online]
http://nakedsecurity.sophos.com/2012/01/27/facebook-
sues-alleged-clickjacking-firm/ [Retrieved 2014-04-07]

[13] Bradbury, Danny. "The dangers of badly formed
websites" Computer Fraud & Security. Volume 2012.
Issue 1. pp 12-14. January 2012.

[14] Microsoft. “How to recognize phishing email

messages, links, or phone calls” Microsoft. [Online]

http://www.microsoft.com/security/online-privacy/phishing-

symptoms.aspx [Retrieved 2014-04-17]

http://www.ibtimes.co.in/archives/articles/reporters/gopi-chandra-kharel/

